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Abstract

The paper determines the vertices and surface volumes of all rounding polytopes for com-
monly used rounding methods: the quota method of greatest remainders, and the divisor meth-
ods. These methods are used to round continuous non-negative weights summing to one to
non-negative integers summing to a predetermined accuracy, e.g. to 100 when rounding to
percentages. Our results are of interest when average properties of rounding methods are in-
vestigated, and an example from political science is included.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a vector w = (w1, . . . , w�) of � � 2 non-negative continuous weights
that sum to one. These weights could, for example, be a set of probabilities. The
rounding problem consists of rounding each weight wi to a non-negative integer mi

such that the rounding result m = (m1, . . . , m�) sums to a given integer accuracy M ,
i.e. the (continuous) weight wi is approximated by the (rational) proportion mi/M .
It is well known that rounding the weights wi individually may leave a discrepancy
between the sum of the rounding results mi and the desired accuracy M (cf. [12,
Section 1]. However, such a discrepancy is often infeasible, and rounding methods
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are needed that yield rounding results summing to the predetermined accuracy M .
An example is the apportionment of seats in a parliament with the fixed house site M ,
by rounding proportions of votes. Other examples can be found in Statistics [16,17].

This paper develops new mathematical insight into traditional rounding methods
by characterizing the sets of weight vectors w that get rounded to a fixed integer vec-
tor m. These sets are polytopes, for all methods considered here. Since the weights
are constrained to sum to one, the rounding polytopes are of dimension �− 1, where
� is the number of weights to be rounded. For a given rounding method, our main
results determine the vertices and surface volumes of all rounding polytopes. Our
work is based on the monographs by Balinski and Young [5], and by Kopfermann
[13], as well as the original work by Pòlya [15].

Our results on the surface volumes of rounding polytopes are of importance for
the comparison of different methods in terms of their average behavior. For such an
average behavior it is common to assume uniformly distributed weights, so that the
probability of a rounding polytope is proportional to its surface volume. For exam-
ples of papers dealing with uniformly distributed weights see [1–4,6,7,12,18,20].

The paper is organized as follows. In Section 2 we introduce the rounding meth-
ods dealt with in the sequel. In Sections 3 and 4 we derive our results on the vertices
and surface volumes of rounding polytopes. In Section 5 we illustrate the use of our
results in a political science application [18].

2. Rounding methods

Let the probability simplex S be the set of all non-negative weight vectors sum-
ming to one

S :=
{
w ∈ [0, 1]�

∣∣∣∣ �∑
i=1

wi = 1

}
.

Rounding the weight vector w ∈ S to a given integer accuracy M means that w is
mapped to a vector of non-negative integers m with components summing to M .
Hence a rounding method is a mapping R : S → G(M), where

G(M) :=
{
m ∈ N�

0

∣∣∣∣ �∑
i=1

mi = M

}
.

Throughout this paper, we will consider accuracies M > �. Details on the more
pathological case M � � can be found in [10].

The quota method of greatest remainders operates in two stages. First, the propor-
tion wiM is rounded down to its integer part m̃i = 
wiM�. In the (unlikely) case that
all wiM are integers the discrepancy vanishes, i.e. M −∑�

i=1 m̃i = 0, and we set
mi = m̃i . Otherwise, there is a positive discrepancy δ = M −∑i m̃i � 1, and the
fractional parts δi = wiM − m̃i are ranked to obtain δ(1) � δ(2) � · · · � δ(�) (where
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ties are broken arbitrarily). The vector m is obtained by setting m(i) = m̃(i) + 1 for
all i � δ and m(i) = m̃(i) for all i > δ. That is, the δ largest remainders are rounded
up to one, the �− δ smallest remainders are rounded down to zero.

All other rounding methods considered are divisor methods. Following Balinski
and Young [5, p. 99], the definition of a divisor method is based on a strictly isotonic
sequence of reals such that k � s(k) � k + 1. This sign-post sequence s = (s(k))k�0
defines a rounding function

r : [0,∞)→ N0, x �→ r(x) :=
{
k if x ∈ [k, s(k)),
k + 1 if x ∈ [s(k), k + 1).

(Ties x = s(k) may be broken in a different way than setting r(x) = k + 1 without
affecting our future results.) The divisor method with sign-post sequence s maps a
weight vector w into the integer vector R(w) = m = (m1, . . . , m�) ∈ G(M) such
that there exists a divisor D ∈ (0,∞) with mi = r(wi/D) for all i.

Important sub-classes are the q-stationary divisor methods with parameter q ∈
[0, 1] based on the sign-post sequences s(k) = k + q, and the p-power mean divisor
methods with parameter p ∈ R based on s(k) = [(kp + (k + 1)p)/2]1/p. There are
five “traditional” divisor methods (cf. [5, p. 61]):

• Adams: s(k) = k (rounding up, q = 0, p = −∞),
• Dean: s(k) = k(k + 1)/(k + 0.5) (harmonic rounding, p = −1),
• Hill/Huntington: s(k) = √k(k + 1) (geometric rounding, p = 0),
• Webster/Sainte-Laguë: s(k) = k + 0.5 (standard rounding, q = 0.5, p = 1),
• Jefferson/d’Hondt: s(k) = k + 1 (rounding down, q = 1, p = ∞).

Marshall et al. [14] give a comparison of these five methods in terms of majoriza-
tion. An implementation of divisor methods following Dorfleitner and Klein [9] is
provided by the computer program BAZI.1

All methods presented map a weight vector with permuted entries to the permuted
integer vector m, i.e. R(wσ(1), . . . , wσ(�)) = (mσ(1), . . . , mσ(�)) for any permutation
σ . This property will be tacitly used in some of the subsequent proofs.

In the sequel we study the sets {w ∈ S |R(w) = m} of weight vectors w that are
rounded to a given integer vector m ∈ G(M). For both the quota method of great-
est remainders and the divisor methods ties were broken arbitrarily. For example, if
w = (0.5, 0.5) and M = 3 then the rounding results m = (2, 1) and m̄ = (1, 2) are
possible. Thus we will consider the sets

PR(m) := cl{w ∈ S |R(w) = m}, m ∈ G(M),

where cl denotes set closure. Then PR(m) contains all weight vectors that can be
rounded to m under R if ties are broken arbitrarily.

1 See http://www.uni-augsburg.de/bazi.
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Lemma 2.1 states that the methods mentioned can be described by linear inequal-
ities.

Lemma 2.1. Let m ∈ G(M) be a rounding result and let w ∈ S be a weight vector.

(a) Let R be the quota method of greatest remainders. Then w ∈ PR(m) if and only
if

Mwi −mi � Mwj −mj + 1 ∀i, j = 1, . . . , � : i /= j. (1)

(b) Let R be the divisor method with sign-post sequence s. Then w ∈ PR(m) if and
only if

wis(mj − 1) � wjs(mi) ∀i, j = 1, . . . , � : i /= j. (2)

Proof. See [13, pp. 196, 202] and [5, p. 100]. �

The inequalities of Lemma 2.1 describe PR(m) as a polyhedron. Since PR(m) ⊆
S and S is bounded, PR(m) is a polytope. We call PR(m) the rounding polytope
of the rounding result m under the rounding method R. Fig. 1 illustrates rounding
polytopes for four methods, in the case of � = 3 weights and accuracy M = 5 in
barycentric coordinates, i.e. a point w in one of the triangles represents the vector of
the three shortest distances from w to each one of the three triangle edges. Note that
a divisor method with s(0) = 0 rounds exclusively to interior lattice points; compare
the case of rounding up in Fig. 1(b).

We characterize PR(m) in terms of its vertices. Then we compute the surface
volume of PR(m). In the special case that R is a q-stationary divisor method and
that mi � 1 for all i, our results were already obtained by Kopfermann [13, Section
6.2]. The boundary cases, with mi = 0 for some i, need particular attention, see Fig.
1. Going beyond the work of Kopfermann our considerations comprise all boundary
cases for divisor methods as well as a full treatment of the quota method of greatest
remainders.

In our (and Kopfermann’s) approach to the computation of surface volumes,
PR(m) is decomposed into simplices whose surface volumes can be computed via
determinant formulas [19, p. 278]. Recall that a d-dimensional simplex is a d-di-
mensional polytope with d + 1 vertices v0, . . . , vd , and by the determinant formula,
the d-dimensional volume of this simplex equals 1/d! times the modulus of the
determinant of the d × d matrix with columns vi − v0, i = 1, . . . , d .

A surface volume is defined by means of full-dimensional volume after a projec-
tion (cf. [11, Section V.4]). Here, if

π : S →
{
w ∈ [0, 1]�−1

∣∣∣∣ �−1∑
i=1

wi � 1

}
, w �→ (w1, . . . , w�−1),

is the projection on the first �− 1 components, then for any measurable set A ⊆ S:

vol�−1(A) =
√
�× vol�−1(π(A)). (3)



M. Drton, U. Schwingenschlögl / Linear Algebra and its Applications 378 (2004) 71–91 75
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m=(0,5,0)

m=(0,0,5)(a)

(c) (d)
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m=(5,0,0) m=(0,5,0)
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Fig. 1. Rounding polytopes for � = 3 weights and accuracy M = 5. The highlighted polytopes serve as
examples in Sections 3.3 and 4.4. (a) Quota method of greatest remainders; (b) divisor method: rounding
up; (c) divisor method: standard rounding; (d) divisor method: rounding down.

Note that the volume on the left hand side of (3) is a surface volume whereas the volume
on the right hand side is full-dimensional. In particular, the simplex S has volume

vol�−1 (S) =
√
�

(�− 1)! . (4)

Since in the following no confusion is possible we will refer to surface volumes
simply as volumes.

3. Rounding polytopes for the quota method of greatest remainders

Let R be the quota method of greatest remainders and m ∈ G(M) a possible
rounding result. Let N(m) = {i |mi = 0} be the set of indices of zero components
of m, and let n(m) = |N(m)| be its cardinality. In Section 3.1 we study the vertices
of P(m) := PR(m). The volume of P(m) is calculated in Section 3.2. Section 3.3
illustrates our results.
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3.1. Vertices

By Lemma 2.1, the translation T : w �→ x = w −m/M maps any rounding poly-
tope P(m) that lies in the interior of S, i.e. for n(m) = 0, into the standard polytope

P0 :=
{
x ∈ R�

∣∣∣∣ �∑
i=1

xi = 0, xi � xj + 1/M ∀i /= j

}
. (5)

If mi = 0 then the constraint wi � 0 remains invariant under T , i.e. it is translated
into the constraint xi � 0. Therefore, the rounding polytope P(m) with n(m) � 1 is
translated into the restricted standard polytope

P0 ∩
⋂

i∈N(m)

{x ∈ R� | xi � 0}. (6)

In particular, P(m) and P(m̃) are congruent whenever n(m) = n(m̃).
Theorem 3.1 yields the vertices of P0 ∩⋂i∈N(m){x ∈ R� | xi � 0}, and adding

m/M yields the vertices of P(m). We denote the row vectors in R� with all compo-
nents equal to 1 or 0 by 1� and 0�, respectively.

Theorem 3.1. The polytope P0 ∩⋂i∈N(m){x ∈ R� | xi � 0} has 2� − 2n(m) − 1 ver-

tices v(λ), which are induced by λ ∈ {0, 1}� \ {0�, 1�} with λj = 0 for some index
j /∈ N(m). The components of v(λ) are

v
(λ)
i =




1
M
× �−z(λ)−e(λ)

�−z(λ) if λi = 1,
1
M
× −e(λ)

�−z(λ) if λi = 0 and i /∈ N(m),

0 if λi = 0 and i ∈ N(m),

i = 1, . . . , �, (7)

where z(λ) := |{i ∈ N(m) | λi = 0}| and e(λ) := |{1 � i � � | λi = 1}|.
If n(m) = �− 1, then v(0�) := 0� is also a vertex and the restricted standard poly-

tope has 2� − 2n(m) = 2�−1 vertices.
There are no other vertices than the indicated v(λ).

In order to prove Theorem 3.1 we study the standard polytope P0 from (5), and
later the restricted standard polytope from (6). Lemma 3.2 provides a parallelotope
decomposition of P0. Lemma 3.3 gives the vertices of P0.

Let the vector u(i) ∈ R� have component i equal to (�− 1)/� and all other com-
ponents equal to −1/�.

Lemma 3.2. Define the parallelotopes

Li =

∑

j /=i
µju

(j) : µj ∈ [0, 1]

 ⊆ R�, i = 1, . . . , �.

Then int(Li) and int(Lj ) are disjoint if i /= j, and P0 =⋃�
i=1 Li .
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Proof. A vector x ∈ int(Li) ∩ int(Lj ) can be expressed as

x =
∑
k /=i

µku
(k) =
∑
k /=j

δku
(k)

with all µk and δk positive. It follows that

x = x − δi

�∑
k=1

u(k) =
∑
k /=i,j

(δk − δi)u
(k) − δiu

(j).

Since u(1), . . . , u(i−1), u(i+1), . . . , u(�) form a basis of {x :∑i xi = 0}, it follows
that µj = −δi , which contradicts the fact that µj and δi are positive.

To see
⋃�

i=1 Li ⊆ P0, let x =∑�
j=1 µju

(j) with µj ∈ [0, 1]. For p /= q,

xp − xq =
�∑

j=1

µj

(
u
(j)
p − u

(j)
q

)

=µp

(
1

M
× �− 1

�
− 1

M
× −1

�

)
+ µq

(
1

M
× −1

�
− 1

M
× �− 1

�

)

= 1

M

(
µp − µq

)
� 1

M
. (8)

Hence, x ∈ P0.
Conversely, let x ∈ P0. We need to show x ∈ Li , for some i. Since every set

of �− 1 vectors among u(1), . . . , u(�) forms a basis of {x ∈ R� :∑�
i=1 xi = 0}, we

can write x =∑�−1
j=1 µju

(j). Since
∑�

j=1 u
(j) = 0�, we can write x =∑�

j=1 µju
(j)

with µj � 0 for all j and µi = 0 for some i. Using (8) we obtain, for j /= q,

1/M � (xj − xq)/M
(8)= (µj − µq)/M � µj/M.

Thus µj � 1 for all j which implies x ∈ Li . �

Lemma 3.3. Every λ ∈ {0, 1}� \ {0�, 1�} induces a vertex u(λ) of the standard poly-
tope P0 through

u
(λ)
i =
{

1
M
× �−e(λ)

�
if λi = 1,

1
M
× −e(λ)

�
if λi = 0,

i = 1, . . . , �,

with e(λ) := |{1 � i � � | λi = 1}|. There are no other vertices.

Proof. Obviously u(λ) =∑�
i=1 λiu

(i), which yields that

u(λ) ∈
⋂

i:λi=0

Li ⊂ P0.

The u(λ) with e(λ) = 1 are in fact the u(j) in the definition of the parallelotopes Li .
Due to symmetry with respect to permutations it suffices to concentrate on u(λ) with
the first e(λ) components equal to 1. Such a u(λ) solves
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A�u
(λ) =




1 · · · e(λ) e(λ)+ 1 · · · �

1 −1
...

. . .
1 −1

1 −1
. . .

...

1 −1
1 · · · · · · · · · · · · · · · 1



u(λ) = 1

M




1
...

1
0


 .

Since A� is a non-singular matrix, u(λ) is a vertex. By Lemma 3.2, P0 is the convex
hull of all 2� − 2 vertices u(λ). Therefore, no other vertices exist. �

Proof of Theorem 3.1. Let x be a vertex of P0 ∩⋂i∈N(m){x ∈ R� | xi � 0}. Define
K = {i ∈ N(m) | xi = 0} and let k = |K|. If K = ∅, i.e. xi > 0 for all i ∈ N(m),
then x must already be a vertex of P0 and, therefore, one of the v(λ) with z(λ) = 0.
Otherwise, the vector (xi | i /∈ K) consisting of the components of x with index in K
must be a vertex of the (�− k)-dimensional standard polytope P0 ⊂ R�−k and thus
x equals one of the v(λ) with z(λ) = k.

Conversely, every v(λ) is a vertex since it fulfills(
A�−z(λ)

Iz(λ)

)
v(λ) = 1

M

(
1�−z(λ)−1
0z(λ)+1

)
.

Finally, we have v(λ) /= v(λ̄) if λ and λ̄ are two distinct vectors in {0, 1}� \ {0�, 1�}
such that there is i, j /∈ N(m) with λi = λ̄j = 0. Thus the number of vertices equals
|{λ ∈ {0, 1}� | λ /= 0�, λ /= 1�, ∃i /∈ N(m) : λi = 0}| = 2� − 2n(m) − 1. �

3.2. Volumes

A decomposition similar to Lemma 3.2 permits to compute in Theorem 3.4 the
volume of an arbitrary restricted standard polytope, which equals the volume of the
associated rounding polytope.

Theorem 3.4. The volume of P(m) depends only on n := n(m) and is given by

vol�−1 (P (m)) =
√
�(

�

n

)
M�−1

∑
t∈{0,1}�−1,∑�−1

i=1 ti=n

�−2∏
j=1

(
�− n+∑j

k=1 tk − j

�− n+∑j

k=1 tk

)tj+1

.

(9)

Corollary 3.5. If n(m) ∈ {0, �− 1}, then the volume of P(m) is given by

vol�−1(P (m)) =
√
�

M�−1
×
{

1 if n(m) = 0,
1/�! if n(m) = �− 1.
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To prove Theorem 3.4 we establish in Lemma 3.6 a volume formula based on
determinants. Simplifying this formula subsequently yields the theorem.

Lemma 3.6. Let 1 /∈ N := N(m) (otherwise permute the indices without changing
volumes). Then

vol�−1

(
P0 ∩
⋂
i∈N
{x ∈ R� | xi � 0}

)
= (�− n)× vol�−1(U1), (10)

where U1 is the convex hull of {v(λ) | λ ∈ {0, 1}�, λ1 = 0}. If π1 denotes the projec-
tion onto the components with index different from 1 then the volume of U1 is

vol�−1(U1) =
√
�(

l − 1
n

) ∑
t∈{0,1}�−1,∑�−1

i=1 ti=n

∣∣∣det
(
π1(v

(λ1(t))), . . . , π1(v
(λ�−1(t)))

)∣∣∣
(11)

with

λj (t) =
j−∑j

k=1 tk∑
i=1

εi+1 +
∑j

k=1 tk∑
i=1

ε�−n+i (12)

and εi denoting the vector of the canonical basis in R� having component i equal to
1 and all other components zero.

Proof. Let Ui be the convex hull of {v(λ) | λ ∈ {0, 1}�, λi = 0}. Since we can ex-
press every v(λ) with λi = 0 as a linear combination

∑�
j /=i µju

(j) by setting µj = 1
if λj = 1, µj = 0 if λj = 0 and j /∈ N , and µj = e(λ)/(�− z(λ)) if λj = 0 and
j ∈ N , we know that Ui ⊆ Li . Therefore, the interior of Ui ∩ Uj is empty if i �= j

and for all i ∈ N ,

vol�−1(Ui) � vol�−1

(
Li ∩
⋂
i∈N
{x ∈ R� | xi � 0}

)
= 0.

By the definition of Ui as convex hull of vertices,

P0 ∩
⋂
i∈N
{x ∈ R� | xi � 0} =

⋃
i /∈N

Ui.

Since permuting components i and j maps Ui in Uj and leaves the volume invariant,

vol�−1

(
P0 ∩
⋂
i∈N
{x ∈ R� | xi � 0}

)
= (�− n)× vol�−1(U1).

In order to calculate the volume of U1, we decompose it into simplices. Let

λi = (0, 1i , 0�−1−i )
and denote by S1 the group of permutations of {1, . . . , �} leaving 1 fix. Then U1 is
the union of the simplices -σ , σ ∈ S1, defined as the convex hull of u(σ(λ

i )), i =
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0, . . . , �− 1. Note that int(-σ ) ∩ int(-τ ) = ∅ if σ /= τ . The volume of a simplex
-σ is

√
� times the full-dimensional volume of the projected simplex π1(-σ ). The

full-dimensional volume of π1(-σ ) can be calculated by the determinant formula.
Let σ, τ ∈ S1, and define the equivalence relation

σ ∼ τ : ⇐⇒ [σ(i) ∈ N ⇐⇒ τ(i) ∈ N ∀i] . (13)

Then σ ∼ τ implies that -σ and -τ can be mapped into each other by a permutation
and thus have the same volume. Since each equivalence class consists of (�− n+
1)!n! permutations, we arrive at the formula for the volume of U1 stated in the theo-
rem by summing over the representatives of each equivalence class. This is done by
indexing the sum by vectors t ∈ {0, 1}�−1 where ti = 1 means that all permutations
σ in the corresponding equivalence class fulfill σ(i + 1) ∈ N and ti = 0 signifies
σ(i + 1) /∈ N . �

Proof of Theorem 3.4. By (12), the vectors λj (t) ∈ {0, 1}� have the form

λj (t) = (0, 1, . . . , 1︸ ︷︷ ︸
j−∑j

k=1 tk

, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸∑j
k=1 tk

, 0, . . . , 0) (14)

with exactly j components equal to one. Let � be the square matrix with columns
equal to the last �− 1 components of the vectors λj (t), j = 1, . . . , �− 1. Since
λ
j
i (t) = 1 implies λj+1

i (t) = 1, we can transform � in an upper triangular matrix by
permuting its rows. This transformation leaves the absolute value of the determinant
of � unchanged. The same permutation shall be applied to

v(�) =
(
π1(v

λ1(t)), . . . , π1(v
λ�−1(t))

)
.

By (7) and since e(λj ) = j and z(λj ) = n−∑j−1
k=1 tk , it follows that after an appro-

priate permutation of rows

det(v(�)) = det




1
M
× �−n+∑1

k=1 tk−1

�−n+∑1
k=1 tk

· · · 1
M
× �−n+∑�−1

k=1 tk−(�−1)

�−n+∑�−1
k=1 tk

. . .
...

� 1
M
× �−n+∑�−1

k=1 tk−(�−1)

�−n+∑�−1
k=1 tk


 .

(15)

Here and in the remainder of the evaluation of det(v(�)) we can ignore possible
sign changes due to the absolute value in (11). The lower triangular part given as
� in (15) corresponds to zeros in the vectors λj (t)(j = 1, . . . , �− 1), and in the
following only the first sub-diagonal will be of interest. By (7), (12) and (14), the
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sub-diagonal entry in the j th column of the permuted matrix v(�) is equal to 0 if
tj+1 = 1 and

− 1

M
× �

�− n+∑j−1
k=1 tk

if tj+1 = 0.

To simplify (15), we subtract the first row of the matrix on the right hand side from
all other rows. This gives

det(v(�)) = det




1
M
× �−n+∑1

k=1 tk−1

�−n+∑1
k=1 tk

· · · · · · 1
M
× �−n+∑�−1

k=1 tk−(�−1)

�−n+∑�−1
k=1 tk

0 · · · 0
. . .

...

� 0




where the sub-diagonal entry aj in column j equals

aj =

−

1
M
× �−n+∑j

k=1 tk−j
�−n+∑j

k=1 tk
if tj+1 = 1,

− 1
M

if tj+1 = 0.

Since by definition
∑�−1

k=1 tk = n it follows that

det(v(�)) =
∏�−2

j=1 aj

M�
,

which implies the result stated in Theorem 3.4. �

3.3. Examples

In order to illustrate the previous results we consider the rounding polytope for
m = (2, 2, 1), which is highlighted in Fig. 1(a). By Theorem 3.1 (with N(m) = ∅),
the polytope’s 23 − 20 − 1 = 6 vertices are determined by the v(λ) given in Table 1.
Adding m/M = (2/5, 2/5, 1/5) to the v(λ) yields the vertices of P(m), which we
state in the order of appearance on a clockwise tour on the edges of P(m):

Table 1
The vertices v(λ) of the standard polytope P0 determined by Theorem 3.1 with N(m) = ∅
λ e(λ) v(λ)

(0, 0, 1) 1 1
5

(
− 1

3 ,− 1
3 ,

2
3

)
(0, 1, 0) 1 1

5

(
− 1

3 ,
2
3 ,− 1

3

)
(0, 1, 1) 3 1

5

(
− 2

3 ,
1
3 ,

1
3

)
(1, 0, 0) 1 1

5

(
2
3 ,− 1

3 ,− 1
3

)
(1, 0, 1) 2 1

5

(
1
3 ,− 2

3 ,
1
3

)
(1, 1, 0) 2 1

5

(
1
3 ,

1
3 ,− 2

3

)
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1

15
(5, 5, 5)→ 1

15
(4, 7, 4)→ 1

15
(5, 8, 2)→ 1

15
(7, 7, 1)

→ 1

15
(8, 5, 2)→ 1

15
(7, 4, 4).

It follows from Corollary 3.5 that vol�−1(P (2, 2, 1)) = √3/52 ≈ 0.069.

4. Rounding polytopes for divisor methods

Let R be the divisor method with sign-post sequence s. Set s(−1) := 0. In Sec-
tions 4.1 and 4.2 we determine the vertices and the volume, respectively, of the
associated rounding polytopes P(m) := PR(m). In Section 4.3 we simplify the
volume formula for q-stationary divisor methods. Our results are illustrated in Sec-
tion 4.4. Note that the cases when mi = 0 for some i need no separate treatment.
However, the set N̄(m) := {i | s(mi − 1) = 0} will take over the role of N(m), and
we set n̄(m) := |N̄(m)|. The assumption M > � implies n̄(m) � �− 1. Note also
that N(m) = N̄(m) if s(0) > 0.

4.1. Vertices

Theorem 4.1 gives the vertices of rounding polytopes for divisor methods.

Theorem 4.1. The polytope P(m) has 2� − 2n̄(m) − 1 vertices v(λ), which are in-
duced by λ ∈ {0, 1}� \ {0�, 1�} with λj = 0 for some index j /∈ N̄(m). The compo-
nents of v(λ) are

v
(λ)
i =
{
s(mi)/c(λ) if λi = 1,

s(mi − 1)/c(λ) if λi = 0,
i = 1, . . . , �, (16)

where the normalization is c(λ) =∑i:λi=1 s(mi)+∑i:λi=0 s(mi − 1).

If n̄(m) = �− 1, then v(0�) := 0� is also a vertex and P(m) has 2� − 2n̄(m) =
2�−1 vertices.

There are no other vertices than the indicated v(λ).

Remark 4.2. If s(0) = 0 and there exists mi = 0 then s(mi) = s(mi − 1) = 0. This
implies that P(m) is degenerate in the sense that wi = 0 for all w ∈ P(m). Thus,
dim(P (m)) � �− 2 and P(m)�P(m̃) for some m̃ with m̃j � 1 for all j .

Proof of Theorem 4.1. Without loss of generality assume that m has ordered com-
ponents, i.e. m1 � m2 � · · · � m� (otherwise permute the components of m appro-
priately). Since M > � it holds that m1 � 2 and s(m1 − 1) > 0.
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Obviously fulfilling the inequalities (2), every v(λ) lies in P(m). To see that v(λ)

is indeed a vertex, we concentrate first on n̄(m) = 0 and without loss of generality on
v(λ) with λ = (0k, 1�−k). Now it is easy to see that v(λ) solves the system Av(λ) = 0
where A is the matrix




1 · · · · · · k k + 1 · · · �

−s(mk+1) s(m1 − 1)
...

. . .
−s(m�) s(m1 − 1)

−s(mk+1) s(m2 − 1)
. . .

...

−s(mk+1) s(mk − 1)
1 · · · · · · · · · · · · · · · 1




for which only non-zero entries are shown. Since s(m1 − 1) > 0 and all s(mj ) > 0,

A is of full rank �. Hence, v(λ) is a vertex. If n̄(m) > 0 then every component v(λ)i

with value zero fulfills the constraint wi � 0 with equality, and we can argue in anal-
ogy to the case n̄(m) = 0 by replacing the dimension � by the number of non-zero
components of v(λ).

No other vertices can exist since the convex hull of all v(λ) of form (16) is the
whole polytope P(m). This will be shown by establishing that

P(m) =
⋃

i /∈N̄(m)

Qi, (17)

where Qi is the convex hull of all v(λ) with λi = 0 and int(Qi) ∩ int(Qj ) = ∅ if
i /= j .

By definition, all Qi are subsets of P(m), which implies ⊇ in (17). To see ⊆ in
(17), we first show that

Q̃i = {w ∈ P(m) |wis(mk − 1) � wks(mi − 1) � wis(mk) ∀k /= i} (18)

and Qi coincide. Obviously, every v(λ) with λi = 0 is an element of the polytope Q̃i ,
thus Qi ⊆ Q̃i . Conversely, every vertex w of Q̃i has its component wk , k /= i, deter-
mined as s(mk)wi/s(mi − 1) or s(mk − 1)wi/s(mi − 1). The condition

∑�
k=1 wk =

1 implies that w = v(λ) for a λ with λi = 0. Hence, Q̃i ⊆ Qi .
Next, let w be a point in P(m). Then we can choose an index i /∈ N̄(m) such

that s(mi − 1) > 0 and wi/s(mi − 1) � wj/s(mj − 1) for all j /∈ N̄(m). Since w

fulfills the inequalities (2) it follows from (18) that w is an element of Qi .
Finally, according to (18), a point w ∈ int(Qi) ∩ int(Qj ) fulfills

wis(mj − 1) < wj s(mi − 1) < wis(mj − 1).

Hence, int(Qi) ∩ int(Qj ) = ∅ if i /= j . �
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4.2. Volumes

The knowledge about the vertices now allows us to decompose the projected
cuboids Qi from (17) into simplices whose volumes can be computed by the deter-
minant formula. This ultimately yields the volume of P(m) given in Theorem 4.3.

Theorem 4.3. If s(mi) > 0 for all i then

vol�−1(P (m)) =
√
�

c0(�− 1)!
∑

i /∈N̄(m)


s(mi − 1)

∏
j /=i

dj


∑

σ∈Si

1∏
j /=i cσi (j)

,

(19)

where dj = s(mj )− s(mj − 1), Si is the group of permutations of {1, . . . , �} leav-
ing i fix, c0 =∑�

j=1 s(mj − 1), and

cσi (j) =
j∑

k=1,k /=i
s(mσ(k))+

�∑
k=j+1, k /=i

s(mσ(k) − 1)+ s(mi − 1).

Remark 4.4. It follows directly from Remark 4.2 that if s(mi) = 0 for some i, i.e.
if s(0) = 0 and mi = 0, then vol�−1(P (m)) = 0.

Proof of Theorem 4.3. Since permuting the components of a rounding result m
does not change the volume of P(m) we can assume without loss of generality
that m has ordered components, i.e. m1 � m2 � · · · � m�. This assumption implies
N̄(m) = {�− n̄(m)+ 1, . . . , �}.

The proof of Theorem 4.1 establishes

vol�−1(P (m)) =
∑

i /∈N̄(m)

vol�−1(Qi) =
�−n̄(m)∑
i=1

vol�−1(Qi). (20)

Since all the Qi can be treated analogously, we will only demonstrate the calculation
of the volume of Q1. The result for Qi is obtained by interchanging indices. If we
adopt the notation of the proof of Theorem 3.6 the arguments used there yield

vol�−1(Q1)

=
√
�

(�− 1)!
∑
σ∈S1

∣∣∣det
[
π1(v

(σ(λ1)) − v(0�)), . . . , π1(v
(σ(λ�−1)) − v(0�))

]∣∣∣ ,
(21)

where v
(0�)
k = s(mk − 1)/c(0�) = s(mk − 1)/c0 for all k = 1, . . . , �. In order to

evaluate the determinant in (21), we need to study the vertex v(σ(λ
j )). Its first compo-

nent is s(m1 − 1)/c(σ (λj )), and its σ(k)th component equals s(mσ(k))/c(σ (λ
j )) if

k = 2, . . . , j + 1, and s(mσ(k) − 1)/c(σ (λj )) if k = j + 2, . . . , �. Obviously
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cσ1 (j + 1) = c(σ (λj )), and setting x(σ(λ
j )) := v(σ(λ

j )) × c(σ (λj )) we find that the

determinant in (21) equals D(σ)/c�−1
0

∏�
j=2 c

σ
1 (j) with

D(σ) = det
[
π1(c0x

(σ(λ1)) − cσ1 (2)x
(0�)), . . . , π1(c0x

(σ(λ�)) − cσ1 (�)x
(0�))
]
.

(22)

Now if k ∈ {σ(2), . . . , σ (j + 1)} then[
π1(c0x

(σ(λj )) − cσ1 (j + 1)x(0�))
]
k
= c0s(mk)− cσ1 (j + 1)s(mk − 1)

= c0dk − s(mk − 1)
j+1∑
p=2

dσ(p),

since cσ1 (j + 1) = c0 +∑j+1
p=2 dσ(p). If k ∈ {σ(j + 2), . . . , σ (�)} then[

π1(c0x
(σ(λj )) − cσ1 (j + 1)x(0�))

]
k
= c0s(mk − 1)− cσ1 (j + 1)s(mk − 1)

= −s(mk − 1)
j+1∑
p=2

dσ(p).

In the following evaluation of D(σ) we can ignore possible sign changes because of
the absolute value in (21). Switching row σ(j) in row j yields that

D(σ) = det




c0dσ(2) − s(mσ(2) − 1)dσ(2) · · · c0dσ(2) − s(mσ(2) − 1)
�∑

p=2
dσ(p)

−s(mσ(3) − 1)dσ(2) · · · c0dσ(3) − s(mσ(3) − 1)
�∑

p=2
dσ(p)

...
. . .

...

−s(mσ(�) − 1)dσ(2) · · · c0dσ(�) − s(mσ(�) − 1)
�∑

p=2
dσ(p)



.

By factoring out dσ(2) and adding −∑k+1
p=2 dσ(p) times column 1 to column k, k =

1, . . . , �− 1,

D(σ) = dσ(2) × det




c0 − s(mσ(2) − 1) −c0dσ(3) · · · −c0

�∑
p=3

dσ(p)

−s(mσ(3) − 1) c0dσ(3) · · · c0dσ(3)
−s(mσ(4) − 1) 0 c0dσ(4)

...
...

. . .
...

−s(mσ(�) − 1) 0 · · · c0dσ(�)



.
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Now adding each row k, k � 2 to row 1, we obtain that

D(σ) = dσ(2) × det




s(m1 − 1) 0 · · · 0
−s(mσ(3) − 1) c0dσ(3) · · · c0dσ(3)
−s(mσ(4) − 1) 0 c0dσ(4)

...
...

. . .
...

−s(mσ(�) − 1) 0 · · · c0dσ(�)




= s(m1 − 1)c�−2
0

�∏
j=2

dσ(j).

It follows that the modulus of the determinant in (21) is equal to

s(m1 − 1)
∏�

j=2 dσ(j)

c0
∏�

j=2 c
σ
1 (j)

= s(m1 − 1)
∏�

j=2 dj

c0
∏�

j=2 c
σ
1 (j)

. (23)

When calculating vol�−1(Qi) instead of vol�−1(Q1), the result in (23) becomes

s(mi − 1)
∏�

j /=i dj
c0
∏�

j /=i cσi (j)
.

Summing the pieces as in (20) yields formula (19) claimed in the theorem. �

4.3. Volumes for stationary divisor methods

Let R be the q-stationary divisor method, i.e. s(k) = k + q. Then the differences
dk = s(mk)− s(mk − 1) are equal to 1 if mk � 1 and q if mk = 0. This permits
simplification of formula (19) to the result in Theorem 4.5, which shows that the
volume of P(m) := PR(m) depends only on n(m) = |{i |mi = 0}|.

Theorem 4.5. The volume of P(m) depends only on n := n(m) and is given by

vol�−1 (P (m)) = qn
√
�(

�− 1
n

)
(M + �q − 1)

×
∑

t∈{0,1}�−1,∑�−1
i=1 ti=n

1∏�−2
j=1(M + j + (�−∑�−1

k=j+1 tk)(q − 1))
,

(24)

where we set 00 := 1.



M. Drton, U. Schwingenschlögl / Linear Algebra and its Applications 378 (2004) 71–91 87

Remark 4.6. If q = 0 and n > 0, then qn = 0 and vol�−1 (P (m)) = 0. If q = 1,
then all rounding polytopes have the same volume.

Corollary 4.7. If n(m) ∈ {0, �− 1}, then the volume of P(m) for q ∈ [0, 1] is given
by

vol�−1(P (m)) =
√
�×



1∏�−1
j=1(M+�q−j)

if n(m) = 0,

q�−1∏�
j=2(M+jq−1)

if n(m) = �− 1.

The case n(m) = 0 in Corollary 4.7 is treated in [13, p. 204, Theorem 6.2.10].

Proof of Theorem 4.5. The case q = 0 and n > 0 is an immediate consequence of
Remark 4.4. For q > 0 as well as for q = 0 and n = 0, it holds that s(mi) > 0 for all
i. We assume thatm is ordered asm1 � · · · � m�, which implies that s(m1 − 1) > 0,
and we can apply formula (19) from Theorem 4.3.

Now s(mi − 1) = mi + q − 1 for all i � �− n. Moreover, dj = 1 if j � �− n,
and dj = q if j � �− n+ 1. Thus c0 = M + (�− n)(q − 1) and

cσi (j)=
j∑

k=1, k /=i
s(mσ(k))+

�∑
k=j+1, k /=i

s(mσ(k) − 1)+ s(mi − 1)

=
j∑

k=1, k /=i
(mσ(k) + q)+

�−n∑
k=1

k∈σ({j+1,...,�}\{i})

(mk + q − 1)+ (mi + q − 1)

=
{
M + jq + (1+ pσi (j))(q − 1) if j � i − 1,
M + (j − 1)q + (1+ pσi (j))(q − 1) if j � i + 1,

(25)

where pσi (j) = |σ({j + 1, . . . , �} \ {i}) ∩ {1, . . . , �− n}|. It follows from (19) that

vol�−1 (P (m))= qn
√
�

(�− 1)! ×
∑�−n

i=1 (mi + q − 1)

(M + (�− n)(q − 1))

∑
σ∈Si

1∏
j /=i cσi (j)

= qn
√
�

(�− 1)!
∑
σ∈Si

1∏
j �=i cσi (j)

. (26)

Let 3i =∑σ∈Si 1/
∏

j /=i cσi (j). Then 3i is independent of the index i, which we
prove by showing that 3i = 31 for all i � �− n. To do so, we introduce the bijec-
tion f : Si → S1 for 1 < i � �− n. Since f (σ ) ∈ S1 it must hold that f (σ )(1) =
1. The remaining components of f (σ ) are defined as follows. If σ−1(1) � i then
f (σ )(j) = σ(j − 1) for all j ∈ {2 . . . , i} \ {σ−1(1)+ 1}, f (σ )(σ−1(1)+ 1) = i,
and f (σ )(j) = σ(j) for all j � i + 1. Otherwise, if σ−1(1) � i + 1 then f (σ )(j) =
σ(j − 1) for all 2 � j � i, f (σ )(j) = σ(j) for all j ∈ {i + 1, . . . , �} \ {σ−1(1)},
and f (σ )(σ−1) = i. Then it is easy to see that pf (σ)1 (j) = pσi (j − 1) if 2 � j � i,
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and pf (σ)1 (j) = pσi (j) if j � i + 1. It follows that cσi (j) = c
f (σ)

1 (j + 1) if 1 � j �
i − 1, and cσi (j) = c

f (σ)

1 (j) if i + 1 � j � �, which yields

1∏
j �=i cσi (j)

= 1∏�
j=2 c

f (σ)

1 (j)

and 3i = 31. Hence (26) simplifies to

vol�−1 (P (m)) = qn
√
�

(�− 1)! ×
∑
σ∈S1

1∏�
j=2 c

σ
1 (j)

. (27)

It is easy to see that cσ1 (j) = cτ1(j) if σ ∼ τ in the sense of (13). As in the proof of

Lemma 3.6 we index each equivalence class by a vector t ∈ {0, 1}�−1,
∑�−1

k=1 tk = n,
such that each permutation σ ∈ S1 in an equivalence class associated with t satisfies
σ(k + 1) � �− n if tk = 0, and σ(k + 1) � �− n+ 1 if tk = 1. For a permutation
σ ∈ S1 associated to t ,

pσ1 (j) =
�−1∑
k=j

(1− tk) = (�− j)−
�−1∑
k=j

tk.

Plugging this into (25) and the result for cσ1 (j) into (27) gives

vol�−1(P (m))

= qn
√
�(

�− 1
n

) × ∑
t∈{0,1}�−1,∑�−1

i=1 ti=n

1∏�
j=2(M + (j − 1)q + (1+ �− j −∑�−1

k=j tk)(q − 1))
,

which implies the claimed formula (24). �

4.4. Examples

As in Section 3.3, we illustrate our results by the rounding polytope for m =
(2, 2, 1), which is highlighted for q = 0, 0.5, and 1 in Fig. 1(b), (c), and (d), respec-
tively. For q = 0.5 and q = 1, n̄(m) = 0 and P(m) has 23 − 20 − 1 = 6 vertices (cf.
Theorem 4.1). For q = 0, n̄(m) = 1 and P(m) has 23 − 21 − 1 = 5 vertices (v(1,1,0)

is not a vertex since λj �= 0 for all j /∈ N̄(m) = {1, 2}). Table 2 gives the coordinates
of these vertices.

In the cases q = 0.5 and q = 1 the vertices of P(m) can be arranged on a clock-
wise tour on the edges of P(m) according to the sequence

(0, 0, 1)→ (0, 1, 1)→ (0, 1, 0)→ (1, 1, 0)→ (1, 0, 1)→ (1, 0, 0),

of vertex-inducing vectors λ. In the case q = 0, λ = (1, 1, 0) would be skipped.
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Table 2
The vertices v(λ) of P(m), m = (2, 2, 1), determined by Theorem 4.1

λ v(λ)c(λ) c(λ) v(λ)

q = 0 (0, 0, 1) (1, 1, 1) 3 1
3 (1, 1, 1)

(0, 1, 0) (1, 2, 0) 3 1
3 (1, 2, 0)

(0, 1, 1) (1, 2, 1) 4 1
4 (1, 2, 1)

(1, 0, 0) (2, 1, 0) 3 1
3 (2, 1, 0)

(1, 0, 1) (2, 1, 1) 4 1
4 (2, 1, 1)

q = 0.5 (0, 0, 1) (1.5, 1.5, 1.5) 4.5 1
9 (3, 3, 3)

(0, 1, 0) (1.5, 2.5, 0.5) 4.5 1
9 (3, 5, 1)

(0, 1, 1) (1.5, 2.5, 1.5) 5.5 1
11 (3, 5, 3)

(1, 0, 0) (2.5, 1.5, 0.5) 4.5 1
9 (5, 3, 1)

(1, 0, 1) (2.5, 1.5, 1.5) 5.5 1
11 (5, 3, 3)

(1, 1, 0) (2.5, 2.5, 0.5) 5.5 1
11 (5, 5, 1)

q = 1 (0, 0, 1) (2, 2, 2) 6 1
6 (2, 2, 2)

(0, 1, 0) (2, 3, 1) 6 1
6 (2, 3, 1)

(0, 1, 1) (2, 3, 2) 7 1
7 (2, 3, 2)

(1, 0, 0) (3, 2, 1) 6 1
6 (3, 2, 1)

(1, 0, 1) (3, 2, 2) 7 1
7 (3, 2, 2)

(1, 1, 0) (3, 3, 1) 7 1
7 (3, 3, 1)

Finally, by Corollary 3.5,

vol�−1 (P (m)) =




√
3

4×3 ≈ 0.144 (q = 0),
√

3
5.5×4.5 ≈ 0.070 (q = 0.5),
√

3
7×6 ≈ 0.041 (q = 1).

5. An application in political science

In the electoral apportionment problem, the weight vectors w are vote fractions of
parties and the rounding result m is the vector of the seats in a parliament allocated to
the different parties. The number of seats for the ith party is an approximation to the
idealized share of seats the party should obtain, i.e. mi ≈ wiM . Since the number of
votes is usually much larger than the number of seats M , there will be an inevitable
gap mi − wiM , which expresses whether party i obtains more or less seat fractions
than its ideal share projects.
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Schuster et al. [18] investigate whether a rounding method leads to a systematic
advantage for large (or for small) parties. To formalize this question, they condition
uniformly distributed weight vectors w to be ordered as w1 � w2 � · · · � w� and
define the seat-bias of the ith largest party as

Bi(M) := E[mi − wiM |w1 � w2 � · · · � w�].
A bias Bi(M) = 0.3, for example, means that in 10 elections for a parliament of M
seats the ith largest party gains on average three seats. Here we show how Schuster
et al. used the results we developed in Sections 3 and 4 to find their formulas for
Bi(M), which are stated without proof in [18].

The distribution of w conditional on {w1 � w2 � · · · � w�} is uniform on the or-
dered probability simplex S� := {w ∈ S |w1 � w2 � · · · � w�}, which, due to sym-
metry, has volume vol�−1(S�) = vol�−1(S)/�!. First we compute the expected ideal
share of seats of the ith largest party.

Lemma 5.1. The expected ideal share of seats of the ith largest party equals

Ii(M) := E[wiM |w1 � w2 � · · · � w�] = M

�

�−i∑
j=0

1

�− j
= M

�

�∑
j=i

1

j
.

(28)

Proof. The vector I (M) = (I1(M), . . . , I�(M)) equals M times E[w |w1 � w2 �
· · · � w�], and the latter expectation is the center of mass of the simplex S�. The
center of mass of a simplex is the (arithmetic) mean of its vertices. The vertices of
S� are the vectors w(j), j = 0, . . . , �− 1, with ith component w(j)

i = 1/(�− j) if

i � �− j and w
(j)
i = 0 else (cf. [8]). Multiplying the mean of these vertices by M

yields (28). �

Next we compute E[mi |w1 � w2 � · · · � w�] by summing over all possible
rounding results m. Since the studied methods round ordered weight vectors to or-
dered rounding results, the sum is over all m in G� := {m ∈ G |m1 � m2 � · · · �
m�}. The terms mi in the sum are weighted by the probability that m is the round-
ing result. Since the weights are uniformly distributed this probability is equal to
vol�−1(P (m) ∩ S�)/vol�−1(S�).

Let b(m) :=∏�−1
i=1 |{j |mi+j = mi, 0 � j � �− i}| count the permutations that

leave m invariant. Then vol�−1(P (m) ∩ S�) = vol�−1(P (m))/b(m), and

Bi(M) = �!
vol�−1(S)

×
∑
m∈G�

mi

vol�−1(P (m))

b(m)
− Ii(M).

With the results for vol�−1(P (m)) developed in Sections 3 and 4, it is a lengthy but
straightforward calculation to find the formulas for Bi(M) given in [18].
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