Suche

Prof. Dr. Daniel Peterseim


Professor

E-Mail: daniel.peterseim@math.uni-augsburg.de
Telefon: +49 821 598 - 2194
Raum: 3036 (Gebäude L1)
Sprechzeiten: nach Vereinbarung
Hausanschrift: Universitätsstr. 14
86159 Augsburg


Arbeitsgruppe Prof. Peterseim

Lehre

Homepage der Universität Bonn

Publications of Prof. Dr. Daniel Peterseim:

Submitted Articles:

[1] D. Gallistl and D. Peterseim. Numerical stochastic homogenization by quasi-local effective diffusion tensors. 2017. INS Preprint No. 1701.
bib | arXiv | .pdf 1 ]

Journal Papers:

[1] D. Gallistl, P. Huber, and D. Peterseim. On the stability of the Rayleigh-Ritz method for eigenvalues. 2017. Accepted for publication in Numerische Mathematik. Available as INS Preprint No. 1527.
bib | .pdf 1 ]
[2] P. Hennig, M. Kästner, P. Morgenstern, and D. Peterseim. Adaptive Mesh Refinement Strategies in Isogeometric Analysis - A Computational Comparison. Comp. Meth. Appl. Mech. Eng., 316:424–-448, 2017.
bib | DOI | arXiv | http | .pdf 1 ]
[3] A. Målqvist and D. Peterseim. Generalized finite element methods for quadratic eigenvalue problems. ESAIM Math. Model. Numer. Anal., 51(1):147-163, 2017.
bib | DOI | arXiv | .pdf 1 ]
[4] D. Peterseim. Eliminating the pollution effect in Helmholtz problems by local subscale correction. Math. Comp., 86:1005-1036, 2017.
bib | DOI | arXiv | .pdf 1 ]
[5] D. Peterseim and M. Schedensack. Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput., 2017. Online First.
bib | DOI | arXiv | .pdf 1 ]
[6] R. Kornhuber, D. Peterseim, and H. Yserentant. An analysis of a class of variational multiscale methods based on subspace decomposition. November 2016. Accepted for publication in Mathematics of Computation.
bib ]
[7] P. Henning and D. Peterseim. Crank-Nicolson Galerkin approximations to nonlinear Schrödinger equations with disorder potentials. 2016. Accepted for publication in Mathematical Models and Methods in Applied Sciences. Available as INS Preprint No. 1621.
bib | .pdf 1 ]
[8] D. Gallistl and D. Peterseim. Computation of quasilocal effective diffusion tensors and connections to the mathematical theory of homogenization. 2016. Accepted for publication in SIAM MMS. Available as INS Preprint No. 1619.
bib | arXiv | .pdf 1 ]
[9] G. Li, D. Peterseim, and M. Schedensack. Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in 2d. ArXiv e-prints, 2016. Accepted for publication in IMA Journal on Numerical Analysis. Also available as INS Preprint No. 1612.
bib | arXiv | .pdf 1 ]
[10] D. Brown and D. Peterseim. A multiscale method for porous microstructures. SIAM MMS, 14:1123-1152, 2016.
bib | DOI | arXiv | .pdf 1 ]
[11] A. Buffa, C. Giannelli, P. Morgenstern, and D. Peterseim. Complexity of hierarchical refinement for a class of admissible mesh configurations. Computer Aided Geometric Design, 47:83-92, 2016.
bib | DOI | http | .pdf 1 ]
[12] D. Peterseim and R. Scheichl. Robust numerical upscaling of elliptic multiscale problems at high contrast. Computational Methods in Applied Mathematics, 16:579-603, 2016.
bib | DOI | arXiv | .pdf 1 ]
[13] D. Gallistl and D. Peterseim. Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comp. Meth. Appl. Mech. Eng., 295:1-17, 2015.
bib | DOI | arXiv | .pdf 1 ]
[14] C. Carstensen, K. Köhler, D. Peterseim, and M. Schedensack. Comparison results for the Stokes equations. Appl. Numer. Math., 95:118-129, 2015.
bib | DOI | arXiv | http ]
[15] C. Carstensen, D. Peterseim, and A. Schröder. The norm of a discretized gradient in H(div)* for a posteriori finite element error analysis. Numer. Math., 132(3):519-539, 2015.
bib | DOI | http ]
[16] M. Eigel and D. Peterseim. Simulation of composite materials by a network fem with error control. Computational Methods in Applied Mathematics (online), 15(1):21-37, 2015.
bib | DOI | http ]
[17] P. Morgenstern and D. Peterseim. Analysis-suitable adaptive T-mesh refinement with linear complexity. Computer Aided Geometric Design, 34:50-66, 2015. Also available as INS Preprint No. 1409.
bib | DOI | http | .pdf 1 ]
[18] P. Henning, A. Målqvist, and D. Peterseim. A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM: Math. Model. Numer. Anal., 48(05):1331-1349, 2014.
bib | DOI | http ]
[19] P. Henning, A. Målqvist, and D. Peterseim. Two-level discretization techniques for ground state computations of bose-einstein condensates. SIAM J. Numer. Anal., 52(4):1525-1550, 2014.
bib | DOI | http ]
[20] A. Målqvist and D. Peterseim. Computation of eigenvalues by numerical upscaling. Numer. Math., 130(2):337-361, 2014.
bib | DOI | arXiv | http ]
[21] A. Målqvist and D. Peterseim. Localization of elliptic multiscale problems. Math. Comp., 83(290):2583-2603, 2014.
bib | DOI | http ]
[22] D. Peterseim. Composite finite elements for elliptic interface problems. Math. Comp., 83(290):2657-2674, 2014.
bib | DOI | http ]
[23] C. Carstensen, D. Peterseim, and H. Rabus. Optimal adaptive nonconforming FEM for the Stokes problem. Numer. Math., 123(2):291-308, 2013.
bib | DOI | http ]
[24] D. Elfverson, E. H. Georgoulis, A. Målqvist, and D. Peterseim. Convergence of a discontinuous galerkin multiscale method. SIAM J. Numer. Anal., 51(6):3351-3372, 2013.
bib | DOI | http ]
[25] P. Henning and D. Peterseim. Oversampling for the multiscale finite element method. Multiscale Model. Simul., 11(4):1149-1175, 2013.
bib | DOI | http ]
[26] D. Peterseim and C. Carstensen. Finite element network approximation of conductivity in particle composites. Numer. Math., 124(1):73-97, 2013.
bib | DOI | http ]
[27] C. Carstensen, D. Peterseim, and M. Schedensack. Comparison results of finite element methods for the Poisson model problem. SIAM J. Numer. Anal., 50(6):2803-2823, 2012.
bib | DOI | http ]
[28] D. Peterseim. Robustness of Finite Element Simulations in Densely Packed Random Particle Composites. Netw. Heterog. Media, 7(1), 2012.
bib | DOI ]
[29] D. Peterseim and S. Sauter. Finite Elements for Elliptic Problems with Highly Varying, Nonperiodic Diffusion Matrix. Multiscale Model. Simul., 10(3):665-695, 2012.
bib | DOI | http ]
[30] L. Banjai and D. Peterseim. Parallel multistep methods for linear evolution problems. IMA J. Numer. Anal., 32(3):1217-1240, 2011.
bib | DOI | .pdf 1 ]
[31] D. Peterseim and S. A. Sauter. Finite element methods for the Stokes problem on complicated domains. Comp. Meth. Appl. Mech. Eng., 200(33-36):2611-2623, 2011.
bib | DOI | http ]
[32] D. Peterseim and S. A. Sauter. The composite mini element - coarse mesh computation of Stokes flows on complicated domains. SIAM J. Numer. Anal., 46(6):3181-3206, 2008.
bib | DOI | http ]

Refereed Articles in Collections:

[1] D. Peterseim. Variational multiscale stabilization and the exponential decay of fine-scale correctors. In G. R. Barrenechea, F. Brezzi, A. Cangiani, and E. H. Georgoulis, editors, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, volume 114 of Lecture Notes in Computational Science and Engineering. Springer, May 2016. Also available as INS Preprint No. 1509.
bib | arXiv | .pdf 1 ]
[2] D. Brown, D. Gallistl, and D. Peterseim. Multiscale Petrov-Galerkin method for high-frequency heterogeneous Helmholtz equations. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, Lecture Notes in Computational Science and Engineering. 2016. Accepted for publication. Also available as INS Preprint No. 1526.
bib | arXiv | .pdf 1 ]
[3] P. Henning, P. Morgenstern, and D. Peterseim. Multiscale partition of unity. In M. Griebel and M. A. Schweitzer, editors, Meshfree Methods for Partial Differential Equations VII, volume 100 of Lecture Notes in Computational Science and Engineering, pages 185-204. Springer International Publishing, 2015.
bib | DOI | http | .pdf 1 ]

Edited Proceedings:

[1] C. Carstensen, B. Engquist, and D. Peterseim. Computational Multiscale Methods. 2015.
bib | DOI | .pdf 1 ]

Articles in Proceedings:

[1] P. Bringmann, C. Carstensen, D. Gallistl, F. Hellwig, D. Peterseim, S. Puttkammer, H. Rabus, and J. Storn. Towards adaptive discontinuous petrov-galerkin methods. PAMM, 16(1):741-742, 2016.
bib | DOI | http ]
[2] D. Gallistl, D. Peterseim, and C. Carstensen. Multiscale petrov-galerkin fem for acoustic scattering. PAMM, 16(1):745-746, 2016.
bib | DOI | http ]
[3] D. Peterseim and M. Schedensack. Relaxing the CFL condition for the wave equation on adaptive meshes. PAMM, 16(1):765-766, 2016.
bib | DOI | http ]
[4] D. Gallistl and D. Peterseim. Multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Oberwolfach Reports, 12(3):2580-2581, 2015.
bib ]
[5] P. Henning, A. Målqvist, and D. Peterseim. Two-level discretization for the Gross-Pitaevskii eigenvalue problem with a rough potential. to appear in Oberwolfach Rep., 2014.
bib | DOI ]
[6] A. Målqvist and D. Peterseim. Multiscale techniques for solving quadratic eigenvalue problems. to appear in Oberwolfach Rep., 2014.
bib | DOI ]
[7] A. Målqvist and D. Peterseim. Numerical upscaling of eigenvalue problems. Oberwolfach Rep., 10(1):402-405, 2013.
bib | DOI ]
[8] D. Peterseim and A. Målqvist. Spectrum-preserving two-scale decompositions with applications to numerical homogenization and eigensolvers. Oberwolfach Rep., 10(1):850-853, 2013.
bib | DOI ]
[9] A. Målqvist and D. Peterseim. Finite element discretization of multiscale elliptic problems. Oberwolfach Rep., 9(1):516-519, 2012.
bib | DOI ]
[10] D. Peterseim, C. Carstensen, and M. Schedensack. Comparison of finite element methods for the Poisson model problem. Oberwolfach Rep., 9(1):584-587, 2012.
bib | DOI ]
[11] M. Schedensack, C. Carstensen, and D. Peterseim. Comparison results for first-order FEMs. Oberwolfach Rep., 9(1):495-497, 2012.
bib | DOI ]
[12] D. Peterseim. Triangulating a system of disks. Proc. 26th European Workshop on Computational Geometry (EWCG), pages 241-244, 2010.
bib | http ]
[13] D. Peterseim. Composite finite elements for elliptic interface problems. PAMM, 10(1):661-664, 2010.
bib | DOI | http ]
[14] D. Peterseim. Finite element analysis of particle-reinforced composites. Oberwolfach Rep., 6(2):1597-1665, 2009.
bib | DOI | http ]
[15] D. Peterseim and S. A. Sauter. Recent advances in composite finite elements. Oberwolfach Rep., 5(2):1233-1293, 2008.
bib | DOI | http ]
[16] D. Peterseim and S. A. Sauter. The composite mini element: a new mixed FEM for the Stokes equations on complicated domains. PAMM, 7(1):2020101-2020102, 2007.
bib | http ]

Theses:

[1] D. Peterseim. Computational Multiscale Methods for Partial Differential Equations. Habilitation thesis, Humboldt-Universität zu Berlin, 2016.
bib | .pdf 1 ]
[2] D. Peterseim. The Composite Mini Element: A mixed FEM for the Stokes equations on complicated domains. PhD thesis, Universität Zürich, 2007.
bib | .pdf 1 ]
[3] D. Peterseim. Numerische Analyse parameterabhängiger periodischer Orbits nichtlinearer dynamischer Systeme mittels Mehrzielmethode und effizienter Fortsetzungstechniken. Master's thesis, IfMath, TU Ilmenau, 2004.
bib ]

Other Reports:

[1] C. Engwer, P. Henning, A. Målqvist, and D. Peterseim. Efficient implementation of the Localized Orthogonal Decomposition method. ArXiv e-prints, Feb. 2016.
bib | arXiv ]
[2] D. Peterseim. Generalized delaunay partitions and composite material modeling. Matheon Preprint, 690, 2010.
bib | http | .pdf 1 ]