Invariant metrics of positive scalar curvature on S^1-manifolds

Michael Wiemeler

Universität Augsburg

michael.wiemeler@math.uni-augsburg.de

Geometry and Topology, Princeton, March 2015
Outline

1. Introduction
2. The case where M^{S^1} has codimension two
3. The case where $\text{codim } M^{S^1} \geq 4$
Introduction

The case where M^{S^1} has codimension two

The case where $\text{codim } M^{S^1} \geq 4$

Summary

Geometric meaning of scalar curvature

A basic question

Known results
Let (M, g) be a Riemannian manifold.

- The scalar curvature of M is a function $\text{scal} : M \to \mathbb{R}$
- For small $r > 0$ and $x \in M$ we have:

$$\text{vol}(B_r(x)) = \text{vol}_{\text{euclid}}(B_r(0))(1 - \frac{\text{scal}(x)}{6(n + 2)} r^2 + O(r^4))$$
Scalar curvature

Let \((M, g)\) be a Riemannian manifold.

The scalar curvature of \(M\) is a function \(\text{scal} : M \rightarrow \mathbb{R}\).

For small \(r > 0\) and \(x \in M\) we have:

\[
\text{vol}(B_r(x)) = \text{vol}_{\text{euclid}}(B_r(0))(1 - \frac{\text{scal}(x)}{6(n + 2)} r^2 + O(r^4))
\]
Scalar curvature

- Let \((M, g)\) be a Riemannian manifold.
- The scalar curvature of \(M\) is a function \(\text{scal} : M \to \mathbb{R}\).
- For small \(r > 0\) and \(x \in M\) we have:

\[
\text{vol}(B_r(x)) = \text{vol}_{\text{euclid}}(B_r(0))(1 - \frac{\text{scal}(x)}{6(n + 2)} r^2 + O(r^4))
\]
Introduction

The case where M^{S^1} has codimension two

The case where $\text{codim } M^{S^1} \geq 4$

Summary

Geometric meaning of scalar curvature

A basic question

Known results

A basic question

Question

Assume that a compact connected Lie group G acts effectively on a closed connected manifold M.

Does there exist an G-invariant metric of positive scalar curvature on M?
Theorem (Gromov-Lawson 1980)

Assume that $\pi_1(M) = 0$, $\dim M \geq 5$ and M does not admit a spin-structure.
Then M admits a metric of positive scalar curvature.
If M is spin and admits a metric of positive scalar curvature, then

- the Dirac-operator D on M is invertible (Lichnerowicz 1963).
- Hence its index vanishes.
- $\text{ind } D = \hat{A}(M)$ is an invariant of the spin-bordism type of M (Atiyah-Singer 1968).
If M is spin and admits a metric of positive scalar curvature, then

- the Dirac-operator D on M is invertible (Lichnerowicz 1963).
- Hence its index vanishes.
- $\text{ind } D = \hat{A}(M)$ is an invariant of the spin-bordism type of M (Atiyah-Singer 1968).
If M is spin and admits a metric of positive scalar curvature, then

- the Dirac-operator D on M is invertible (Lichnerowicz 1963).
- Hence its index vanishes.
- $\text{ind } D = \hat{A}(M)$ is an invariant of the spin-bordism type of M (Atiyah-Singer 1968).
Theorem (Stolz 1992)

Assume that $\pi_1(M) = 0$, $\dim M \geq 5$ and M admits a spin structure.
Then M admits a metric of positive scalar curvature if and only if $\alpha(M) = 0$.
Proof.

1. If M is constructed from N by a surgery of codimension at least three and N admits a metric of positive scalar curvature, then the same holds for M. (Gromov-Lawson, Schoen-Yau)

2. Hence, M admits a metric of positive scalar curvature, if and only if its class in a certain bordism group can be represented by a manifold with such a metric.

3. Find all bordism classes which can be represented by such manifolds.
Proof.

1. If M is constructed from N by a surgery of codimension at least three and N admits a metric of positive scalar curvature, then the same holds for M. (Gromov-Lawson, Schoen-Yau)

2. Hence, M admits a metric of positive scalar curvature, if and only if its class in a certain bordism group can be represented by a manifold with such a metric.

3. Find all bordism classes which can be represented by such manifolds.
Proof.

1. If M is constructed from N by a surgery of codimension at least three and N admits a metric of positive scalar curvature, then the same holds for M. (Gromov-Lawson, Schoen-Yau)

2. Hence, M admits a metric of positive scalar curvature, if and only if its class in a certain bordism group can be represented by a manifold with such a metric.

3. Find all bordism classes which can be represented by such manifolds.
Non-abelian groups

Theorem (Lawson-Yau 1974)

If G is non-abelian, then there is always a G-invariant metric of positive scalar curvature on M.

Therefore in the following we assume that $G = T$ is a torus or $G = S^1$.
Non-abelian groups

Theorem (Lawson-Yau 1974)

If G is non-abelian, then there is always a G-invariant metric of positive scalar curvature on M.

Therefore in the following we assume that $G = T$ is a torus or $G = S^1$.
Theorem (Bérard Bergery 1983)

Assume that a torus T acts freely on M. Then M admits an invariant metric of positive scalar curvature if and only if M/T admits a metric of positive scalar curvature.
Examples

- Exist manifolds which admit a non-trivial S^1-action but no metric of positive scalar curvature:
 - Exotic spheres with $\alpha(\Sigma) \neq 0$ (Bredon, Schultz, Joseph 1967-1981)

- Exist S^1-manifolds which admit metrics of positive scalar curvature but no invariant such metric:
 - Simply connected S^1-bundles over $K3$-surfaces (Bérard Bergery).
Examples

- ∃ manifolds which admit a non-trivial S^1-action but no metric of positive scalar curvature:
 - Exotic spheres with $\alpha(\Sigma) \neq 0$ (Bredon, Schultz, Joseph 1967-1981)
- ∃ S^1-manifolds which admit metrics of positive scalar curvature but no invariant such metric:
 - simply connected S^1-bundles over $K3$-surfaces (Bérard Bergery).
Outline

1. Introduction
2. The case where M^{S^1} has codimension two
3. The case where codim $M^{S^1} \geq 4$
First main theorem

Theorem (2013)

Let M be a connected $(G \times S^1)$-manifold such that $\text{codim } M^{S^1} = 2$. Then M admits a $(G \times S^1)$-invariant metric of positive scalar curvature.

Corollary

Every torus manifold admits an invariant metric of positive scalar curvature.
Theorem (2013)

Let M be a connected $(G \times S^1)$-manifold such that $\text{codim } M^{S^1} = 2$. Then M admits a $(G \times S^1)$-invariant metric of positive scalar curvature.

Corollary

Every torus manifold admits an invariant metric of positive scalar curvature.
Let $Z = M - N(F, M)$, where $F \subset M^{S^1}$ component with codim $F = 2$.

\exists a $(G \times S^1)$-handle decomposition of Z without handles of codimension zero.
The proof of the Theorem

Let \(Z = M - N(F, M) \), where \(F \subset M^{S^1} \) component with codim \(F = 2 \).

\(\exists \) a \((G \times S^1)\)-handle decomposition of \(Z \) without handles of codimension zero.
Z × D^2 is (G × S^1 × S^1)-manifold.

∃ a (G × S^1 × S^1)-handle decomposition of Z × D^2 without handles of codimension < 3.

∂(Z × D^2) = SN(F, M) × D^2 ∪ Z × S^1 admits invariant metric of positive scalar curvature

diag(S^1 × S^1) acts freely on ∂(Z × D^2) with orbit space M.
Z \times D^2 \text{ is } (G \times S^1 \times S^1)-\text{manifold.}

\exists \text{ a } (G \times S^1 \times S^1)-\text{handle decomposition of } Z \times D^2 \text{ without handles of codimension } < 3.

\partial(Z \times D^2) = SN(F, M) \times D^2 \cup Z \times S^1 \text{ admits invariant metric of positive scalar curvature}

\text{diag}(S^1 \times S^1) \text{ acts freely on } \partial(Z \times D^2) \text{ with orbit space } M.
\begin{itemize}
\item $Z \times D^2$ is $(G \times S^1 \times S^1)$-manifold.
\item \exists a $(G \times S^1 \times S^1)$-handle decomposition of $Z \times D^2$ without handles of codimension < 3.
\item $\partial(Z \times D^2) = SN(F, M) \times D^2 \cup Z \times S^1$ admits invariant metric of positive scalar curvature
\item $\text{diag}(S^1 \times S^1)$ acts freely on $\partial(Z \times D^2)$ with orbit space M.
\end{itemize}
Corollary

Let M be an effective S^1-manifold $\dim M \geq 5$.

- Assume that the principal orbits in M are null-homotopic.
- If \tilde{M} is spin, assume that the lifted S^1-action on \tilde{M} is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1-action of odd type, then $\alpha(M) = 0$.
Corollary

Let M be an effective S^1-manifold $\dim M \geq 5$.

- Assume that the principal orbits in M are null-homotopic.
- If \tilde{M} is spin, assume that the lifted S^1-action on \tilde{M} is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1-action of odd type, then $\alpha(M) = 0$.
Corollary

Let M be an effective S^1-manifold $\dim M \geq 5$.
- Assume that the principal orbits in M are null-homotopic.
- If \tilde{M} is spin, assume that the lifted S^1-action on \tilde{M} is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1-action of odd type, then $\alpha(M) = 0$.
Some more corollaries

Corollary

Let M be an effective S^1-manifold $\dim M \geq 5$.
- Assume that the principal orbits in M are null-homotopic.
- If \tilde{M} is spin, assume that the lifted S^1-action on \tilde{M} is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1-action of odd type, then $\alpha(M) = 0$.

A related result of M. Bendersky

Theorem (Bendersky, Ochanine, Ono 1990-1992)

Let M be a spin manifold with effective S^1-action of odd type, then the Ochanine-genus of M vanishes.

- Bendersky’s paper was in final form almost exactly 25 years ago on April 2nd, 1990.
A related result of M. Bendersky

Theorem (Bendersky, Ochanine, Ono 1990-1992)

Let M be a spin manifold with effective S^1-action of odd type, then the Ochanine-genus of M vanishes.

- Bendersky’s paper was in final form almost exactly 25 years ago on April 2nd, 1990.
Proof of Corollary 2

Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1-action of odd type, then $\alpha(M) = 0$.

- A neighborhood of a principal orbit in M is equivariantly diffeomorphic to $S^1 \times \mathbb{R}^{n-1}$.
- Equivariant surgery on such an orbit produces S^1-manifold N with codim $N^{S^1} = 2$.

Michael Wiemeler
Invariant psc-metrics on S^1-manifolds
Proof of Corollary 2

Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1-action of odd type, then $\alpha(M) = 0$.

- A neighborhood of a principal orbit in M is equivariantly diffeomorphic to $S^1 \times \mathbb{R}^{n-1}$.
- Equivariant surgery on such an orbit produces S^1-manifold N with codim $N^{S^1} = 2$.
Introduction

The case where M^{S^1} has codimension two

The case where $\text{codim } M^{S^1} \geq 4$

Summary

The first theorem

Some corollaries

Michael Wiemeler

Invariant psc-metrics on S^1-manifolds
Corollary (Ono 1991)

Let M be a spin manifold with an effective S^1-action of odd type, then $\alpha(M) = 0$.

- A neighborhood of a principal orbit in M is equivariantly diffeomorphic to $S^1 \times \mathbb{R}^{n-1}$.
- Equivariant surgery on such an orbit produces S^1-manifold N with codim $N_{S^1} = 2$.
- If M is spin and S^1-action on M of odd type, then N is spin.
Proof of Corollary 1

Corollary

Let M be an effective S^1-manifold $\dim M \geq 5$.

- Assume that the principal orbits in M are null-homotopic.
- If \tilde{M} is spin, assume that the lifted S^1-action on \tilde{M} is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

- First construct N as in the proof of the previous corollary.

- If principal orbits are null-homotopic, then $N \cong M \# S^2 \times S^{n-2}$.

- So by surgery on S^2 we can recover M.
Proof of Corollary 1

Corollary

Let M be an effective S^1-manifold $\dim M \geq 5$.

- Assume that the principal orbits in M are null-homotopic.
- If \tilde{M} is spin, assume that the lifted S^1-action on \tilde{M} is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

- First construct N as in the proof of the previous corollary.
- If principal orbits are null-homotopic, then $N \cong M \# S^2 \times S^{n-2}$.
- So by surgery on S^2 we can recover M.
Proof of Corollary 1

Corollary

Let M be an effective S^1-manifold $\dim M \geq 5$.

- Assume that the principal orbits in M are null-homotopic.
- If \tilde{M} is spin, assume that the lifted S^1-action on \tilde{M} is of odd type.

Then M admits a non-invariant metric of positive scalar curvature.

- First construct N as in the proof of the previous corollary.
- If principal orbits are null-homotopic, then $N \cong M \# S^2 \times S^{n-2}$.
- So by surgery on S^2 we can recover M.

Michael Wiemeler

Invariant psc-metrics on S^1-manifolds
Obstructions to positive scalar curvature and to S^1-actions

Corollary

Let M be a manifold with $\dim M \geq 5$, $\chi(M) \neq 0$ and non-spin universal covering. If M does not admit a metric of positive scalar curvature then there is no non-trivial S^1-action on M.

- The only known obstruction to a metric of positive scalar curvature on a manifold as above comes from the minimal hypersurface method of Schoen and Yau (1979).
- This gives obstructions for manifolds of dimensions $n \leq 8$.
- Without using scalar curvature we can prove that there is a similar obstruction to non-trivial S^1-actions.
- This works in all dimensions.
Obstructions to positive scalar curvature and to S^1-actions

Corollary

Let M be a manifold with $\dim M \geq 5$, $\chi(M) \neq 0$ and non-spin universal covering. If M does not admit a metric of positive scalar curvature then there is no non-trivial S^1-action on M.

- The only known obstruction to a metric of positive scalar curvature on a manifold as above comes from the minimal hypersurface method of Schoen and Yau (1979).
- This gives obstructions for manifolds of dimensions $n \leq 8$.
- Without using scalar curvature we can prove that there is a similar obstruction to non-trivial S^1-actions.
- This works in all dimensions.
Obstructions to positive scalar curvature and to S^1-actions

Corollary

Let M be a manifold with $\dim M \geq 5$, $\chi(M) \neq 0$ and non-spin universal covering. If M does not admit a metric of positive scalar curvature then there is no non-trivial S^1-action on M.

- The only known obstruction to a metric of positive scalar curvature on a manifold as above comes from the minimal hypersurface method of Schoen and Yau (1979).
- This gives obstructions for manifolds of dimensions $n \leq 8$.
- Without using scalar curvature we can prove that there is a similar obstruction to non-trivial S^1-actions.
- This works in all dimensions.
Obstructions to positive scalar curvature and to S^1-actions

Corollary

Let M be a manifold with $\dim M \geq 5$, $\chi(M) \neq 0$ and non-spin universal covering. If M does not admit a metric of positive scalar curvature then there is no non-trivial S^1-action on M.

- The only known obstruction to a metric of positive scalar curvature on a manifold as above comes from the minimal hypersurface method of Schoen and Yau (1979).
- This gives obstructions for manifolds of dimensions $n \leq 8$.
- Without using scalar curvature we can prove that there is a similar obstruction to non-trivial S^1-actions.
- This works in all dimensions.
Obstructions to positive scalar curvature and to S^1-actions

Corollary

Let M be a manifold with $\dim M \geq 5$, $\chi(M) \neq 0$ and non-spin universal covering. If M does not admit a metric of positive scalar curvature then there is no non-trivial S^1-action on M.

- The only known obstruction to a metric of positive scalar curvature on a manifold as above comes from the minimal hypersurface method of Schoen and Yau (1979).
- This gives obstructions for manifolds of dimensions $n \leq 8$.
- Without using scalar curvature we can prove that there is a similar obstruction to non-trivial S^1-actions.
- This works in all dimensions.
Outline

1. Introduction

2. The case where M^{S^1} has codimension two

3. The case where codim $M^{S^1} \geq 4$
The case where codim $M^{S^1} \geq 4$

In this part assume that $\pi_1(M_{\text{max}}) = 0$, codim $M^{S^1} \geq 4$ and that the action satisfies the following condition:

Condition C

- For all subgroups $H \subset S^1$, $N(M^H, M)$ is a S^1-equivariant complex vector bundle.
- For $H \subset K \subset S^1$, there is an isomorphism of S^1-equivariant complex vector bundles

$$N(M^K, M) \cong N(M^K, M^H) \oplus N(M^H, M)|_{M^K}.$$

This condition is always satisfied if no isotropy group of a point in M has even order.
The case where codim $M^{S^1} \geq 4$

In this part assume that $\pi_1(M_{max}) = 0$, codim $M^{S^1} \geq 4$ and that the action satisfies the following condition:

Condition C

- For all subgroups $H \subset S^1$, $N(M^H, M)$ is a S^1-equivariant complex vector bundle.
- For $H \subset K \subset S^1$, there is an isomorphism of S^1-equivariant complex vector bundles

$$N(M^K, M) \cong N(M^K, M^H) \oplus N(M^H, M)|_{M^K}.$$

This condition is always satisfied if no isotropy group of a point in M has even order.
The case where $\text{codim } M^{S^1} \geq 4$

In this part assume that $\pi_1(M_{\text{max}}) = 0$, codim $M^{S^1} \geq 4$ and that the action satisfies the following condition:

Condition C

- For all subgroups $H \subset S^1$, $N(M^H, M)$ is a S^1-equivariant complex vector bundle.
- For $H \subset K \subset S^1$, there is an isomorphism of S^1-equivariant complex vector bundles

$$N(M^K, M) \cong N(M^K, M^H) \oplus N(M^H, M)|_{M^K}.$$

This condition is always satisfied if no isotropy group of a point in M has even order.
Some notations

- Let $\Omega_{\geq 4,n}^{C,SO,S^1}$ the bordism group of oriented n-manifolds as above
- Let $\Omega_{\geq 4,n}^{C,Spin,S^1}$ the bordism group of n-Spin-manifolds as above
We want to prove a bordism principle for these actions. Here singular strata of codimension two in the bordisms cause some problems.
This has been dealt with essentially by Hanke (2008).
A invariant metric g is called *normally symmetric in codimension two* if

- For each component $F \subset M^H$ with $\text{codim} F = 2$,
 - \exists an invariant neighborhood U of F in M
 - and an S^1-action on U which
 - has $U^{S^1} = F$
 - commutes with the original S^1-action and
 - leaves g invariant.

- If $\text{codim} M(\mathbb{Z}_2) > 2$, then any metric g can be deformed to a normally symmetric metric.
A invariant metric g is called *normally symmetric in codimension two* if

- For each component $F \subset M^H$ with codim $F = 2$,
 - \exists a invariant neighborhood U of F in M
 - and an S^1-action on U which
 - has $U^{S^1} = F$
 - commutes with the original S^1-action and
 - leaves g invariant.

- If codim $M(\mathbb{Z}_2) > 2$, then any metric g can be deformed to a normally symmetric metric.
A invariant metric g is called \textit{normally symmetric in codimension two} if

- For each component $F \subset M^H$ with codim $F = 2$,
 - \exists an invariant neighborhood U of F in M
 - and an S^1-action on U which
 - has $U^{S^1} = F$
 - commutes with the original S^1-action and
 - leaves g invariant.

- If codim $M(Z_2) > 2$, then any metric g can be deformed to a normally symmetric metric.
The bordism principle

Theorem

If \(\dim M \geq 6 \) and \(M_{\text{max}} \) is not spin, then \(M \) admits a normally symmetric metric of positive scalar curvature if and only if its class in \(\Omega_{\geq 4,n}^{C,SO,S^1} \) can be represented by a manifold which admits such a metric.

Theorem

If \(\dim M \geq 6 \) and \(M \) is spin, then \(M \) admits a normally symmetric metric of positive scalar curvature if and only if its class in \(\Omega_{\geq 4,n}^{C,\text{Spin},S^1} \) can be represented by a manifold which admits such a metric.
The case where M^{S^1} has codimension two

The case where $\text{codim } M^{S^1} \geq 4$

Summary

Some definitions
The bordism principle
The existence result

The bordism principle

Theorem

If $\dim M \geq 6$ and M_{\max} is not spin,
then M admits a normally symmetric metric of positive scalar curvature
if and only if its class in $\Omega_{\geq 4, n}^{C, SO, S^1}$ can be represented by a manifold which admits such a metric.

Theorem

If $\dim M \geq 6$ and M is spin,
then M admits a normally symmetric metric of positive scalar curvature
if and only if its class in $\Omega_{\geq 4, n}^{C, Spin, S^1}$ can be represented by a manifold which admits such a metric.
Existence results

Theorem (2015)

If \(\dim M \geq 6 \) and

- \(M_{\text{max}} \) is not spin, or
- \(M \) is spin and the \(S^1 \)-action of odd type,

then there is an \(\ell \in \mathbb{N} \) such that the equivariant connected sum of \(2^\ell \) copies of \(M \) admits an invariant normally symmetric metric of positive scalar curvature.

- In the first case \(\ell \) can be taken to be 1.
- If the action is semi-free, \(\ell \) can be taken to be 1.
Existence results

Theorem (2015)

If \(\dim M \geq 6 \) and

- \(M_{\text{max}} \) is not spin, or
- \(M \) is spin and the \(S^1 \)-action of odd type,

then there is an \(\ell \in \mathbb{N} \) such that the equivariant connected sum of \(2^\ell \) copies of \(M \) admits an invariant normally symmetric metric of positive scalar curvature.

- In the first case \(\ell \) can be taken to be 1.
- If the action is semi-free, \(\ell \) can be taken to be 1.
Existence results

Theorem (2015)

If \(\dim M \geq 6 \) and

- \(M_{\text{max}} \) is not spin, or
- \(M \) is spin and the \(S^1 \)-action of odd type,

then there is an \(\ell \in \mathbb{N} \) such that the equivariant connected sum of \(2^\ell \) copies of \(M \) admits an invariant normally symmetric metric of positive scalar curvature.

- In the first case \(\ell \) can be taken to be 1.
- If the action is semi-free, \(\ell \) can be taken to be 1.
Existence results II

Theorem (2015)

If $\dim M \geq 6$, M is spin and the S^1-action of even type, then $\hat{A}_{S^1}(M/S^1) = 0$ if and only if there is an $\ell \in \mathbb{N}$ such that the equivariant connected sum of 2^ℓ copies of M admits an invariant normally symmetric metric of positive scalar curvature.

- $\hat{A}_{S^1}(M/S^1)$ is a $\mathbb{Z}[\frac{1}{2}]$-valued equivariant bordism invariant of M.
- For free actions it is the \hat{A}-genus of the orbit space.
- For semi-free actions it was defined by Lott (2000).
Existence results II

Theorem (2015)

If $\dim M \geq 6$, M is spin and the S^1-action of even type, then $\hat{A}_{S^1}(M/S^1) = 0$ if and only if there is an $\ell \in \mathbb{N}$ such that the equivariant connected sum of 2^ℓ copies of M admits an invariant normally symmetric metric of positive scalar curvature.

- $\hat{A}_{S^1}(M/S^1)$ is a $\mathbb{Z}[\frac{1}{2}]$-valued equivariant bordism invariant of M.
- For free actions it is the \hat{A}-genus of the orbit space.
- For semi-free actions it was defined by Lott (2000).
Corollary (Atiyah-Hirzebruch 1970)

Let M be a spin-manifold with $\dim M \geq 6$ which admits a non-trivial S^1-action which satisfies Condition C. Then $\hat{A}(M) = 0$.

- We may assume that $\dim M = 4k$.
- Since $\hat{A}_{S^1}(M/S^1) \neq 0$ implies $\dim M = 4k + 1$, $2^\ell M$ is equivariantly spin-bordant to an S^1-manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^\ell \hat{A}(M) = \hat{A}(N) = 0 \Rightarrow \hat{A}(M) = 0$
A corollary

Corollary (Atiyah-Hirzebruch 1970)

Let M be a spin-manifold with $\dim M \geq 6$ which admits a non-trivial S^1-action which satisfies Condition C. Then $\hat{A}(M) = 0$.

- We may assume that $\dim M = 4k$.
- Since $\hat{A}_{S^1}(M/S^1) \neq 0$ implies $\dim M = 4k + 1$, $2^\ell M$ is equivariantly spin-bordant to an S^1-manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^\ell \hat{A}(M) = \hat{A}(N) = 0 \Rightarrow \hat{A}(M) = 0$
Corollary (Atiyah-Hirzebruch 1970)

Let M be a spin-manifold with $\dim M \geq 6$ which admits a non-trivial S^1-action which satisfies Condition C. Then $\hat{A}(M) = 0$.

- We may assume that $\dim M = 4k$.
- Since $\hat{A}_{S^1}(M/S^1) \neq 0$ implies $\dim M = 4k + 1$, $2^\ell M$ is equivariantly spin-bordant to an S^1-manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^\ell \hat{A}(M) = \hat{A}(N) = 0 \Rightarrow \hat{A}(M) = 0$.
Corollary (Atiyah-Hirzebruch 1970)

Let M be a spin-manifold with $\dim M \geq 6$ which admits a non-trivial S^1-action which satisfies Condition C. Then $\hat{A}(M) = 0$.

- We may assume that $\dim M = 4k$.
- Since $\hat{A}_{S^1}(M/S^1) \neq 0$ implies $\dim M = 4k + 1$, $2^\ell M$ is equivariantly spin-bordant to an S^1-manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^\ell \hat{A}(M) = \hat{A}(N) = 0 \Rightarrow \hat{A}(M) = 0$
A corollary

Corollary (Atiyah-Hirzebruch 1970)

Let M be a spin-manifold with $\dim M \geq 6$ which admits a non-trivial S^1-action which satisfies Condition C. Then $\hat{A}(M) = 0$.

We may assume that $\dim M = 4k$.

Since $\hat{A}_{S^1}(M/S^1) \neq 0$ implies $\dim M = 4k + 1$, $2^\ell M$ is equivariantly spin-bordant to an S^1-manifold N with an invariant metric of positive scalar curvature.

Hence, $2^\ell \hat{A}(M) = \hat{A}(N) = 0 \Rightarrow \hat{A}(M) = 0$
Corollary (Atiyah-Hirzebruch 1970)

Let M be a spin-manifold with $\dim M \geq 6$ which admits a non-trivial S^1-action which satisfies Condition C. Then $\hat{A}(M) = 0$.

- We may assume that $\dim M = 4k$.
- Since $\hat{A}_{S^1}(M/S^1) \neq 0$ implies $\dim M = 4k + 1$, $2^\ell M$ is equivariantly spin-bordant to an S^1-manifold N with an invariant metric of positive scalar curvature.
- Hence, $2^\ell \hat{A}(M) = \hat{A}(N) = 0 \Rightarrow \hat{A}(M) = 0$
For simply connected S^1-manifolds M with $\dim M \geq 6$ the following holds:

- If $\text{codim } M^{S^1} = 2$, then there is always a invariant psc-metric on M.
- If $\text{codim } M^{S^1} \geq 4$ and M satisfies extra assumptions, then after inverting 2 (essentially) the only obstruction against an invariant psc-metric is $\hat{\mathcal{A}}(M/S^1)$.

Michael Wiemeler
Invariant psc-metrics on S^1-manifolds
Summary

For simply connected S^1-manifolds M with $\dim M \geq 6$ the following holds:

- If $\codim M^{S^1} = 2$, then there is always a invariant psc-metric on M.
- If $\codim M^{S^1} \geq 4$ and M satisfies extra assumptions, then after inverting 2 (essentially) the only obstruction against an invariant psc-metric is $\hat{\mathbb{A}}(M/S^1)$.
For simply connected S^1-manifolds M with $\dim M \geq 6$ the following holds:

- If $\text{codim } M^{S^1} = 2$, then there is always an invariant psc-metric on M.
- If $\text{codim } M^{S^1} \geq 4$ and M satisfies extra assumptions, then after inverting 2 (essentially) the only obstruction against an invariant psc-metric is $\hat{\mathcal{A}}(M/S^1)$.