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Abstract. The problem of rounding finitely many (continuous) probabilities to
(discrete) proportions N;/n is considered, for some fixed rounding accuracy
n. It is well known that the rounded proportions need not sum to unity, and
instead may leave a nonzero discrepancy D = (> N;) — n. We determine the
distribution of D, assuming that the rounding function used is stationary and
that the original probabilities follow a uniform distribution.

1991 Mathematics Subject Classification: 60C05, 62P25

Key words: Discrepancy distribution, Multiplier methods of rounding, Round-
off error, Rounding rules, Stationary rounding function, Uniform distribution

1 Introduction

In December 1999, a public German television station conducted a telephone
poll to rank five pop music groups. The group that came out top gained 29
percent, and had the good fortune to win by the narrow margin of one per-
cent. However, the five percentages that flashed over the television screen add
up to one percent in excess:

29428425+ 13+ 6 =101.

According to a subsequent press release, the observed discrepancy of 101 —
100 = 1 percent was not instrumental in determining the winner (Bild am
Sonntag 1999).

It is well known that probabilities, after rounding, need no longer add to
unity. We demonstrate the sensitivity of the rounding rule by three one-line
examples [1]-[3] of rounding probabilities to percentages leaving, in turn, the
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discrepancies —1,0, 1:

Probabilities Total Percentages Total Discrepancy
[1] 0.534 0.322 0.144 1 — 53 32 14 99 -1
[2] 0.534 0.320 0.146 1 — 53 32 15 100 0
[3] 0.536 0.318 0.146 1 — 54 32 15 101 1

The discrepancy depends on the rounding rule used. Here, we have employed
the standard rounding rule which, after multiplying the probabilities by 100,
rounds down when a fractional part remains that is less than 1/2, while it
rounds up when the fractional part is greater than 1/2.

In this paper we show how likely the various possible values for the dis-
crepancy are. The discrepancy distribution is stated in Section 2, together with
a discussion of how it relates to the existing literature. The derivation of the
distribution is outlined in Section 3.

2 The discrepancy distribution

Our result is not specific to standard rounding, but extends to the wider family
of stationary rounding functions r, depending on a parameter g € [0, 1]. The
rounding function r, rounds down when a fractional part remains that is less
than ¢, while it rounds up when the fractional part is greater than ¢.

Formally, let the nonnegative number x > 0 be decomposed into its integer
part, IntegerPart(x) = |x|, and into its fractional part, FractionalPart(x) =
x — |x]. Then the rounding function r, is defined as follows:

) [x] = IntegerPart(x) + 1 when FractionalPart(x) > ¢;
re(x) =
1 | x] = IntegerPart(x) when FractionalPart(x) < g.

A tie occurs when FractionalPart(x) = ¢, and there the definition may stipu-
late either r,(x) = [x] or ry(x) = [x]. Our probabilistic assumptions imply
that such ties form a nullset, so that the ambiguity arising from ties leaves the
distributional results unaffected. By definition the rounded value r,(x) comes
to lie in a unit length interval containing x,

X—qg<r,x)<x+1-—gq.

These range inequalities are fundamental, and will be referred to frequently.

The family of stationary rounding functions starts with rounding up (¢ = 0),
smoothly passes through standard rounding (¢ = 1/2), and ends with round-
ing down (¢ = 1). Generally, whatever ¢ € [0, 1], the points k + ¢ determining
the rounding decision in the integer intervals [k, k 4 1] have the same position
relative to the boundaries. Because of this stationarity property our proba-
bilistic analysis extends from the three classical rounding functions ro, 71,2,
and ry, to cover an arbitrary stationary rounding function r,.

We consider the task of rounding to integer multiples of 1/n, where the
rounding accuracy n is assumed to be given. For example, when rounding to
percentages we have n = 100, while when rounding to multiples of a tenth of a
percent we have n = 1000.
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The discrepancy problem arises when the rounding rule is applied to a set
of probabilities or weights W1, ..., W, for a given number ¢ > 2 of categories.
The Rule of Three suggests first to multiply each weight W; by n, and then to
round the resulting product to obtain r,(nW;) = N;, say. Now W; is rounded
to N;/n, visibly a multiple of 1/n. It also affords a reasonable approximation
of W; since the range inequalities entail —(1 — ¢)/n < W; — N;/n < ¢/n. And
if the total >, N; happens to be equal to n, then the rounded proportions
Ni/n,...,N./n sum to unity and form a valid set of probabilities.

However, the total may well fail to be equal to n and instead leave a non-
zero discrepancy, (>_; | N;) —n # 0. The range inequalities imply that the
total comes to lie in the interval [n — gc,n + (1 — g)c|. For example, when ¢ =
0 and fractional parts are always rounded up, the target interval is [n,n + (]
and the discrepancy is nonnegative. At the other extreme, when ¢ = 1 and
fractional parts are always rounded down, the target interval is [n — ¢, n] and
the discrepancy is nonpositive.

In order to center the total at the rounding accuracy n we introduce a
continuous multiplier v > 0, to substitute for the constant Rule-of-Three mul-
tiplier n. We emphasize the dependence on the multiplier v by denoting the
associated total by

c

Toy(v) = > ry(vI05).

i=1

A rounding rule that uses a stationary rounding function r, and a fixed mul-
tiplier v to round weights W; to proportions N;/n, with N; = r,(vI¥;), is called
a stationary rounding rule. If, for a given rounding accuracy n, the total leads
to a vanishing discrepancy, (3., N;) —n =0, then the proportions N;/n
again form a valid set of probabilities.

The discrepancy may be nonzero, however, even when the choice of the
multiplier is adapted to the accuracy n. Indeed, the range inequalities imply
that the total T, ,(v) comes to lie in the interval [v — gc,v+ (1 — g)c]. If the
multiplier is taken to be

luc.,q,n =n+ (q - %)67

then T¢ 4(u,. ,,) ranges over the interval [n —c/2,n + ¢/2] centered around
the accuracy n, and the discrepancy falls into an interval symmetric around
Zero,

c C
D= Tc,q(:uc,qﬁn) —ne |:_2a2:| .

The multiplier g, ,, thus focuses on the nondefective outcomes, D = 0, but
also admits the defective events D = d with a nonzero integer d between —c/2

and ¢/2.

The following theorem shows how likely the possible discrepancy
values d are, assuming that the weight vector W = (W,,...,W,) is
uniformly distributed on the probability simplex & = {w = (wy,...,w.) €

[0,00) >, wi =1}
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Theorem: Suppose the weights Wi, ..., W. are rounded to integer multiples of
1/n, where the number ¢ of categories is fix, the stationary multiplier rule used is
based on a rounding function r, for some q € [0, 1], and the rounding accuracy n
is given.

Then the discrepancy D = T, 4(1.,, ) — n takes on integer values d € [—c/2,
¢/2]. If the weights are uniformly distributed, the distribution P(D =d) =
he gn(d) is given by

4 . c o d ,_1
o) = S0 () () (L)
He.q.n =0 J/) i \k—]j c—14+j—k

7

x{gdqj(lq)k}c_]. O

+

b
The binomial coefficient is taken to be zero unless 0 < a < b. The
a

third binomial coefficient thus contributes an upper limit k£ < ¢ — 1 4, active
for j = 0. Also adjoined are two lower limits, | —n—d <jandc—n—d < k.
But only large accuracies n are of interest, n > (3/2)c¢, in which case 1 —n—
d<c—n—d<(3/2)c—n<0. Hence the two lower limits remain practi-
cal]y mactlve The last factor is defined by {y}{ " =y~ "' when y > 0, and by
{y}{ = 0 otherwise. The proof of the Theorem is outlined in Section 3.

The discrepancy distribution /., , conforms well with empirical data, as
we illustrate with rounding the fractions of votes in the 1996 presidential
elections in the United States, and in the Russian Federation. In both exam-
ples we use standard rounding (¢ = 1/2), and round to multiples of a tenth of
a percent (n = 1000). The examples follow the lead of Balinski and Rachev
(1993, page 492), with the present data taken from Happacher and Pukel-
sheim (1998, page 95; 2000, pages 146—149).

The 1996 US presidential election featured three candidates (¢ = 3). The 50
States, the District of Columbia, and the Candidate’s Totals provide a sample
of size 52. The observed counts for the possible discrepancy values —1,0, 1 are
as follows:

Discrepancy values —1 0 1 Sum
Observed counts 5 39 8 52
Predicted counts 7 39 6 52

The discrepancy probabilities /3 /5 1000(d) for d = —1,0,1, are 1001/8000,
6000/8000, 999/8000, respectively. These are multiplied by 52 to obtain the
expected counts 6.5065,39,6.4935. Standard rounding yields the predicted
counts 7,39, 6, for a sample of size 52.

In the 1996 Russian presidential election, there were ten candidates plus
the option to vote against all of them (¢ = 11). The 89 Constitutional Subjects,
the Votes Abroad, and the Candidate’s Totals provide a sample of size 91.
The values +5 and +4 in the discrepancy support —5, ..., 5 are not observed.
The counts for the other values are:
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Discrepancy values -3 -2 -1 0 I 2 3 Sum
Observed counts 0 9 18 37 20 6 1 91
Predicted counts 0 4 23 38 22 4 0 91

The probabilities /1 12 1000(d) that the discrepancy equals d = +5, +4
are practically zero. For the middle values d = —3,...,3 we obtain, in turn,
0.002,0.048,0.246,0.411,0.243,0.048,0.002. Multiplication by 91 gives the
expected counts, 0.182,4.368,22.386,37.401,22.113,4.368,0.182; standard
rounding yields the numbers 0,4,22,37,22 4,0 which, however, total 89 and
fall short by two units, 89 — 91 = —2, for a prediction of 91 cases. This defect
is cured by increasing the multiplier to anywhere between 91.5 and 92.5.
Multiplication by 92 produces the numbers 0.184,4.416,22.632,37.812,
22.356,4.416,0.184; now standard rounding yields the predicted counts
0,4,23,38,22,4,0 quoted above.

Nonzero discrepancies are remedied quite generally in that, rather than
using one multiplier for all possible weights, the multiplier is adjusted with
a view towards the weights under investigation. This gives rise to rounding
methods, as opposed to rounding rules. Rounding methods treat the multiplier
v as a degree of freedom to accommodate the restriction that the rounded
proportions must still sum to unity. A fast rounding algorithm turning a
multiplier rule into a multiplier method is proposed in Happacher and Pukel-
sheim (1996, page 378; 1998, page 102), Dorfleitner and Klein (1999, page
147).

The theory of rounding methods is summarized in the seminal monograph
of Balinski and Young (1982). Reviewing the history of the apportionments of
seats in the US House of Representatives, the authors show that the appor-
tionment methods proposed by eminent politicians such as John Quincy
Adams, Daniel Webster, and Thomas Jefferson are, from a systematic view-
point, the stationary multiplier methods arising from the classical rounding
functions of rounding up, standard rounding, and rounding down.

In statistics rounding methods are useful for the design of experiments
(multiplier method with rounding up, Adams), contingency tables (multiplier
method with standard rounding, Webster), and sampling theory (multiplier
method with rounding down, Jefferson), see Pukelsheim (1993, Chapter 12),
Wainer (1998), Dorfleitner and Klein (1999). Balinski and Ramirez (1999) use
stationary rounding methods for just-in-time production system optimization.

The Theorem also permits a transparent analysis of the asymptotics for
large accuracies, n — oo. Since in the distribution /., , the double sum has
terms bounded of the order n~*=), the limit depends only on the term with

k=
- e\ [(n+d+ji—1)\ (c et 1
hesgnld) = — (—Uf(.)( ){——d—j} +o(—)7
1 ﬂ(Lq,ln,:Z() J c—1 2 + h

tim begold) = 3 S () (5-a-) i

say. The limit is the same for all stationarity parameters ¢ € [0, 1]. The distri-
bution /. is the c¢-fold convolution of the uniform distribution on the interval
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[—1/2,1/2], see Johnson, Kotz and Balakrishnan (1995, Chapter 26.9). The ¢
degrees of freedom are explained by the accumulation of ¢ — 1 remainder
terms, Zf;ll U; with Uy,..., U, stochastically independent and uniformly
distributed on [—1/2,1/2], plus a further degree of freedom for a final round-
ing of the accumulated remainders, see Diaconis and Freedman (1979, page
361), Happacher and Pukelsheim (2000, page 156).

Seal (1950) makes a point that the study of the convolution of a uniform
distribution has a long tradition, and that quite a few earlier results on this
and related subjects are neglected by later authors, see Appendix B for an ex-
cerpt from his note. Yet, to our knowledge, the finite accuracy discrepancy
distribution A, g4 , is new. Mosteller, Youtz and Zahn (1967, page 856) derive
the discrepancy distributions for three and four categories and standard
rounding, 31> , and hy 12 », and indicate an approximation by a normal dis-
tribution with mean zero and variance ¢/12, see also Mitra and Banerjee
(1971). Kopfermann (1978, page 43; 1991, page 185) proves that for large
accuracies the probability of a vanishing discrepancy tends to /.(0).

Diaconis and Freedman (1979, page 361) show that, under standard
rounding, the asymptotic distribution /. holds for any weight distribution that
is absolutely continuous, and this result is extended to all stationary rounding
functions by Balinski and Rachev (1993, page 479). Both results apply as the
accuracy tends to infinity. Whether, for finite accuracy, the discrepancy distri-
bution can be determined for a weight distribution other than uniform remains
a challenge. The challenge may be more theoretical than practical, though,
since among the many empirical examples that we have studied none grossly
invalidates the distribution given above. Moments of the discrepancy distri-
bution /. 4 », and optimality properties of the multiplier x, , , are discussed by
Happacher and Pukelsheim (1996, 1998, 2000). The present theorem origi-
nates with the dissertation Happacher (1996), which includes additional liter-
ature, more examples, and further asymptotic ramifications.

3 Derivation of the distribution

We derive the distribution of the total 7, ,(v), with ¢ > 2 and ¢ € [0, 1] fixed.
For a given multiplier v > 0 and an integer ¢ € [v — gc, v + (1 — ¢)¢], the prob-
ability of the event {7 ,(v) = ¢} is claimed to be

IRl o (A [ (R T

k=j

where f(j,k) = {v+ (1—q)c—t—gj—(1—¢)k}{"". The identity g(u, , ,,n + d)
= he q4n(d) then establishes the Theorem. We concentrate on the case v >
gc, whence ¢ > 1. Smaller multipliers create boundary effects at # = 0 and need
extra care, see Happacher (1996).

Scaling with the multiplier v, (w; ..., w.) — (vwy,...,vw.), maps the uni-
form distribution on the probability simplex % into the uniform distribution
on the scaled simplex #(v). The surface volume of & (v) is well known to be
verly/e/(e — D\

The event {7, ,(v) =t} is decomposed by classifiying the rounding results
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according to how they relate to the “simplicial walls” N; = 0. Forj =0,...,c
we define the classes

A (j) = {N:(Nl,...,Nc)e]Nc: #{i:N;=0} =jand ZN,:t}.
i=1

Because of ¢ > 1 the class .7(c) is empty. Otherwise, the cardinality of .<7(j) is
determined by the number of distinguishable distributions of ¢ balls into ¢ — j
cells in which no cell remains empty. The binomial formula in Feller (1968, (ii)
on page 38) yields

()5

For N e .2/(j) the range inequalities, in the format r,(x) -1 +¢g<x <
rq(x) + ¢, motivate the introduction of the following relevance set anchored
at N,

R(N)

i=1

= {(xl,...,xc)e[o,oo)":xie[N,~—1+q,N[+q]\1iand in:v},

It is not hard to show that {7, ,(v) = 1} = [, o Uye 20 ). The decom-

position is almost surely dlSjOlnt since the intersection of two relevance sets 1s
empty or consists exclusively of ties. The following Lemma states that each
anchor class 4(j) leads to relevance sets with a constant surface volume.

Lemma: For j =0,...,c — 1, every relevance set R(N) with anchor N € /()
has surface volume

g (e o

The proof of the Lemma is deferred to Appendix A. We now obtain

g(v, 1)

:V(,l,l 7 (j)( i 1);2; “”( )(C;j)f(kw,jw).

J

I
o

After changing the summation from k + / to j and from j + / to k, then using

b _
the identity ( ) <Z> = <C) (C Z) to shift # from two of the binomial
a a)\c—

coefficents into the third, and finally evaluating the resulting sum over 7
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through Feller (1968, (12.9) on page 64), we arrive at the formula for g(v, ¢)
claimed above. The proof is complete.

If the integer ¢ lies outside the interval [v — gc¢,v + (1 — ¢)c] then we find
g(v,t) = 0. Hence g(v, t) automatically takes care of which integers ¢ belong to
the support or not. The distribution simplifies if the stationarity parameter ¢ is
an integer,

q=0,1=g(v,t)= vll <t+cq_cl_ 1) i(_l)J(Jf){v_z_j}fl.

J=0

When the rounding rule is based on rounding up (¢ = 0) or rounding down
(¢ = 1), the discrepancy distributions /. , and A, 1 , simplify accordingly.

Appendix A: Proof of the lemma

For y = (y,...,»c) € R, let F{*(v) denote the surface volume of the sim-
plicial polytope % (v) = {(x11-. ., xe) € 11, 5) X -+ X [0, 00) 1 0, X =
v}. The translatlon x’ = x — y leaves volume invariant, and changes the con-
straint into > 7, x/ = v — >, ;. It follows that F° (v) = Fy*(v — 31, yi) =
{v—> vt 'F (1), where Fg°(1) = v/c/(c — 1)! is the surface volume of
the probablhty simplex (1) = &. More generally, for a,b € R we con-
sider the set

y:(v):{(xla“'vxL')e[alabl)X"' Cl(, ZX,—V}

Its surface volume F?’(v) is obtained by using the inclusion-exclusion
principle,

GUE YIS SN AR WIS {—Zy} ,

m=0 yeY(m) m=0 yeY(m

where the set Y (m) comprises all vectors y = (yy,...,y.) sharing m compo-
nents with b and the remaining ¢ — m components with a; compare the dis-
cussion of multivariate cumulative distribution functions in Billingsley (1986,

page 177).
Any anchor N € /() has exactly j components equal to zero. We do not
change volume by assembling them in the initial section, Ny =--- = N; = 0.

This gives V(j) = F’(v), where a = (0,...,0, Ny — 1 +q,...,Nc 1 +q)
andb = (q,...,4,Njy1 +¢,...,Nc+ g). Now let the vector y be composed by
choosing m = k + / components from b, in that k are from the initial section
and / are from the final section of b, and filling in the remaining entries with
the components of a, so that j — k are from the initial section and ¢ —j — / are
from the final section of a. Then we obtain {v — >/, yi}{ T =flk+1,j+ 1),
and
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v =3 S s (D) (4 Y ven

=0 /=0 (c=1)

The proof of the Lemma is complete.

Appendix B: Excerpt from Seal (1950)

12 December 1950
The Joint Editors, The Journal of the Institute of Actuaries Students’ Society

Spot the prior reference

Sirs,

A gem which has fast become a favourite relaxation of the more priggish
type of mathematician is one which might be called: Spot the prior reference.
The equipment is elementary — a good memory or an extensive system of card
records with appropriate cross-references. The object of the game is simple —
the infliction of a blow to the self-esteem of a colleague while retaining an
appearance of scientific detachment.

The first move is made by an author who inadvertently omits that thor-
ough search through the numerous volumes of Mathematical Review and the
Zentralblatt fiir Mathematik which nowadays occupies as much of a mathe-
matician’s time as the preparation of a supposedly original article. The second
move falls to the editor whose referees fail to notice that the work submitted
has already appeared in print in a substantially similar form ten, twenty or
even a hundred years earlier — and the game is on. The reviewer now appears
on the scene and scores one or more points according to the number of years
he can span and the amount of scorn he can convey in a politely worded
account of the author’s limitations. The game continues as a third and fourth
writer show that even the reviewer himself has not found the site of original
publication of the material presented. Final honours go to the player who
has revealed the greatest number of missing references in the previous writers’
articles.

An amusing example of the game in progress is to be found in the 1944,
1945 and 1947 volumes of the Philosophical Magazine and concerns a subject
which has recently been discussed in your pages, namely, the probability dis-
tribution of the sum of n continuous or discrete rectangular variates.

[Follows a paragraph mentioning five notes, including one “provided by
Mr Packer in this Journal™.]

Extraordinarily, neither Simpson’s (1757), Lagrange’s (1773) nor Laplace’s
(1776, 1781, 1810) names are mentioned in any of these five notes, though a
reviewer referred to the latter. In fact, the references uncovered by these writers
and by Mr Packer only represent a small part of the numerous independent
derivations of the distributions, continuous and discrete, under consideration.
As a demonstration of the efficiency of my own card index and to provide
your readers with a quiver of weapons with which to participate in the game
in future years, I append a list of the post-classical derivations I have encoun-
tered, most of which have not, to my knowledge, been collected together pre-
viously. In each case I indicate whether the derivation relates to the continuous
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or the discrete case (¢ and/or d), whether or not the author refers to any ear-
lier solutions (e or €), and whether or not the method used was sufficiently
different to be considered (by me) original at the time it was written (o or 4).

[Follows a list of thirteen papers from Lobatschewsky (1842) through
Auerbach (1933), together with their Seal indicators ¢, d, e, €, 0, 0.]

Two comments may be made on the above list. It will be noticed that I
disagree with Mr Packer that Rietz’s proof was any simpler than Laplace’s. In
fact it was Laplace’s own derivation (for which, in modern notation, see the
Appendix to my paper in the 1949 Swiss Bulletin) with only formal differ-
ences. Secondly, it may be mentioned that a 3-decimal table similar to Mr
Packer’s Table 3 is provided by Auerbach in the paper cited.

I hasten to assure you that the provision of this list, which contains four
original proofs between Laplace and Rietz, is not intended as a criticism of
Mr Packer’s excellent note. The modest title of your Journal would, in any
case, forbid the scoring of points on the part of your averagely priggish cor-
respondent who signs himself.

Yours faithfully, H. L. Seal
295 Madison Avenue, New York 17

Acknowledgments. The author would like to thank Mathias Drton, Thomas Klein and the Editor
for valuable suggestions leading to substantial improvements of the original version of the paper.
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