Non-negatively curved torus manifolds

Michael Wiemeler

Karlsruhe Institute of Technology

michael.wiemeler@kit.edu

Mathematical Congress of the Americas 2013
Outline

1. Non-negative curvature and torus manifolds
 - Definitions
 - Previous Work

2. Main results
 - Main results
 - Structure Results for torus manifolds
 - Proof of the main result

3. Applications
A torus manifold is a $2n$-dimensional orientable connected manifold M together with a action of an n-dimensional torus such that $M^T \neq \emptyset$.

A Riemannian manifold M is non-negatively curved if all triangles in M are not “thinner” than a triangle in the Euclidean plane.
Goal

Classify torus manifolds which admit an invariant metric of non-negative curvature.
Previous Results

Theorem (Grove and Searle (1994))

A simply connected torus manifold with an invariant metric of positive sectional curvature is diffeomorphic to S^{2n} or $\mathbb{C}P^{n}$.

Theorem (Hsiang and Kleiner (1989))

A 4-dimensional simply connected Riemannian manifold with positive sectional curvature and an isometric S^1-action is homeomorphic to S^4 or $\mathbb{C}P^2$.
Previous Results

Theorem (Grove and Searle (1994))

A simply connected torus manifold with an invariant metric of positive sectional curvature is diffeomorphic to S^{2n} or $\mathbb{C}P^n$.

Theorem (Hsiang and Kleiner (1989))

A 4-dimensional simply connected Riemannian manifold with positive sectional curvature and an isometric S^1-action is homeomorphic to S^4 or $\mathbb{C}P^2$.
Theorem (Kleiner (1990) and Searle and Yang (1994))

A 4-dimensional simply connected Riemannian manifold with non-negative sectional curvature and an isometric S^1-action is homeomorphic to S^4, $\mathbb{C}P^2$, $\mathbb{C}P^2 \# \pm \mathbb{C}P^2$ or $S^2 \times S^2$.

- Grove and Wilking (2013) classified 4-dimensional simply connected Riemannian manifolds with non-negative curvature and isometric S^1-action up to equivariant diffeomorphism.
- In particular, a 4-dimensional simply connected non-negatively curved torus manifold has at most four fixed points.
Theorem (Kleiner (1990) and Searle and Yang (1994))

A 4-dimensional simply connected Riemannian manifold with non-negative sectional curvature and an isometric S^1-action is homeomorphic to S^4, $\mathbb{C}P^2$, $\mathbb{C}P^2 \# \pm \mathbb{C}P^2$ or $S^2 \times S^2$.

- Grove and Wilking (2013) classified 4-dimensional simply connected Riemannian manifolds with non-negative curvature and isometric S^1-action up to equivariant diffeomorphism.

- In particular, a 4-dimensional simply connected non-negatively curved torus manifold has at most four fixed points.
Theorem (Kleiner (1990) and Searle and Yang (1994))

A 4-dimensional simply connected Riemannian manifold with non-negative sectional curvature and an isometric S^1-action is homeomorphic to S^4, $\mathbb{C}P^2$, $\mathbb{C}P^2 \# \pm \mathbb{C}P^2$ or $S^2 \times S^2$.

- Grove and Wilking (2013) classified 4-dimensional simply connected Riemannian manifolds with non-negative curvature and isometric S^1-action up to equivariant diffeomorphism.
- In particular, a 4-dimensional simply connected non-negatively curved torus manifold has at most four fixed points.
Main Theorem

Theorem (W.)

Let M be a simply connected torus manifold with $H^{\text{odd}}(M; \mathbb{Q}) = 0$ such that one of the following two conditions holds:

- M admits an invariant metric of non-negative sectional curvature.
- M is rationally elliptic.

Then M has the same rational cohomology as a quotient of a free linear torus action on a product of spheres. If, moreover, $H^*(M; \mathbb{Z})$ is torsion-free or $H^{\text{odd}}(M; \mathbb{Z}) = 0$, then M is homeomorphic to such a quotient.
Main Theorem

Theorem (W.)

Let M be a simply connected torus manifold with $H^{\text{odd}}(M; \mathbb{Q}) = 0$ such that one of the following two conditions holds:

- M admits an invariant metric of non-negative sectional curvature.
- M is rationally elliptic.

Then M has the same rational cohomology as a quotient of a free linear torus action on a product of spheres. If, moreover, $H^*(M; \mathbb{Z})$ is torsion-free or $H^{\text{odd}}(M; \mathbb{Z}) = 0$, then M is homeomorphic to such a quotient.
Main Theorem

Theorem (W.)

Let M be a simply connected torus manifold with $H^{\text{odd}}(M; \mathbb{Q}) = 0$ such that one of the following two conditions holds:

1. M admits an invariant metric of non-negative sectional curvature.
2. M is rationally elliptic.

Then M has the same rational cohomology as a quotient of a free linear torus action on a product of spheres. If, moreover, $H^*(M; \mathbb{Z})$ is torsion-free or $H^{\text{odd}}(M; \mathbb{Z}) = 0$, then M is homeomorphic to such a quotient.
Main Theorem

Theorem (W.)

Let M be a simply connected torus manifold with $H^{\text{odd}}(M; \mathbb{Q}) = 0$ such that one of the following two conditions holds:

- M admits an invariant metric of non-negative sectional curvature.
- M is rationally elliptic.

Then M has the same rational cohomology as a quotient of a free linear torus action on a product of spheres. If, moreover, $H^\ast(M; \mathbb{Z})$ is torsion-free or $H^{\text{odd}}(M; \mathbb{Z}) = 0$, then M is homeomorphic to such a quotient.
Let M be a simply connected torus manifold with $H^{\text{odd}}(M; \mathbb{Q}) = 0$ such that one of the following two conditions holds:

- M admits an invariant metric of non-negative sectional curvature.
- M is rationally elliptic.

Then M has the same rational cohomology as a quotient of a free linear torus action on a product of spheres. If, moreover, $H^*(M; \mathbb{Z})$ is torsion-free or $H^{\text{odd}}(M; \mathbb{Z}) = 0$, then M is homeomorphic to such a quotient.
A simply connected topological space X is called rationally elliptic, if

$$\sum_{i=0}^{\infty} \dim H^i(X; \mathbb{Q}) < \infty \quad \text{and} \quad \sum_{i=0}^{\infty} \dim \pi_i(X) \otimes \mathbb{Q} < \infty.$$

Conjecture (Bott)

A non-negatively curved manifold is rationally elliptic.

Theorem (Spindeler (2013))

A simply connected non-negatively curved torus manifold is rationally elliptic.
Definition

A simply connected topological space X is called rationally elliptic, if

$$
\sum_{i=0}^{\infty} \dim H^i(X; \mathbb{Q}) < \infty \quad \text{and} \quad \sum_{i=0}^{\infty} \dim \pi_i(X) \otimes \mathbb{Q} < \infty.
$$

Conjecture (Bott)

A non-negatively curved manifold is rationally elliptic.

Theorem (Spindeler (2013))

A simply connected non-negatively curved torus manifold is rationally elliptic.
A simply connected topological space X is called rationally elliptic, if

$$\sum_{i=0}^{\infty} \dim H^i(X; \mathbb{Q}) < \infty \quad \text{and} \quad \sum_{i=0}^{\infty} \dim \pi_i(X) \otimes \mathbb{Q} < \infty.$$

Conjecture (Bott)

A non-negatively curved manifold is rationally elliptic.

Theorem (Spindeler (2013))

A simply connected non-negatively curved torus manifold is rationally elliptic.
Discussion of assumptions

A rationally elliptic torus manifold M has $\chi(M) = \chi(M^T) > 0$ and therefore $H^{\text{odd}}(M; \mathbb{Q}) = 0$. Hence, the assumption on the cohomology is not necessary in the main theorem.

Conjecture

A simply connected non-negatively curved torus manifold is homeomorphic to a quotient of a free torus action on a product of spheres.
Discussion of assumptions

- A rationally elliptic torus manifold M has $\chi(M) = \chi(M^T) > 0$ and therefore $H^{\text{odd}}(M; \mathbb{Q}) = 0$.
- Hence, the assumption on the cohomology is not necessary in the main theorem.

Conjecture

A simply connected non-negatively curved torus manifold is homeomorphic to a quotient of a free torus action on a product of spheres.
A rationally elliptic torus manifold M has $\chi(M) = \chi(M^T) > 0$ and therefore $H^{\text{odd}}(M; \mathbb{Q}) = 0$.

Hence, the assumption on the cohomology is not necessary in the main theorem.

Conjecture

A simply connected non-negatively curved torus manifold is homeomorphic to a quotient of a free torus action on a product of spheres.
Towards a proof of the conjecture

Theorem

The conjecture holds for locally standard torus manifolds M which satisfy

- The intersection of any collection of facets of M/T is connected or empty, or
- $\dim M = 6$.

Proof.

- We first use the geometry of M/T to show that all faces are contractible.
- Results of Masuda and Panov imply that $H^{\text{odd}}(M; \mathbb{Z}) = 0$.
- Hence, the statement follows from the main theorem.
Towards a proof of the conjecture

Theorem

The conjecture holds for locally standard torus manifolds M which satisfy

- The intersection of any collection of facets of M/T is connected or empty, or
- $\dim M = 6$.

Proof.

- We first use the geometry of M/T to show that all faces are contractible.
- Results of Masuda and Panov imply that $H^{\text{odd}}(M; \mathbb{Z}) = 0$.
- Hence, the statement follows from the main theorem.
Masuda and Panov (2006) proved the following structure results for torus manifolds M with $H^\text{odd}(M; \mathbb{Z}) = 0$:

- The torus action is locally standard, i.e. each $p \in M$ has an invariant neighborhood which is equivariantly diffeomorphic to an open subset of \mathbb{C}^n.
- M/T is a manifold with corners.
- All faces F of M/T are acyclic, i.e. $\tilde{H}^*(F) = 0$. Therefore all F are homology discs.
Masuda and Panov (2006) proved the following structure results for torus manifolds M with $H^\text{odd}(M; \mathbb{Z}) = 0$:

- The torus action is locally standard, i.e. each $p \in M$ has an invariant neighborhood which is equivariantly diffeomorphic to an open subset of \mathbb{C}^n.
- M/T is a manifold with corners.
- All faces F of M/T are acyclic, i.e. $\tilde{H}^*(F) = 0$. Therefore all F are homology discs.
Masuda and Panov (2006) proved the following structure results for torus manifolds M with $H^\text{odd}(M; \mathbb{Z}) = 0$:

- The torus action is locally standard, i.e. each $p \in M$ has an invariant neighborhood which is equivariantly diffeomorphic to an open subset of \mathbb{C}^n.

- M/T is a manifold with corners.

- All faces F of M/T are acyclic, i.e. $\tilde{H}^*(F) = 0$. Therefore all F are homology discs.
Masuda and Panov (2006) proved the following structure results for torus manifolds M with $H^\text{odd}(M; \mathbb{Z}) = 0$:

- The torus action is locally standard, i.e. each $p \in M$ has an invariant neighborhood which is equivariantly diffeomorphic to an open subset of \mathbb{C}^n.
- M/T is a manifold with corners.
- All faces F of M/T are acyclic, i.e. $\tilde{H}^*(F) = 0$. Therefore all F are homology discs.
Canonical models

- Denote by $\lambda(F)$ the isotropy group of a generic orbit in F.
- There is an equivariant homeomorphism

$$ (M/T \times T)/\sim \rightarrow M, $$

where $(x_1, t_1) \sim (x_2, t_2) \iff x_1 = x_2 \land t_1^{-1}t_2 \in \lambda(F(x_1))$

Therefore there is a principal torus bundle $Z_{M/T} \rightarrow M$, where $Z_{M/T}$ is the moment angle complex associated to M/T:

$$ Z_{M/T} = (M/T \times T^{\delta})/\sim, $$

where $(x_1, t_1) \sim (x_2, t_2) \iff x_1 = x_2 \land t_1^{-1}t_2 \in T^{\delta}(F(x_1))$ with $\delta(F) = \text{set of facets containing } F$.

Michael Wiemeler
Canonical models

Denote by $\lambda(F)$ the isotropy group of a generic orbit in F.

There is an equivariant homeomorphism

$$(M/T \times T)/ \sim \rightarrow M,$$

where $(x_1, t_1) \sim (x_2, t_2) \iff x_1 = x_2 \land t_1^{-1}t_2 \in \lambda(F(x_1))$

Therefore there is a principal torus bundle $Z_{M/T} \rightarrow M$, where $Z_{M/T}$ is the moment angle complex associated to M/T:

$$Z_{M/T} = (M/T \times T^\delta)/\sim,$$

where $(x_1, t_1) \sim (x_2, t_2) \iff x_1 = x_2 \land t_1^{-1}t_2 \in T^\delta(F(x_1))$ with $\delta(F) =$ set of facets containing F.
Denote by $\lambda(F)$ the isotropy group of a generic orbit in F.

There is an equivariant homeomorphism

$$(M/T \times T)/ \sim \rightarrow M,$$

where $(x_1, t_1) \sim (x_2, t_2) \iff x_1 = x_2 \land t_1^{-1}t_2 \in \lambda(F(x_1))$.

Therefore there is a principal torus bundle $Z_{M/T} \rightarrow M$, where $Z_{M/T}$ is the moment angle complex associated to M/T:

$$Z_{M/T} = (M/T \times T^{\mathfrak{g}})/ \sim,$$

where $(x_1, t_1) \sim (x_2, t_2) \iff x_1 = x_2 \land t_1^{-1}t_2 \in T^{\mathfrak{g}}(F(x_1))$ with $\mathfrak{g}(F) =$ set of facets containing F.
The face poset $\mathcal{P}(M/T)$ is defined to be the set of all faces of M/T together with the ordering given by inclusion.

Theorem (W.)

Let M_1 and M_2 be two simply connected torus manifolds with $H^{\text{odd}}(M_i, \mathbb{Z}) = 0$. Then M_1 and M_2 are homeomorphic if $(\mathcal{P}(M_1/T), \lambda_1)$ and $(\mathcal{P}(M_2/T), \lambda_2)$ are isomorphic.
Proof.

If all faces of M_i/T, $i = 1, 2$ are contractible, then the statement follows, because every homeomorphism of the boundary of a contractible manifold extends to a homeomorphism of the contractible manifold.

If not all faces are contractible, then one can change the torus action on M_i in such a way that all faces become contractible without effecting $(\mathcal{P}(M_i/T), \lambda_i)$.

Corollary

Let M be a torus manifold homotopy equivalent to $\mathbb{C}P^n$. Then M is homeomorphic to $\mathbb{C}P^n$.

Michael Wiemeler

Non-negatively curved torus manifolds
Proof.

- If all faces of M_i/T, $i = 1, 2$ are contractible, then the statement follows, because every homeomorphism of the boundary of a contractible manifold extends to a homeomorphism of the contractible manifold.

- If not all faces are contractible, then one can change the torus action on M_i in such a way that all faces become contractible without effecting $(\mathcal{P}(M_i/T), \lambda_i)$.

Corollary

Let M be a torus manifold homotopy equivalent to $\mathbb{C}P^n$. Then M is homeomorphic to $\mathbb{C}P^n$.
By the structure results for torus manifolds, for the proof of the main theorem it is sufficient to determine the combinatorial type of M/T and then to realize these combinatorial types by a simply connected torus manifold.
Lemma

Let M be a torus manifold with $H^{\text{odd}}(M; \mathbb{Q}) = 0$ such that

- M admits an invariant metric of non-negative sectional curvature, or
- M is rationally elliptic.

Then all two-dimensional faces of M/T have at most four vertices.
Lemma

Let \(M \) be a torus manifold with \(H^{odd}(M; \mathbb{Q}) = 0 \) such that all two-dimensional faces of \(M/T \) have at most four vertices. Then \(M/T \) is combinatorially equivalent to a product \(\prod_i \Sigma n_i \times \prod_i \Delta n_i \), where

\[\Delta n_i \text{ is an } n_i\text{-dimensional simplex and } \Sigma n_i = S^{2n_i}/T. \]

Note that
\[Z_{\Sigma n} = S^{2n} \text{ and } Z_{\Delta n} = S^{2n+1} \text{ and } Z_{Q_1 \times Q_2} = Z_{Q_1} \times Z_{Q_2}. \]

Therefore the theorem follows.
Lemma

Let M be a torus manifold with $H^{odd}(M; \mathbb{Q}) = 0$ such that all two-dimensional faces of M/T have at most four vertices. Then M/T is combinatorially equivalent to a product $\prod_i \Sigma^{n_i} \times \prod_i \Delta^{n_i}$, where

- Δ^{n_i} is an n_i-dimensional simplex and Σ^{n_i} is S^{2n_i}/T.

Note that $Z_{\Sigma^n} = S^{2n}$ and $Z_{\Delta^n} = S^{2n+1}$ and $Z_{Q_1 \times Q_2} = Z_{Q_1} \times Z_{Q_2}$.

Therefore the theorem follows.
Lemma

Let M be a torus manifold with $H^{\text{odd}}(M; \mathbb{Q}) = 0$ such that all two-dimensional faces of M/T have at most four vertices. Then M/T is combinatorially equivalent to a product $\prod_i \Sigma^{n_i} \times \prod_i \Delta^{n_i}$, where

- Δ^{n_i} is an n_i-dimensional simplex and Σ^{n_i} is S^{2n_i}/T.

- Note that $Z_{\Sigma^n} = S^{2n}$ and $Z_{\Delta^n} = S^{2n+1}$ and $Z_{Q_1 \times Q_2} = Z_{Q_1} \times Z_{Q_2}$.

- Therefore the theorem follows.
Orbit spaces in dimension 6.
Rigidity problem

Definition

A polytope P is called rigid if the following holds:

- There is a quasitoric manifold M_1 with $M_1 / T = P$.
- If M_2 is another quasitoric manifold with $H^*(M_2) \cong H^*(M_1)$ and $M_2 / T = Q$, then P and Q are combinatorially equivalent.

Theorem (Choi, Panov and Suh (2010))

$P = \prod_i \Delta^{n_i}$ is rigid.
A polytope \(P \) is called rigid if the following holds:

- There is a quasitoric manifold \(M_1 \) with \(M_1/T = P \).
- If \(M_2 \) is another quasitoric manifold with \(H^*(M_2) \cong H^*(M_1) \) and \(M_2/T = Q \), then \(P \) and \(Q \) are combinatorially equivalent.

Theorem (Choi, Panov and Suh (2010))

\[P = \prod_i \Delta^{n_i} \text{ is rigid.} \]
The product $\prod_i \Sigma^{n_i} \times \prod_i \Delta^{n_i}$ is rigid in the following sense:

Theorem

Let M_1 and M_2 be two simply connected torus manifolds with $H^{odd}(M_i, \mathbb{Z}) = 0$. If M_1 is rationally elliptic and M_2 is rationally homotopy equivalent to M_1, then $\mathcal{P}(M_1/T)$ and $\mathcal{P}(M_2/T)$ are isomorphic.

Corollary

Let M be a torus manifold homotopy equivalent to $\prod_i \mathbb{C}P^{n_i}$, $n_i > 1$. Then M is homeomorphic to $\prod_i \mathbb{C}P^{n_i}$.
\[\prod_i \Sigma^{n_i} \times \prod_i \Delta^{n_i} \] is rigid in the following sense:

Theorem

Let \(M_1 \) and \(M_2 \) be two simply connected torus manifolds with \(H^{\text{odd}}(M_i, \mathbb{Z}) = 0 \). If \(M_1 \) is rationally elliptic and \(M_2 \) is rationally homotopy equivalent to \(M_1 \), then \(\mathcal{P}(M_1/T) \) and \(\mathcal{P}(M_2/T) \) are isomorphic.

Corollary

Let \(M \) be a torus manifold homotopy equivalent to \(\prod_i \mathbb{C}P^{n_i} \), \(n_i > 1 \). Then \(M \) is homeomorphic to \(\prod_i \mathbb{C}P^{n_i} \).
Thank you!