

!"#$%&#'()*"+,-.)%,/)01203)
45567)0809:;<;=

)
)

>(?,-&.$@&#)>A+"#.A),B))
C&D&A,-:E'A"F)E&+-,+,-.&,%'()*,G%F&%?)

)
H'-.&%)I'#$'-&'A"%)

)

C"+./),B)J,@+G."-)5#&"%#")
University of Copenhagen ! Universitetsparken 1

DK-2100 Copenhagen ! Denmark

Algorithmic Aspects

of

Divisor-Based Biproportional Rounding

M. Zachariasen

April 20, 2006

Abstract

Biproportional rounding of a matrix is the problem of assigning values to the elements of

a matrix that are proportional to a given input matrix. The assignment should be integral and

fulfill a set of row- and column-sum requirements. In a divisor-based method the problem is

solved by computing appropriate row- and column-divisors, and by rounding the quotients.

The only known divisor-based method that provably solves the problem is the tie-and-transfer

algorithm by Balinski, Demange and Rachev. We analyze the complexity of this algorithm,

and show that it is pseudo-polynomial. Two different approaches for reducing the complexity

to (weakly) polynomial are presented. Finally, we give efficient algorithms for identifying ties,

quotient intervals and divisor intervals.

1 Introduction and notation

The classical vector apportionment problem is the following: Given an -vector of non-

negative integers (vote numbers) and a positive integer (house size), compute an apportionment

vector (seat numbers) such that , and such that

that is, the vector is a proportional rounding of vector . This problem has a history that goes

centuries back — in particular wrt. distributing seats in the House of Representatives according to

census data. The historical background and mathematics of the problem is outlined in [6].

Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen Ø,

Denmark (martinz@diku.dk).

1

One class of methods for solving this problem are the divisor-based methods1. The apportion-

ment problem is solved by choosing a multiplier and setting , where is the

so-called rounding function. The multiplier should be chosen in such a way that . The

rounding function rounds a rational number to either or . More specifically, the

rounding function is based on a signpost function that maps an integer to a rational number

in the interval . If then , and if then . When

, then can either be or . Choosing results in standard

rounding of fractions, where numbers with fractional parts greater than 0.5 are rounded up while

numbers with fractional parts less than 0.5 are rounded down. In addition to the above, the signpost

function should fulfill some technical conditions [6].

A generalization of the vector apportionment problem is the matrix apportionment problem—

or biproportional rounding problem. Here we are given an matrix of nonnegative

integers (vote numbers), an -vector of positive integers (row-sum requirements) and an

-vector of positive integers (column-sum requirements) such that

We would like to “round” the matrix in such a way that we obtain a matrix of

nonnegative integers (seat numbers) where

and

Note that the total sum of all elements in is (house size). Similarly to the vector problem, the

matrix apportionment problem can be solved by using a divisor-based method. The task is now to

compute row multipliers and column multipliers , both rational numbers, such that

and such that the row- and column-sum requirements are fulfilled.

Theoretical properties of divisor-based matrix apportionment methods were given by Balinski

and Demange [3]. It was shown that these methods have several important and unique properties.

Variants of an algorithm, denoted the tie-and-transfer algorithm, for computing the divisors were

given by Balinski, Demange and Rachev in [2, 4].

The Zürich City Parliament recently chose to use divisor-based biproportional rounding for

the distribution of its seats [16]. In this application, each row in the vote matrix represents a

1The more convenient and equivalentmultiplier-based methods are used throughout this paper.

2

District WK1+2 WK3 WK4+5 WK6 WK7+8 WK9 WK10 WK11 WK12 Total

Party ()

SP 28518 45541 26673 24092 61738 42044 35259 56547 13215 44

SVP 15305 22060 8174 9676 27906 31559 19557 40144 10248 24

FDP 21833 10450 4536 10919 51252 12060 15267 19744 3066 19

Grüne 12401 17319 10221 8420 25486 9154 9689 12559 2187 14

CVP 7318 8661 4099 4399 14223 11333 8347 14762 4941 10

AL 2413 7418 9086 2304 5483 2465 2539 3623 429 5

EVP 2829 2816 1029 3422 10508 9841 4690 11998 0 6

SD 1651 3173 1406 1106 2454 5333 1490 6226 2078 3

Total () 12 16 13 10 17 16 12 19 10 125

Table 1: Zürich City Parliament election on February 12, 2006. Vote numbers , row-sum require-

ments (parties) and column-sum requirements (districts).

party whose number of seats should be proportional to its vote share. Similarly, each column

represents a district whose number of seats should be proportional to its population. Computing

the number of seats for each party and district is now equivalent to biproportional rounding. In

Tables 1 and 2 we present vote numbers and resulting seat numbers for the Zürich City Parliament

election on February 12, 2006; this election was the first time ever that a divisor-based bipro-

portional method was used for distributing parliament seats. Applications to other parliaments,

including comparisons to alternative apportionment methods, are studied in [1, 5, 7, 13, 15, 17]. A

software package named BAZI is available for computing vector and matrix apportionments using

divisor-based methods [14].

The main focus of this paper is to analyze and improve the complexity of the tie-and-transfer

algorithm by Balinski, Demange and Rachev [2, 4]. Our computational model is that arithmetic

operations (comparisons, additions, subtractions, divisions and multiplications) take one unit of

time. Our interest in the tie-and-transfer algorithm is due to the fact that this is currently the only

algorithm that provably solves the biproportional rounding problem using a divisor-based method.

As a warm-up, and in order to illustrate some general algorithmic ideas, in Section 2 we first

describe an efficient algorithm to compute a divisor-based vector apportionment; we show that the

running time of the algorithm given by Dorfleitner and Klein [9] can be improved from to

by a clever implementation of the algorithm. We then move on to the matrix problem:

In Section 3 we give a detailed description of the tie-and-transfer algorithm; some new algorithmic

details and an analysis of the running time is given. In Section 4 we present techniques to improve

the running time of the tie-and-transfer algorithm from pseudo-polynomial to (weakly) polynomial

running time. Section 5 presents new algorithms to identify ties in a computed apportionment, and

to compute quotient and multiplier/divisor intervals. Concluding remarks are given in Section 6.

3

District WK1+2 WK3 WK4+5 WK6 WK7+8 WK9 WK10 WK11 WK12 Divisor

Party ()

SP 4 7 5 4 5 6 4 6 3 1.006

SVP 2 3 2 1 2 4 3 4 3 1.002

FDP 3 1 1 2 5 2 2 2 1 1.010

Grüne 2 3 2 1 2 1 1 1 1 0.970

CVP 1 1 1 1 1 1 1 2 1 1.000

AL 0 1 2 0 1 0 0 1 0 0.800

EVP 0 0 0 1 1 1 1 2 0 0.880

SD 0 0 0 0 0 1 0 1 1 1.000

Divisor () 7000 6900 5000 6600 11200 7580 7800 9000 4000

Table 2: Zürich City Parliament election on February 12, 2006. Seat numbers , row-divisors

and column-divisors. Standard rounding is used, and the divisors are those that were published

by the Zürich City administration (http://daten.wahlen.stzh.ch/). As an example, the

number of seats for party SP in district WK6 is computed as .

2 Improved algorithm for proportional rounding

Recall the divisor-based proportional rounding problem: Given an -vector of non-

negative integers and a positive integer , find a multiplier such , where

for . For illustrative purposes, we will refer to (resp.) as the number of votes (resp.

seats) given to party .

2.1 Preprocessing

Let be the signpost function associated with the rounding function . For any rounding

function we have that , so implies that . Another special case occurs when

the signpost function fulfills . This means that any party where should have at

least one seat (). Let be the number of parties where . If , then the problem is

clearly infeasible. In the following we therefore assume that for each of the parties (and

if).

2.2 Quadratic time algorithm

The algorithm by Dorfleitner and Klein [9] proceeds (implicitly) by iteratively updating the multi-

plier until the seat numbers add up correctly. The initial guess for the multiplier is .

For this so-called canonicalmultiplier we have , that is, the quotients add up correctly.

The initial apportionment is for all parties . If , then a valid multiplier has

4

been found and the algorithm terminates. So assume that . By definition ,

so . The initial error (or discrepancy)

for the canonical multiplier is therefore at most . The expected error of the canonical and other

multipliers was studied by Happacher and Pukelsheim [10, 11]; the canonical multiplier has zero

expected error if standard rounding is used.

Assume first that . This means that we should increase the multiplier . We simulate

the process of increasing by iteratively updating the apportionment. Recall that we have

for all parties . So in the initial apportionment we have for all

parties . Consider a party for which is minimum. This party should be the first to

receive an additional seat as we increase , so we set (note that as a consequence of

this update, increases). By repeatedly picking a party where is minimum and

setting , after at most updates, we have .

A similar algorithm is used when . Here we pick a party where is

maximum, and set . Finding the minimum/maximum in each iteration takes time,

resulting in a total running time of — which is since . Handling of ties

is described in [9].

2.3 A faster implementation

The running time of the quadratic time algorithm can be improved to as follows. After

the initial multiplier guess, assume that . Create a priority queue , and append all par-

ties with priority to this queue. Finding a party with minimum is equivalent

to extracting the minimum element from , and this can be accomplished in time since

contains elements [8]. After the update , the party is reinserted into with

the new priority , an operation that also can be performed in time. Thus, in total

each iteration takes time.

When after the initial multiplier guess, we use a priority queue with priorities

, such that a minimum element in the queue corresponds to a maximum value of

. In conclusion, we have the following theorem:

Theorem 2.1 Computing a divisor-based apportionment for an -party problem can be accom-

plished in time , where is the error (or discrepancy) of the canonical multiplier.

Since , the running time is .

3 Tie-and-transfer algorithm

In the biproportional rounding problem the task is to compute an matrix that

fulfills the given row-sum requirements and column-sum requirements . In a

5

divisor-based algorithm for solving the problem, we should compute row multipliers and

column multipliers , such that , where is the given (vote) matrix.

If no solution exists, the algorithm should report this.

The tie-and-transfer algorithm [2, 4] is currently the only known algorithm that correctly solves

the problem, that is, for every input it provably computes a set of valid multipliers or reports that no

solution exists. Heuristics that work well in practice (but that can fail) are discussed in Section 4.

The purpose of this section is to give the first comprehensive running time analysis of the tie-

and-transfer algorithm. In order to do so, some additional algorithmic details, not present in the

original papers, are given. As a side-effect, our detailed presentation of the algorithm makes its

implementation relatively straightforward.

The tie-and-transfer algorithm iteratively updates the multipliers and until the rows and

columns add up correctly. More precisely, the error function

is iteratively minimized by making so-called transfers. Each transfer decreases the error function

by 1. Between each transfer the algorithm creates so-called ties by updating the multipliers in

a synchronized manner. These ties eventually make a new transfer possible, and the algorithm

iterates. When the error has dropped to zero, a valid set of multipliers has been found, and the

algorithm terminates.

3.1 Preprocessing

In order to simplify the description of the algorithm, we assume that the problem is not trivially

infeasible for the case where . Let be the number of positive elements of in row .

If for any row , then the problem is clearly infeasible. Similarly, let be the number of

positive elements of in column . If for any column , then the problem is infeasible.

3.2 Initialization

The multipliers are initially chosen by setting all row multipliers , and by choosing the

columnmultipliers such that the columns add up correctly, i.e. . That is, for each column

in we solve the vector apportionment problem with vote numbers and

required total . All subsequent changes to the multipliers and to the apportionment are made in

such a way that the columns continuously add up correctly. After initialization, the error function

therefore reduces to

6

3.3 Row/column graph

Let be the set of rows and the set of columns in . For a given set of multipliers and (not

necessarily feasible) apportionment we define the so-called row/column graph as

follows: The graph is a directed bipartite graph with vertex set . The set of edges

is the union of two sets:

1) For each and where and we have an edge .

This means that may be rounded up without changing the multipliers. (Recall that we

have for all .)

2) For each and where and we have an edge .

This means that may be rounded down without changing the multipliers.

Informally, we have an edge out of row for each column where can be rounded up.

Similarly, we have an edge out of column for each row where can be rounded down.

Note that for any pair of vertices , , there is at most one directed edge that connects them.

3.4 Transfers

Assume that contains a simple path consisting of the edges .

The path defines a transfer by rounding up , rounding down , rounding up etc. and

finally rounding down . The net effect of this transfer is that it increases the ’th row sum

by 1 and decreases the ’th row sum by 1. No other row sums and no column sums are affected

by the transfer. If the result is a cyclic transfer, where no row or column sums are changed.

Let be the set of row vertices where . Similarly, let be the set of row vertices

where . The main idea of the algorithm is to search for a path in from a row vertex

to a row vertex (such a vertex is reachable from). The corresponding

transfer would clearly decrease the error function by exactly 1.

3.5 Searching for transfers

Algorithm 1 finds all vertices in that are reachable from the vertices in a given set . The

algorithm performs a breadth-first-search (BFS) [8] in from the set . The advantage of using

BFS is that its running time is bounded by and that it in addition finds shortest possible

paths (in the number of edges) from the labeled vertices to the reachable vertices. Therefore, all

computed paths are simple, that is, contain no repeated vertices.

We run Algorithm 1 with input , and the result is that all reachable vertices are added

to . Upon return, if then a transfer exists that reduces the error function; the transfer

7

Algorithm 1 Breadth-first search (BFS) in row/column graph

Require: is the set of initially labeled vertices

1. // Queue of labeled but not yet processed vertices

2. while do

3. DEQUEUE // Extract next vertex from

4. if is a row vertex then

5. = ROW

6. for to do

7. if and and then

8. // Edge where is not labeled. Append to and

9. ENQUEUE // Append to end of

10.

11. // Predecessor of is

12. else

13. = COLUMN

14. for to do

15. if and and then

16. // Edge where is not labeled. Append to and

17. ENQUEUE // Append to end of

18.

19. // Predecessor of is

20. return // Return final set of labeled vertices

can be identified by following the predecessor pointers from any vertex back to a

vertex in . If then no such transfer exists, and we need to update the multipliers.

3.6 Updating the multipliers

Let and , where , be the set of labeled rows and columns, respectively, after

running Algorithm 1. Also, let and . If no vertices in are reachable

from the vertices in , we may depict the situation as in Figure 1.

Our goal is now to compute a factor , such that we can multiply by for all and

divide by for all . This should be done in such a way that the current apportionment

remains feasible. (Note that is unchanged for all elements where , that is,

when both the row and column is labeled.) Algorithm 2 computes the largest possible such by

iterating over all edges from a labeled to an unlabeled vertex in . Assume first that after running

8

Rows and columns are labeled Only rows are labeled

Only columns are labeled Neither rows nor columns are labeled

Figure 1: Illustration of the situation when no transfer can be found by Algorithm 1. The figure

depicts the (reordered) apportionment matrix where labeled rows and columns appear first. The

idea of the algorithm is to multiply all row multipliers in the “upper” half of the matrix by and at

the same time divide all column multipliers in the “left” half by the same multiplier. This will keep

the quotients in the upper left corner unchanged, that is, where both rows and columns are labeled.

9

Algorithm 2 Compute for updating multipliers

Require: is the set of labeled rows and columns

1.

2. for to do

3. for to do

4. if and and then

5. // For this element we must have

6.

7. if and and then

8. // For this element we must have

9. if then

10.

11. return // Return final (which may be equal to)

Algorithm 2 we have that . Then either

and for some

or

and for some

In other words, after updating the multipliers, at least one more row or column can be labeled by

the BFS algorithm. (All previously labeled rows and columns remain labeled.)

If Algorithm 2 returns , then the problem instance is infeasible. The reason is that in

this case we must have (when d(0) > 0) that

which implies that for all

and

which implies that for all

Therefore,

and thus there is no way that the labeled rows can achieve the required sum. The labeled rows and

columns form a certificate of the infeasibility of the problem instance. A similar argument applies

for the case when [4].

10

3.7 Running time

What is the running time of the Balinski and Rachev algorithm? The initialization takes

time since we solve vector problems, each of size . Searching the row/column graph takes

time. Computing and updating the multipliers also takes time. Each time the

multipliers are updated, at least one more row or column can be labeled. Thus after at most

multiplier-updates, a transfer is found — resulting in a worst-case running time of

to find a transfer.

The total row-sum error in the first iteration of the algorithm is at most . Thus at most

transfers are made throughout the execution of the algorithm, giving a total running time of

. Combining this analysis with the correctness arguments from [4], we get:

Theorem 3.1 The tie-and-transfer algorithm correctly computes a feasible apportionment and

corresponding multipliers and in time , where is the total sum of the rounded

matrix. When , the running time is .

4 Improved algorithm for biproportional rounding

In this section we present two different techniques to improve the running time of the tie-and-

transfer algorithm. In fact, we do not improve the running time directly, but instead we use another

algorithm to find a provably good guess for the multipliers before invoking the tie-and-transfer

algorithm. The guess guarantees that the initial error , as defined in Section 3, in the tie-and-

transfer algorithm is sufficiently small.

We present two different approaches. The first one is based on solving the continuous version

of the matrix apportionment problem (Section 4.1), while the other is based on using the tie-

and-transfer algorithm recursively with scaled row- and column-sum requirements (Section 4.2).

In both cases we reduce the running time dependency of from to . Basically

this means that we improve the running time from pseudo-polynomial to (weakly) polynomial

running time. The idea of using a so-called front-end for the tie-and-transfer algorithm was already

discussed in Balinski and Demange [2]. However, the impact on the worst-case running time has

not been studied before. In Section 4.3 we discuss various practical considerations concerning

combinations of front- and back-ends.

4.1 Continuous front-end

The continuous version of the problem is the following: Given an matrix , row-

sum requirements and column-sum requirements , compute row multipliers and column

multipliers , such that the matrix given by fulfills the given row- and

11

column-sum requirements. The only difference compared to the biproportional rounding problem

— or the discrete version of the problem— is the definition of , where no rounding of the value

takes place in the continuous case.

One distinctive difference between the discrete and continuous versions of the problem is that

the continuous problem can be scaled in a preprocessing phase without changing the solution to the

problem: Multiplying the entries in with any factor , and similarly multiplying the row-

and column-sum requirements with the same factor, results in a problem that has the same solution.

Therefore, one may assume that, say, . This is something that is not possible in

the discrete case. Furthermore, while in the discrete case the row- and column-sum requirements

should be met exactly, this is not practically feasible nor necessary in the continuous case. As a

consequence, in the continuous problem we are also given a parameter that specifies the

maximum error that can be accepted, that is, we seek an apportionment such that .

The continuous problem is usually denoted matrix scaling, and it has numerous applications

in e.g. statistics, numerical analysis and operations research. When solved inexactly, the problem

is denoted -scaling. From a mathematical point of view, the problem is well-studied, but the

literature on algorithms for solving the problem is relatively sparse. The only strongly polynomial

algorithm that exists for solving the -scaling problem was given by Linial et al [12]. Here strongly

polynomial means that the running time is independent of the (relative) sizes of the numbers in the

matrix :

Lemma 4.1 The -scaling problem for an matrix where and

can be solved in time .

We will now use this algorithm to solve the biproportional rounding problem. First we solve

the corresponding -scaling problem with . Let , and be the resulting multi-

pliers and apportionment. We construct a new apportionment by setting

. Clearly . Therefore, by using and as guesses on the mul-

tipliers, the initial error in the tie-and-transfer algorithm is , and the total running time

of the tie-and-transfer algorithm therefore becomes — which is when

. Since the running time for solving the -scaling problem dominates the running time

of the tie-and-transfer algorithm, we have the following:

Theorem 4.2 The biproportional rounding problem for an matrix where and

with total sum can be solved in time .

4.2 Tie-and-transfer front-end

In this section we show that we can change the number of tie-and-transfer iterations in the worst-

case from to . The idea is to obtain good guesses on the multipliers by solving

12

a series of problems with smaller marginal requirements. The algorithm works recursively as

follows.

Let be the given problem instance. First we pick a small integer constant ,

say, . If then we solve directly by using the tie-and-transfer algorithm

— performing at most transfers. Otherwise, we construct a new problem

instance with total sum . The required row sum for row in is either

or such that . Any quota apportionment method can be used

to compute the row requirements. The required column sums for are computed in a similar

fashion. Finally, we have .

Now assume that we have solved problem instance recursively. Let and be the com-

puted feasible multipliers for . Since the marginal sums in are approximately a factor larger

than in , we compute the following guesses on the multipliers for problem instance :

Lemma 4.3 The initial error in problem instance using multipliers and , as computed above,

is at most .

Proof. Let be the apportionment obtained for problem instance . Clearly we

can multiply this apportionment and the required row and column sums for by a factor and

obtain a scaled apportionment that satisfies the scaled marginal sums:

Now consider the initial solution to problem instance . We have

which is at most units away from . (This holds since for any integer and

rational number we have that both and are in the interval from to .) Similarly

we have that is at most units away from . In total the error made in row is bounded by

. The total error of all rows is therefore at most . Similarly, the total error of

all columns is bounded by . Adding these two numbers and dividing by 2, we obtain an

upper bound on the error function which is bounded by .

The number of problem instances solved in total is , since the marginal sums are made

a factor smaller each time. Therefore, the total number of transfers performed when solving the

13

problem instances is at most which is . Combining this

with the running time to perform a single transfer, we get:

Theorem 4.4 The biproportional rounding problem for an matrix with total sum can be

solved in time . When , the running time is .

4.3 Practical combinations of front- and back-ends

Although the algorithms presented in the previous sections have the best known running time

bounds, other algorithmsmay work better in practice. One approach that is fast is practice is the so-

called iterative proportional fitting (IPF) algorithm. This algorithm solves the continuous problem

by alternating between scaling the rows and columns to meet the required row- and column-sums.

The discrete version of the IPF algorithm is named alternating scaling (AS) [15].

An experimental study of various combinations of front- and back-ends was recently under-

taken by Maier [13]. Using either AS or IPF as front-ends to the tie-and-transfer algorithm gives

a significant speed-up in practice. Using IPF and a switching barrier of 10 (i.e., switching to tie-

and-transfer when the error drops below 10) gave the best results on both realistic and artificial

problem instances. It is still an open question whether the simple recursive algorithm presented in

Section 4.2 is competitive with these approaches in practice.

5 Sensitivity analysis

A central result in the theory of divisor-based biproportional rounding is that the apportionment

(if it exists) is unique up to ties [4]:

Lemma 5.1 Suppose is a feasible apportionment with multipliers and . Let be

another apportionment for the same problem. Then multipliers and can also be used for ,

that is,

As a consequence, if for some element , then either or ,

and this is a result of a tie in the rounding function.

In this section we first present an algorithm that identifies all ties in a computed apportion-

ment (Section 5.1). Then we extend this algorithm to compute feasible intervals for quotients

(Section 5.2) and multipliers (Section 5.3).

14

5.1 Identifying ties

Recall that we have

for a feasible apportionment with multipliers and . Furthermore, if

for some element then Lemma 5.1 shows that is in fact the unique solution to the problem

for element . However, or does not imply that element

necessarily is a tie, that is, can be rounded up or down. (Note that an element can only

be a tie if , since implies .)

Consider an element where (and). Since we

have which means that since . We would like to decide if element

is a tie or not. This is done by searching for a cyclic transfer in the row/column graph (see

Section 3.3) that includes element . If such a transfer is found, then element clearly is a

tie. If no cyclic transfer can be found we will show how the multipliers and can be updated to

a set of new multipliers and in such a way that

1. the apportionment remains feasible for the new multipliers and .

2. which proves that element is not a tie,

3. no new equalities of the form or are introduced

for any element .

Algorithm 3 decides whether an element where is a tie or not. Upon

return from the algorithm we either still have which means that element

is a tie, or we have , proving that element is not a tie.

Lemma 5.2 Algorithm 3 correctly decides whether an element , where ,

is a tie or not.

Proof. The main idea of the algorithm is to search for a path in the row/column graph from

row to column (lines 1–3). If such a path exists (lines 5–8),

then we may round down , round up , round down etc. until we finally round up

. Thus there is a cyclic transfer in the row/column graph, and is a tie.

On the other hand, if no such path exists (lines 10–16), we use Algorithm 2 from Section 3.6

to compute a largest possible that can be used to update the multipliers — as in the tie-and-

transfer algorithm. We show that is well-defined and in fact . That follows

15

from the arguments given for the original tie-and-transfer algorithm (Section 3.6). Furthermore,

row is labeled, but column is not, so clearly .

The computed value is not used directly to update the multipliers, since this would introduce

new equalities of the the form or for some element

. Instead we compute the average of and , i.e., set (line 13). When we

make the update (lines 14–16), no new equalities are therefore introduced by the new multipliers

and . Since , we have , so we have proved that element is not

a tie.

Algorithm 4 similarly handles the case where . In this case we search for a

cyclic transfer starting in column . If row can be reached from column in the row/column graph

, then the element is a tie — otherwise we update the multipliers proving that is not a

tie. Again we note that is well-defined, but in this case we may have that ; here we may

choose any value between and , and in the algorithm we choose (line 16). Therefore,

we get the following:

Lemma 5.3 Algorithm 4 correctly decides whether an element , where , is a

tie or not.

Since Algorithms 3 and 4 run in time, and we have elements in total, we obtain:

Theorem 5.4 Given a feasible apportionment and a set of multipliers and , by running

Algorithm 3 for all elements where , and Algorithm 4 for all elements where

, we obtain a set of multipliers and , such that

if and only if element is not a tie. The running time to compute and is .

5.2 Computing feasible intervals for quotients

Although the apportionment for a given problem instance essentially is unique, there is an infinite

number of feasible multipliers. For any we have that so we

may perform any simultaneous scaling of the row and column multipliers. In addition, we may

often change one or more multipliers without affecting the apportionment. One useful approach

is to compute lower bounds and upper bounds on the quotients , such that for any

feasible apportionment and multipliers and we have that

16

Algorithm 3 Test if an element can be rounded down.

Require: Element where and

1.

2. Run BFS with input on row/column graph (Algorithm 1)

3. // Let be the output of BFS

4. if then

5. // Element is part of a cyclic transfer and therefore a tie!

6. // Compute new (unchanged) multipliers

7.

8.

9. else

10. // Update multipliers to prove that element is not a tie

11. Compute for and (Algorithm 2)

12. // We now have that

13. // Change to average between and

14. // Compute new (updated) multipliers

15.

16.

17. return // Updated multipliers

17

Algorithm 4 Test if an element can be rounded up.

Require: Element where and

1.

2. Run BFS with input on row/column graph (Algorithm 1)

3. // Let be the output of BFS

4. if then

5. // Element is part of a cyclic transfer and therefore a tie!

6. // Compute new (unchanged) multipliers

7.

8.

9. else

10. // Update multipliers to prove that element is not a tie

11. Compute for and (Algorithm 2)

12. // We now have that

13. if then

14. // Change to average between and

15. else

16. // We can choose any value greater than 1

17. // Compute new (updated) multipliers

18.

19.

20. return // Updated multipliers

18

The first observation is that for any apportionment and multipliers and we must have

since by Lemma 5.1 quotients cannot “cross” signpost boundaries.

We sketch an algorithm to compute for a given element where . (If

then .) Assume that we have an apportionment and multipliers and . If

we set and are done. Otherwise we attempt to increase the row

multiplier while keeping the column multiplier fixed. This can be done by searching in the

row/column graph for a path from row to column as in the tie-deciding algorithm. If no path

is found, we may compute a and update the multipliers. Note that this update increases the

quotient from to . Then we again search in the (modified) row/column graph for a

path from row to column . We iterate until one of the following events happens:

1. . In this case we set and are done.

2. There is a path from row to column , i.e., both row and column is labeled. In this case

updating the multipliers has no effect on the quotient, since the row multiplier is increased

while the column multiplier is decreased with the same factor. In Lemma 5.5 we prove that

in this case we must have , and are therefore done.

Clearly, this algorithm runs in time, and its correctness follows from:

Lemma 5.5 For any apportionment and multipliers and , if there exists a path in the

row/column graph from row to column , then , that is, the quotient is at its upper

bound.

Proof. We prove this by contradiction. Assume that there exists another set of multipliers and

, where . Assume w.l.o.g. that and . By Lemma 5.1 multipliers

and are valid for the apportionment . Consider a path

in the row/column graph. By construction, the edge corresponds to .

Clearly, which implies that . Consequently, since

, we have that .

Now consider the edge , which corresponds to . Clearly,

which implies that . Consequently, since

, we have that .

By induction over the edges of the path we therefore get that , which is a contradiction

to our assumption that .

Lower bounds on the quotients may be computed in a similar way. The quotient intervals

have some interesting applications. Firstly, if we have or

19

this means that element is a tie. Thus computing quotient intervals immediately

identifies ties. Secondly, quotient intervals give the widest possible ranges for changes of elements

in that do not change the apportionment. More specifically, assume that we have an

element where and . Then may be increased to without

affecting the feasibility of the apportionment. Similarly, may be decreased to

without affecting the apportionment. These ranges are in general larger than those obtained by

considering an arbitrary set of multipliers.

5.3 Computing feasible intervals for multipliers

The technique to compute quotient intervals may be extended to computing multiplier (or divisor)

intervals— and especially “nice” multipliers/divisors. A nice multiplier/divisor is for example one

that can be written using a small number of (decimal) digits. One greedy approach is to fix one of

the multipliers (say to 1), and then to compute the widest possible intervals for each of the other

multipliers. The multiplier that has the smallest feasible interval is then fixed at some nice value in

its feasible interval. Then the intervals for the other multipliers are updated, another multiplier is

fixed etc. Note that as soon as we fix some multiplier, the feasible intervals for the other multipliers

may change — therefore the intervals need to be recomputed.

Assume that we have fixed some subset of the multipliers, say , where is the

set of fixed row multipliers and is the set of fixed column multipliers, respectively. Let us say

that we would like to compute an upper bound on the row multiplier , where . As in the

algorithm to compute quotient upper bounds, we attempt to find a such that is a valid

multiplier for row . The idea is again to search the row/column graph from row . If no row or

column in is reached (or labeled), we compute and update the multipliers as in the tie-

and-transfer algorithm. (Note that since no fixed rows or columns are labeled, the corresponding

multipliers are not changed.) Then we again search the (modified) row/column graph, update the

multipliers etc. until some row or column in is labeled. Using arguments similar to those in the

proof of Lemma 5.5, it can be shown that the multiplier for row must be at its upper bound.

Lower bounds for the multipliers can be computed in a similar way. The running time to

compute an upper or lower bound for a multiplier is .

6 Conclusion

In this paper we presented the first (weakly) polynomial algorithms for solving the divisor-based

biproportional rounding problem. Polynomial algorithms for analyzing ties, quotients and multi-

pliers/divisors were given. A prototype implementation of the algorithm presented in Section 4.2

20

has shown that the algorithm is very fast in practice. 2 Future work includes an experimental study

of the practical running times, including comparisons to the algorithms presented in Maier [13],

and practical methods for finding nice divisors. From a theoretical point of view, it remains an

open question whether there exists a strongly polynomial algorithm for divisor-based bipropor-

tional rounding of matrices.

Acknowledgments

The author would like to thank Friedrich Pukelsheim, Sebastian Maier and Petur Zachariassen for many

fruitful comments and suggestions.

References

[1] M. L. Balinski. Wahlen in Mexico - Verhältniswahlrecht häppchenweise. Spektrum der

Wissenschaft, Oktober:72–74, 2002.

[2] M. L. Balinski and G. Demange. Algorithms for Proportional Matrices in Reals and Integers.

Mathematical Programming, 45:193–210, 1989.

[3] M. L. Balinski and G. Demange. An Axiomatic Approach to Proportionality Between Matri-

ces. Mathematics of Operations Research, 14:700–719, 1989.

[4] M. L. Balinski and S. T. Rachev. Rounding Proportions: Methods of Rounding.Mathematical

Scientist, 22:1–26, 1997.

[5] M. L. Balinski and V. Ramírez. Mexico’s 1997 Apportionment Defies its Electoral Law.

Electoral Studies, 18:117–124, 1999.

[6] M. L. Balinski and H. P. Young. Fair Representation — Meeting the Ideal of One Man, One

Vote. Brookings Institution Press, Washington, D.C., second edition, 2001.

[7] D. Bochsler. Biproportionale Wahlverfahren für den Schweizer Nationalrat. www.opus-

bayern.de/uni-augsburg/volltexte/2005/160, 2005.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT

Press, Cambridge, 2001.

[9] G. Dorfleitner and T. Klein. Rounding with Multiplier Methods: An Efficient Algorithm and

Applications in Statistics. Statistical Papers, 40:143–158, 1999.

2Java-code is available from http://www.diku.dk/users/martinz/biprop/.

21

[10] M. Happacher. The Discrepancy Distribution of Stationary Multiplier Rules for Rounding

Probabilities. Metrika, 53:171–181, 2001.

[11] M. Happacher and F. Pukelsheim. Rounding Probabilities: Maximum Probability and Min-

imum Complexity Multipliers. Journal of Statistical Planning and Inference, 85:145–158,

2000.

[12] N. Linial, A. Samorodnitsky, and A. Wigderson. A Deterministic Strongly Polynomial Algo-

rithm for Matrix Scaling and Approximate Permanents. Combinatorica, 20:545–568, 2000.

[13] S. Maier. Algorithms for Biproportional Apportionment Methods. In Mathematics and

Democracy. Recent Advances in Voting Systems and Collective Choice, In Press, New York,

2006.

[14] F. Pukelsheim. BAZI – A Java Program for Proportional Representation. In Oberwolfach

Reports, volume 1, pages 735–737, 2004.

[15] F. Pukelsheim. Matrices and Politics. In 15th International Workshop on Matrices and

Statistics, In Press, 2006.

[16] F. Pukelsheim and C. Schuhmacher. Das neue Zürcher Zuteilungsverfahren für Parla-

mentswahlen. Aktuelle Juristische Praxis - Pratique Juridique Actuelle, 5:505–522, 2004.

[17] P. Zachariasen and M. Zachariasen. A Comparison of Electoral Formulae for the Faroese Par-

liament (The Løgting). In Mathematics and Democracy. Recent Advances in Voting Systems

and Collective Choice, In Press, New York, 2006.

22

