INNER PRODUCTS AND Z/p-ACTIONS ON
POINCARE DUALITY SPACES

BERNHARD HANKE

ABSTRACT. Let Z /p act on an F,-Poincaré duality space X, where
p is an odd prime number. We derive a formula that expresses the
F,-Witt class of the fixed point set X%/P in terms of the F,[Z /p]-
algebra H*(X;F,), if H*(X; Z(y)) does not contain Z /p as a direct
summand. This extends previous work of Alexander and Hamrick,
where the orientation class of X is supposed to be liftable to an
integral class.

Given a prime p and a finite dimensional Z/p-CW complex X which
fulfills Poincaré duality over F,, a theorem of Bredon ([4]) and Chang
and Skjelbred ([7]) predicts the fixed point set components of this Z/p-
action to be F,-Poincaré duality complexes, as well. Furthermore, the
formal dimension (with F,-coefficients) of each fixed point component
has the same parity as the formal dimension of X. It is the purpose
of this paper to derive an analogue of the classical Atiyah-Singer-Segal
G-signature formula in this context, if p is odd (the case p = 2 is easy,
see Section 3). Our main result is Theorem 7 below and can be stated
as follows.

Theorem. Let the formal dimension of X be an even number 2m
and let an F,-orientation v of X be fized. Additionally, assume that
H*(X;Zy) does not contain Z/p as a direct summand. For each com-

ponent F C XZ/?, let w(F, pr) € W(F,) denote the Witt class of the
inner product on H®(F';F,) induced by the cup product and the orien-
tation pp of F (which depends canonically on the orientation v of X,
cf. Theorem 3 below). Then the element

Z w(FapF)

FCXZ/»
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in the Witt ring of F, is equal to the Witt class of the form w/ Ker(w),
where w is the symmetric bilinear form

H™(Z/p; H"(X;F,y)) x H™(Z/p; H™(X;F,)) —
H>™(Z/p; H*™(X;F,)) — T,.

This form 1is defined using the multiplicative structures of the group
cohomology of Z/p and of H*(X;TF,) and the orientation v.

In particular, we do not assume that the orientation class of X can
be lifted to an integral class or to a class with Z-coefficients, as it
is the case in analogous discussions in [1] and [12]. In this respect,
the content of this paper should be viewed as complementary to these
previous results.

The new feature of our approach is a careful analysis of the A(s)-
module structure on H*(Xyz,,;F,), where A(s) denotes the exterior
algebra over a generator s € H'(Z/p;F,) and Xz, denotes the Borel
construction (cf. Prop. 9). In the first part of this paper we develop
a computational tool that proves to be very useful in order to carry
out this analysis within the Leray-Serre spectral sequence for the Borel
construction Xy, but might be of independent interest.

1. CONNECTING HOMOMORPHISMS ON SPECTRAL SEQUENCES

We take coefficients in a fixed commutative ring £ with unit. Let
(A*,04),(B*,dp) and (C*,6¢c) be Z-graded k-modules equipped with
differentials of degree +1. Furthermore, we assume that each of these
differential modules comes with a decreasing filtration

DR XD EXT D F X D,

which is indexed over the integers and respected by the differentials,
ie. 0x(F,X*) C F,X*. Here X stands for either A, B or C. As
usual, one can naturally associate spectral sequences (E}*(X),d,) to
the filtered cochain complexes A*, B* and C*. These have Fj-terms

EgH(X) = '7:7X7+“/‘7:7+1X7+“

and a limit term EX*(X). By definition, the last expression can be
naturally identified with F, HY*#(X)/F, 1 H"*#(X) (using the induced
filtration on H*(X)), if EX*(X) is convergent. For example, this is the
case, if the filtration on X* is exhaustive and bounded above, i.e. if
U, F,X* = X" and for all n, we have F,(X") = 0 for large v (cf. [17],
5.5, where a detailed discussion of convergence properties of spectral
sequences can be found). Now we additionally assume that we are
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given a short exact sequence
(1) 054" 5B 5050

of filtered cochain complexes with the property that for each v € Z,
the induced sequence

0—F,A" = F,B" = F,C*"—=0
is exact. In particular, we get an induced short exact sequence
0— Ey*(A) —» Ey*(B) — E;*(C) = 0
and, after applying the differential dy, a long exact sequence
..o EPY(A) - EX*(B) - EPF(C) B EPTHA) =

with a connecting homomorphism I'; of bidegree (0,1). Now, if I'; = 0,
we get a short exact sequence of E-terms and - after applying the
differential ¢; - an induced connecting homomorphism

Ty : E3*(C) — E3TH*(A)

of bidegree (+1,0). Inductively, we can define connecting homomor-
phisms

[, : EF*(O) — EXfr—1*=r12(4)
of bidegree (r — 1, —r 4 2) as long as

Fl :---:Fr—l :O
Note that the next theorem applies in particular to the first nonzero

r,.
Theorem 1. The connecting homomorphism ', is a map of spectral
sequences, i.e. for all e € {0,1,2,... 00}, there are homomorphisms

Lt BEL(C) = EJL T (4)
with the following properties.

i. Iy =T.
ii. I'ycod,ye = —0pye 0 Iy e and - using this property - T'ycyq i
induced by I'y .
ili. If E«(A) and E.(C) are convergent, then

Tyoo t FyH*(C))Fopsr H(C) = Fyip ' (A) ) Fpun H 1 (A)

is induced by the connecting homomorphism H*(C) — H**'(A)
associated to the short eract sequence (1).
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Proof. We use a construction due to Eilenberg and Moore ([10],
equ. (7.16)) and define a decreasing filtration on the mapping cone
of the map ¢ by setting

F, cone(@)" = Frir i A & F,B"
Recall that the mapping cone is equipped with the differential
(a,b) = (=da(a),dp(b) — ¢(a)).
As in [10], we get for v € Z
cone E7*,(¢) = E}*(cone(9))

and from this a commutative diagram with exact rows

s EI(B) ——— Er*(cone(¢)) —Ty prvole-vizqy

L el | |
e EYB) ———  EPY(C)  —rs ErrLerR2ay

The map « : cone(¢)* — C* is defined using the universal property of
cone(¢)* and provides a factorisation

B* < cone(¢)* = C*

of 1, where « is filtration preserving. The map 7 : cone(¢)* — A**!
is the projection map. This map anticommutes with the respective
differentials and increases the filtration degree by » — 1. Applying the
five lemma, we see that

E"(a) : E;"(cone(¢)) = E"(C).

Hence, E, () is an isomorphism for all € > 0. Assertions i., ii. and
iii. in the theorem follow.
O

By applying the standard machinery of homological algebra, an ana-
logue of Theorem 1 holds, if we replace A*, B* and C* by chain com-
plexes in an abelian category and work with the Grothendieck spectral
sequence associated to the composition of two functors. This generali-
sation is mainly technical and we leave it to the interested reader.
Example 2. Let ' — E — B be a Serre fibration. The Leray-Serre
spectral sequence (with its multiplicative structure) for this fibration
can be constructed by a filtration on the cubical cochain complex
SC*(F) associated to E (cf. [16]). In particular, the exact sequence of
coefficients

0—Z/p—Z/p>—Z/p—0

induces a short exact sequence of filtered cochain complexes
0 — SC*(E;Z/p) — SC*(E;Z/p*) — SC*(E;Z/p) — 0
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in the sense explained before Theorem 1. Our considerations now imply
the following fact: Let p be a prime. If the Bockstein operator

B H*(F;F,) — H(F;F,)
is the zero map, we have operators
Ty : EYE(E;F,) — EyfH(E;T,)

for e € {0,1,2,...,00}. Note that these operators act as bigraded
derivations (this follows from the definition of I'y). Furthermore,

Tyo: H'(B; H*(F;F,)) — H'™(B; H*(F;T,))
is induced by the sequence of coefficients
0— H*(F;Z/p) — H*(F;Z/p*) — H*(F;Z/p) = 0,

which is exact by the assumption that 8 = 0. The operator I'; . re-
stricted to E;fé(E ;IF,) is induced by the usual Bockstein operator on
H*(B;F,). In this sense, 'y, reflects the 'Bockstein on the base’ rather
than the 'Bockstein on the fibre’.

2. ACTIONS OF Z/p ON POINCARE DUALITY SPACES

In this section we shall apply the discussion of the last section to the
cohomology theory of transformation groups. Let p be an odd prime
number and let X be a finite dimensional Z/p-CW complex that is an
(oriented) Poincaré duality complex over IF,. By definition, this means
that H*(X;F,) is finitely generated over F,, there is given a natural
number n, the formal dimension of X, and an element v € H,(X;TF,),
the orientation of X, such that

HY(X:F,) x H" {(X;F,) — H"(X;F,) =% F,

is a nonsingular bilinear form for all ¢ € Z. In particular, H>"(X;F,) =
0. Let X%/? denote the fixed point set of the Z/p-space X. We recall
the following fundamental result.

Theorem 3 ([4, 7, 11]). Each component of X%/? fulfills Poincaré du-
ality over I, and has formal dimension equal to n mod 2. The orien-
tation of each component of X”/? can be chosen to depend canonically
on the orientation of X.

We remark that the components of X%/ do not fulfill Poincaré du-
ality over Z, in general, even if X is a sphere, unless the Z/p-action is

assumed to be locally linear. Examples are provided by the converses
of the P.A. Smith theorems ([13], Corollary 3.1).
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Similar to the signature for topological manifolds, we can associate
an invariant to an F,-Poincaré duality complex using a nonsingular
bilinear form on its F,-cohomology.

Definition 4. Let Y be an F,-Poincaré duality complex of even formal
dimension and let

p€ H.(V;F,) = Hom(H"(V;F,),F,)

be an orientation of Y. We denote by w(Y, p) € W(F,) the Witt class
of the nondegenerate symmetric bilinear form

H®(Y;F,) x H*(Y;F,) = F,, (z,y)— plzUy),
where H® (Y} F,) = @, H*(Y;F,).
For the definition and the properties of the Witt ring W (k) associated

to a commutative ring with unit k&, see for example [2, 15]. For our
purposes we recall

B Z/4, if p=3 mod 4,
W(E,) = { 7/2(2)2], if p=1 mod 4,

as rings. Note that w(Y, p) = 0, if the formal dimension of Y is not
divisible by four. If the formal dimension of Y is equal to 4m with
m € {0,1,2,...}, then w(Y, p) is equal to the Witt class of the induced
form on H*"(Y;T,), because the form restricted to @; ., H*(Y;F,) is
split.

Theorem 3 motivates the search for a formula that relates the Witt
classes of the components of X%/? to invariants associated to the co-
homology of X. Results of this type can be regarded as analogues (for
actions on Poincaré duality spaces) of the classical G-signature theo-
rem. In [1], the authors derive such a relation, if X fulfills Poincaré
duality over Z. This assumption is weakened in [12] to X satisfying
Poincaré duality over Z,), a property that is in fact equivalent to the
orientation class of the F,-Poincaré duality space X being liftable to
homology with coefficients in Zy,) (see [12], Proposition 3).

Example 5. Let M be an oriented closed differentiable manifold of di-
mension m and let
f:M—M
be a map of degree ( - p+ 1, where ( € Z is a nonzero number. Let
N = M x [0,1]/(m, 0) ~ (f(m), 1)

be the mapping torus of f. One checks that N is (homotopy equivalent
to) an F,-Poincaré duality complex of formal dimension m + 1. But
the orientation class in Hy,41(N;F,) cannot be lifted to a class with
coefficients in Z), because H,,11(N;Zg)) = 0. Hence the study of
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Z/p-actions on N (concerning the comparison of Witt classes) cannot
be carried out using any of the previously known results.

In the following, we need some explicit calculations of Tate cohomol-
ogy groups. Let g be a generator of Z/p. Recall (cf. [3], Chapter 1)
that for a (graded) F,[Z/p]-module V' considered to be concentrated in

degree d, the Tate cohomology H*(Z/p; V) can be calculated using an
explicit cochain model

(V ®r, Alo) ®F, Fp[T, 7'_1], 5),

where deg(o) = 1, deg(7) = 2 and A(o) is the exterior algebra over F,
generated by o. The differential § is given by the formulas

Sve1e7) = ()" 1-gveoeT,

Sv@oe7) = (-1)(1-gF velert!
for i € Z. Further, if U, W are other F,[Z/p]-modules, considered to be
concentrated in degrees c and c+ d, respectively and if we are given an

F,[Z/p]-linear map n : U ® V' — W (using the diagonal Z/p-operation
on the left hand side), then the induced pairing

H*(Z/p;U) ® H'(Z/p; V) — H*(Z/p; W)

has an explicit description on the cochain level, given by

w1l veler) —» nuev)lx s,

w1l veoc®r) —» nuev)oer ™,

Uo7 o1 = (-1)u®g)®c T,

(
uRoc®Thv®07) — (—1)¢ Z n(g*u ® ¢*v) @ 1@ rHIFL,

0<A<u<p—1

If the Z/p-action on W is trivial, the last formula simplifies to

w107~ (1) nu® gl —g)P ) @1 it

The next proposition is well known (cf. [8], pp. 638, ff.). But our
method of proof is different from previous ones and is tightly connected
with the forthcoming discussion.

Proposition 6. Let V be a finitely generated Z/p*|Z /p]-module that is
free over ZL/p*. Let g be a generator of Z/p. Then there is an F,[Z/p]-
linear splitting

V®]Fp :Vvl@v;u—l@v;;
where V; is a free F,[£]/(1 — €)*-module and & acts as multiplication by
g.
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Proof. By applying the structure theorem for finitely generated mod-
ules over the principal ideal domain F,[£], we obtain an F,[Z/p]-linear
splitting

VeF,=2VielV,e...0V,,
where each V; is free over F,[¢]/(1 — €)". In our situation, however, the

summands V; for ¢ # 1,p — 1, p cannot occur: Because V is free over
Z/p?, we have a short exact sequence of Z/p*|Z/p]-modules

0=>VRF, =>V-=2VF, =0
which induces a connecting homomorphism
§: H (Z/p;V ®F,) = H**Y (Z/p;V @ F,)

of Tate cohomology groups. Using this fact, I:I*(Z/p; V ®@T,) can be

shown to be a free A(s)-module, where s is a generator of H'(Z/p;F,)
as follows. Let 7w denote the canonical projection

H*(Z/p;V ®F,) = H"(Z/p;V @ F,)[sH* " (Z/p;V © F,)

and let t € H?(Z/p;F,) be the image of s under the Bockstein operator.
Note that ¢ is invertible in H*(Z/p;F,). The map

¢: H (Z/p;VRT,)/(s) @ A(s) — H*(Z/p;V ®T,)

0(sx
") @ f(s) = f(s) 0D
is well defined, grading preserving and A(s)®F,[t, ¢ '|-linear. We claim
that this map is an isomorphism. Suppose that

f(5) - 20

It follows z € s - H*(Z/p;V ® F,) (using 6(sz) = tz — s6(x)), which
proves injectivity of ¢. Now, let x € H*(Z/p; V ® F,)). Then
6(x)

m(z)®1 -‘r’ﬂ'(T) ® s

is a preimage of x under ¢ which shows that ¢ is surjective.

In particular, using the above splitting of V ® F,, each H* (Z/p; Vy)
has to be a projective A(s)-module, hence a free A(s)-module, because
A(s) is a local ring with unique maximal ideal (s).

But now one checks by a direct calculation, using the formulas writ-
ten down previously, that for ¢+ # 1,p — 1, p, multiplication by s is
the zero map on H*(Z/p;V;) and H*(Z/p;V;) # 0. Note that on the

=0.
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cochain level, (left) multiplication by s € H(Z/p;F,) on H*(F,;V;) is
(up to sign) given by the maps

11T VIR, 10T E1—EP 1@ .
This concludes the proof of the proposition. 0

Using the notation of the last proposition, suppose that on V®F,, we
are given a nonsingular (—1)¢-symmetric bilinear form ~, where e = +1.
It follows from [14], Theorem 3.2., that the direct sum decomposition

VekF,=VieV,d...0V,

can be assumed to be orthogonal with respect to 7. We denote the
nonsingular bilinear form induced on V; by ~;.

We will now suppose additionally to the standing assumptions that
the formal dimension of X is an even number 2m and that the Bock-
stein operator 3 : H*(X;F,) — H**'(X;F,) is the zero map. This last
requirement is equivalent to saying that H*(X;Z,) does not contain
Z/p as a direct summand. For simplicity, we also assume that X is con-
nected. In particular, H*"(X;F,) = F, with the trivial Z/p-operation.
Furthermore, we fix an orientation v of X. Let g be a generator of
Z/p as before. Set V* = H*(X;Z/p*). By our assumption on 3, this
is a finitely generated Z/p?|Z/p]-module that is free over Z/p?. Fur-
ther, V™ ®@F, (that is concentrated in degree m), comes equipped with
a nondegenerate bilinear form ~ that is symmetric if m is even and
antisymmetric, if m is odd. This form is invariant under the induced
Z/p-action on V. We define w(X,v) € W(F,) as the Witt class of the
nonsingular symmetric bilinear form

H™Z/p; Vi") x H™Z[p; V") - H™(Z/p;F,) = F

P

where we choose 7+ = 1, if m is even, and 7+ = p — 1, if m is odd,
and use the induced bilinear form ~; on V;. That these forms are
nonsingular can be checked using the above explicit formulas for the
product structure of the Tate cohomology groups.

Now we can state our main result.

Theorem 7. In W(F,) the following equation is valid with the canon-
ical orientation pp of each component F in X%/P:

w(X,v)= > w(Fpp).
FCcXZ/»

Remark 8. The left hand side of the last equation coincides with the
Witt class of the form w/ Ker w mentioned in the introduction for the
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following reason. The kernel of the symmetric bilinear form
H™(Z/p; H"(X;F,)) x H"(Z/p; H"(X;F,)) —
H™Z/p; H*™(X;F,)) — T,

coincides with H™(Z /p; Vor,), if m is even, and with H™Z/p; V™), if
m is odd, because H™(Z/p; V") = s- H™ (7 /p; V™) in the respective
cases. Furthermore, ﬁ*(Z/p; vr) =0.

The proof of Theorem 7 proceeds in several steps. We write

H*(Z/[p;Fy) = A(s) ©r, Fpli]

were s and ¢ carry gradings 1 and 2, respectively, and ¢ is the image
of s under the Bockstein map. We will consider the Leray-Serre spec-
tral sequence E}*(X) with coefficients F, associated with the Borel
fibration

X < Xz, — BZ/p,

where Xy, = X Xy, EZ/p. Note that all E}*(X) with r > 2 are
(bigraded) modules over H*(Z/p;T,), hence the statement in the fol-
lowing proposition makes sense. Recall that we assume throughout
that the Bockstein operator acts trivially on H*(X;F,).

Proposition 9. For all v > 2, the localized terms EX*(X)[t™!] are
finitely generated free graded A(s) ® F,[t, t™*]-modules.

Proof. The proof is similar to the proof of Proposition 6, but uses
the operators I'y . from Example 2 in the first section. These are F,[¢]-
linear, as (t) = 0in H*(Z/p;F,). Therefore, we get induced operators
on Ey (X)[t™'] that we denote by the same symbols I'y . Let 7 denote
the canonical projection

E. (X[t = E(X)[tT] / (s)-
It is clear that the map
¢ (E(X)[E]/(s)™ @A(s) — EFF(X)[t]
w@)@ 1) o £l e

is well defined, grading preserving and A(s) ® F,[t,¢ !]-linear. In an
analogous fashion as in the proof of Proposition 6, one proves that ¢ is
an isomorphism. Because F,(X)[t']/(s) is free over the graded field
F,[t,t™'], the assertion follows. O

In [3], Remark 5.2.4, it is claimed that the conclusion of Proposition
9 above holds without the additional assumption on the Bockstein op-
erator on H*(X;F,). This is not correct, in general. Let p > 5. We
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can construct a smooth closed manifold Y with a smooth Z/p-action
such that H'(Y;F,) as an F,[Z/p]-module is isomorphic to V5 (compare
the proof of Proposition 6). The Ey-term E»(Yz/,)[t '] of the localized
spectral sequence (with F,-coefficients) for the Borel construction is
not free over A(s).

For abbreviation, we set

T

B (X) = (E(X)[t ']/ (s)™

r

and denote the induced differentials by &,.
Note that the orientation v : H*(X;F,) — TF, induces F,[t,¢ ']-
linear (not necessarily surjective) homomorphisms (‘orientations’)

O, : E(X) = F,[t, 17
for r € {1,2,3,...,00} that lower the bidegree by (0,2m) and satisfy
O, (B (X)) =0,

,
if v is odd or if u # 2m. We will prove the following assertion by
induction on r, where the superscript ev denotes restriction to even
total degree as before.
Proposition 10. The forms (—, =), : E, (X) x E, (X) — F,[t,t7']
defined by
(z,y) = Or(z - y)

are nonsingular and Witt equivalent (in W (F,[t,t™']) for all r > 2.
Proof. First, we prove that the form (—, —), is nonsingular. Using the
decomposition

H'(X;F,) =V eV, @ V;
(cf. Proposition 6), one gets isomorphisms

E’YaN(X) ~ I?’,Y(Z/pa ‘/lu)? for 7y even ,
2 HY(Z/p; Vy.,), for v odd .

(This is usual dimension shifting for the F,[Z/p]-module V* ;). Using
this description, nonsingularity of (—, —)s is checked using the same
calculation as carried out for the definition of w(X, v) above.

Now let » > 2. We will prove that

0.(E, (X)) = (Kerd,)*
with respect to (—, —), and that there is a canonical isomorphism
Ker(5,)/Im(d,) =2 E,;1(X).

These two statements complete the induction step (after restriction
to elements of even total degree), cf. [2], Lemma 1.3. The left hand
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side in the first statement is contained in the right hand side, because
the differential ¢, is a derivation with respect to the multiplication
—%,<2m

on E,(X) and because O,(E,” " (X)) = 0. The full equality now
holds, because both sides in this equation have the same dimension
over F,[t,t71].

The second statement is shown as follows. The isomorphism ¢ in
the proof of Proposition 9 is an isomorphism of differential algebras, if
we use the differential 6, ® id on the left and the differential 6, which
is induced by the differential on E,.(X) on the right. Consequently, ¢
induces A(s)-linear isomorphisms Ker 6, @ A(s) 2 Ker §,, Im 6§, @A(s) =
Im 6, and therefore a A(s)-linear isomorphism (Kerd,/Imd,) ® A(s) =
E,11(X)[t!]. From this, the assertion is immediate.

O

We now recall the localization theorem (cf. [3, 9]) that in our case
states that the inclusion X%/? — X induces an isomorphism of graded
F,[t,t"!]-algebras

H*(Xg5 ) [t™1]/(s) = H* (X2 F,) @ [t t71].

As before, the grading superscript * on the left hand side takes into ac-
count that the ideal generated by s is homogenous. By construction of
the Leray-Serre spectral sequence, we have an induced filtration F, on
H*(Xgzp;F,) that in turn induces a filtration F, on H*(Xz,; F,)[t™']
by declaring

7 € Foy(H*( Xz Fp)[t7']) & £ 1 € Fryoe(H* (X7, Fp)) for ¢ > 0.

This makes sense, as multiplication with ¢ induces isomorphisms
Fy(H"(Xzp Fp)) & f7+2(H*+2(XZ/p; Fp)),

ify>2m+1.

Finally, we get an induced filtration F, on H*(Xz; F,)[t']/(s) by
setting F, (H"(Xzp; Fp)[t7']/(5)) equal to

Fy(H Xz B)[t7']) / 8- Foa (H 7 (X Fp) 7).

The following fact follows immediately.
Lemma 11. There are canonical graded isomorphisms

Fo(H* (X Fp) [t™11/(8)) | Fon (H* (X Bp) [t/ () = B (X)

The map O : E.

o (X) = F,[t,t '] constructed earlier induces a
linear map

O: H Xy F)[t71/(s) = By " (X) T3 Fylt, 671,
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where the first map is the canonical projection. Using this map, we
obtain a bilinear form

H* (X7, B[t/ () x H* (X3 Fp)[t71]/(5) = By [t,27]

that (restricted to elements of even degree) is nonsingular, using Propo-
sition 10. We claim that this pairing (restricted to elements of even
degree) is Witt equivalent to the previously defined pairing on E.. (X)
restricted to @ZezEQHmm(X ). Observe that

D Fatimis (B2 (H (X 5By )t 11/(5)) =

D Pt (H " (H (X2 By )11/ ()

7
cf. Lemma 11. Hence, the form in question is Witt equivalent to the
form induced on the quotient of these two modules which is indeed

isomorphic to GBZEQHmm(X). Now let F C X%/? be a component of
formal dimension ny (which is automatically even). Using the argu-
ment in [4], one can show that the map

H' (FiF) @ Fylt,t '] ¢ HY(X"F,) @ F,[t, ¢ ]
~  IT* - o -
= H* Xz Fp)[t7']/(s) — Fplt, t7]
is not the zero map, hence an isomorphism. After evaluating at ¢t = 1,
this is exactly the orientation that we referred to in the statement of

Theorem 3. Using these maps, we obtain a nonsingular symmetric
bilinear form on

P H*(F;F,) @F,[t,t"] = H*(X*/"F,) @F,[t,t'].
FCXZ/p

Using Proposition 10, we finally get the following sequence of equations
in W(F,[t,t7']), where we only write down the representing module of
an element in W (F,[t, t7']).

@Eﬁ”’”’mm = B () =Fo(X) =

—21—|—mm ev _
@ = H®(XgF,)[t")/(s) =
:He"(XZ/P;IFp)epIFp[t,fl] = P H®F;F,)Ftt].
FCXZ/»

Theorem 7 now follows from evaluating this equation at ¢t = 1.
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3. FURTHER REMARKS

The invariant wW(X, ) on the left hand side of the equation in Theo-
rem 7 can be interpreted as a torsion linking form on the group coho-
mology of Z/p in the following way. We have a Bockstein operator

§: H™Y(Z/p; H™(X;F,)) — H™Z/p; H™(X;TF,))

as before, because H™(X;Z/p?) is a free Z/p*-module. Let T = Im§
and define a bilinear form v : T' x T' — T, as follows:

1(8(2),8(y)) = zUd(y) € H™ 1 (Z/p; H*™(X;F,)) 2 F, .

As the Bockstein operator acts trivially on H>™~%(Z/p;TF,), this bi-
linear form is well defined and symmetric (note the derivation prop-
erty of §). Furthermore, it can easily be checked that 7 is nonsin-
gular. Using the fact that Iné = H™(Z/p; V™), if m is even, and
Imé = H™(Z/p; Vo), if m is odd, (in the notation introduced before
Theorem 7), it follows that the Witt class of v coincides with w(X, v).

If the orientation class v of X lifts to a class in H*™(X;Z,), then
X is a Z,)-Poincaré duality space (see [12], Proposition 3) and the
right hand side of Theorem 7 can be expressed as the Witt class of the
evident nonsingular symmetric bilinear form

H™(Z/p; H™(X; Z )/ Tor) x H™Z/p; H™(X; Z))/ Tor) — F,

cf. [1] and [12] (for this, no further assumption on the Bockstein
of H*(X;F,) is needed). If, in addition, the Bockstein operator on
H*(X;F,) is trivial, it follows from our discussion that the Witt class
of the above form is equal to wW(X, v). We sketch a direct proof of this
fact, if the induced action of Z/p on H™(X;F,) is trivial (which implies
that the induced action on H™(X;Z) is also trivial). It is enough to
restrict attention to even m. Then the form w(X, v) is represented by
the usual inner product on V = H™(X;F,). Let

r: H"(X;Zy) = H"(X;Fp)

be the reduction of coefficients and let W = Imr C H™(X;TF,). Be-
cause X is a Z,-Poincaré duality space, W+ = r(Tor H™(X; Z)))
with respect to the inner product on V. Hence, the inner product
spaces V and W/W+ = (H™(X; Z,))/ Tor) ® F, are Witt equivalent.
The latter is isomorphic to H™(Z/p; H™(X; Zy))/ Tor).

For p = 2 a comparison result for Witt classes can be proven without
any assumption on the Bockstein operator. The proof is easier than the
one discussed in this paper due to the simple structure of W (Z/2) =
Z/2 and due to the fact, that the difference of the total Betti numbers



INNER PRODUCTS AND Z/p-ACTIONS ON POINCARE DUALITY SPACES 15

(with F,-coefficients) of a Z/p-space and its fixed point set is divisible
by two.

A class of spaces that do not fulfill Poincaré duality over Z ), but for
which Theorem 7 can be applied, are finite dimensional Z/p-CW com-
plexes X that are (nonequivariantly) homotopy equivalent to mapping
tori N as described in example 5, if p|¢ and B(H*(M;F,)) = 0. For ex-
ample, the union of the 4k-dimensional components of the fixed set of
such an action cannot consist of exactly one point, if p > dim H*(X;TF,)
and dimX = 2 mod 4, as W(X,v) = 0 in this case (cf. Prop. 6).
Here, v denotes the orientation of the complex X. More generally, let
N be an oriented closed smooth manifold of dimension m + 1 and let
h € H,(N;Z) be a nonzero homology class. It is well known that
this class can be represented by an embedded oriented submanifold
M™ < N. The space N\ M, where M is a tubular neighbourhood of
M in N, is an oriented manifold whose boundary is oriented diffeomor-
phic to the disjoint union M U M, where M is M with its orientation
reversed. We identify these boundary components by a map M — M
of degree —(¢ - p + 1), where p|(, to get an F,-Poincaré duality com-
plex X. If the Bockstein operator on H*(N;F,) is the zero map, any
finite dimensional Z/p-CW complex that is (nonequivariantly) homo-
topy equivalent to X can be studied using Theorem 7.

It is still an open problem, if there is a G-signature formula for
Z/p-actions on F,-Poincaré duality complexes X without any further
restrictions on X. More specifically one might ask, if the theorem in
the introduction holds in general, if H*(X;F,) does contain a direct
summand Z/p. This generalization seems particularly plausible, if the
induced Z/p-operation on H*(X;T,) is trivial.
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