Suche

Dr. Mira Schedensack


Wiss. Mitarbeiterin

E-Mail: mira.schedensack@math.uni-augsburg.de
Telefon: +49 821 598 - 2184
Raum: 3002 (Gebäude L1)


Sprechstunde

Mittwoch: 15:00-16:30 Uhr

Lehre

SS 2017: Übungen zur Vorlesung "Numerische Verfahren für Materialwissenschaftler, Physiker und Wirtschaftingenieure"

research interests

numerical analysis, computational partial differential equations, nonconforming finite element methods, a posteriori error analysis, optimality of adaptive algorithms, computational mechanics, eigenvalue problems, wave equation

Awards

Marthe-Vogt-Preis of the Forschungsverbund Berlin 2016
Humboldt-Preis of the Humboldt-Universität zu Berlin 2016
Dr.-Klaus-Körper-Preis 2016

Publications

    Journal papers

    • G. Li, D. Peterseim, and M. Schedensack.
      Error analysis of a variational multiscale stabilization for convection-dominated diffusion equations in 2d.
      IMA J. Numer. Anal., accepted for publication, 2017. Also available as ArXiv e-prints and INS Preprint No. 1612.
      [ pdf ]
    • D. Peterseim and M. Schedensack.
      Relaxing the CFL condition for the wave equation on adaptive meshes.
      J. Sci. Comput., 2017. Online first.
      [ doi , arXiv ]
    • M. Schedensack.
      A new discretization for mth-Laplace equations with arbitrary polynomial degrees.
      SIAM J. Numer. Anal., 54(4):2138-2162, 2016.
      [ doi , arXiv ]
    • C. Carstensen, D. Gallistl, and M. Schedensack.
      $L^2$ best-approximation of the elastic stress in the Arnold-Winther FEM.
      IMA J. Numer. Anal., 36(3):1096-1119, 2016.
      [ doi ]
    • C. Carstensen, B. Reddy, and M. Schedensack.
      A natural nonconforming FEM for the Bingham flow problem is quasi-optimal.
      Numer. Math., 133(1):37-66, 2016.
      [ doi ]
    • C. Kreuzer and M. Schedensack.
      Instance optimal Crouzeix-Raviart adaptive finite element methods for the Poisson and Stokes problems.
      IMA J. Numer. Anal., 36(2):593-617, 2016.
      [ doi ]
    • M. Schedensack.
      Mixed finite element methods for linear elasticity and the Stokes equations based on the Helmholtz decomposition.
      ESAIM Math. Model. Numer. Anal., 51(2):399-425, 2017.
      [ doi ]
    • M. Schedensack.
      A new generalization of the P1 non-conforming FEM to higher polynomial degrees.
      Comput. Methods Appl. Math., 17(1):161-185, 2017. Published Online; also available as INS Preprint No. 1507 and arXiv e-print 1505.02044.
      [ doi , arXiv ]
    • C. Carstensen, D. Gallistl, and M. Schedensack.
      Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems.
      Math. Comp., 84(293):1061-1087, 2015.
      [ doi ]
    • C. Carstensen, K. Köhler, D. Peterseim, and M. Schedensack.
      Comparison results for the Stokes equations.
      Appl. Numer. Math., 95:118-129, 2015.
      [ doi ]
    • C. Carstensen and M. Schedensack.
      Medius analysis and comparison results for first-order finite element methods in linear elasticity.
      IMA J. Numer. Anal., 35(4):1591-1621, 2015.
      [ doi ]
    • D. Gallistl, M. Schedensack, and R. P. Stevenson.
      A remark on newest vertex bisection in any space dimension.
      Comput. Methods Appl. Math., 14(3):317-320, 2014.
      [ doi ]
    • C. Carstensen, D. Gallistl, and M. Schedensack.
      Discrete reliability for Crouzeix-Raviart FEMs.
      SIAM J. Numer. Anal., 51(5):2935-2955, 2013.
      [ doi ]
    • C. Carstensen, D. Gallistl, and M. Schedensack.
      Quasi-optimal adaptive pseudostress approximation of the Stokes equations.
      SIAM J. Numer. Anal., 51(3):1715-1734, 2013.
      [ doi ]
    • C. Carstensen, D. Peterseim, and M. Schedensack.
      Comparison results of finite element methods for the Poisson model problem.
      SIAM J. Numer. Anal., 50(6):2803-2823, 2012.
      [ doi ]

    Refereed Articles in Collections

    • S. Brenner, M. Oh, S. Pollock, K. Porwal, M. Schedensack, and N. Sharma.
      A $C^0$ interior penalty method for elliptic optimal control problems with pointwise state constraints in three dimensions.
      In S. Brenner, editor, Topics in Numerical Partial Differential Equations and Scientific Computing, volume 160 of The IMA Volumes in Mathematics and its Applications. Springer, 2016.
      [ doi ]

    Proceedings

    • D. Peterseim, M. Schedensack.
      Relaxing the CFL condition for the wave equation on adaptive meshes.
      PAMM, 16(1):765-766, 2016.
      [ doi ]
    • M. Schedensack.
      A class of mixed finite element methods based on the Helmholtz decomposition.
      Oberwolfach Rep., 12(3):2555-2556, 2015.
      [ doi ]
    • M. Schedensack, C. Carstensen, and D. Gallistl.
      Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems.
      Oberwolfach Rep., 10(4):3270-3272, 2013.
      [ doi ]
    • M. Schedensack, C. Carstensen, and D. Peterseim.
      Comparison results for first-order FEMs.
      Oberwolfach Rep., 9(1):495-497, 2012.
      [ doi ]

    Theses

    • M. Schedensack.
      A class of mixed finite element methods based on the Helmholtz decomposition in computational mechanics.
      Doctoral dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015.
      [ url ]