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Preface

... dans ce meilleur des [modéles] possibles ... tout est au mieuz.
Candide (1759), Chapitre I, VOLTAIRE.

The working title of the book was a bit long, Optimality Theory of Ezperimental Designs
in Linear Models, but focused on two pertinent points. The setting is the linear model, the
simplest statistical model, where the results are strongest. The topic is design optimality,
deemphasizing the issue of design construction. A more detailed Outline of the Book
follows the Contents.

The design literature is full of fancy nomenclature. In order to circumvent expert
jargon I mainly speak of a design ¢ being ¢-optimal for K'6 in E, that is, being optimal
under an information function ¢, for a parameter system of interest K '8, in a class = of
competing designs. The only genuinely new notions that I introduce are Loewner optimality
(because it refers to the Loewner matrix ordering) and Kiefer optimality (because it pays
due homage to the man who was a prime contributor to the topic).

The design problems originate from statistics, but are solved using special tools from
linear algebra and convez analysis, such as the information matrix mapping of Chapter 3
and the information functions ¢ of Chapter 5. I have refrained from relegating these tools
into a set of appendices, at the expense of some slowing of the development in the first half
of the book. Instead, the auxiliary material is developed as needed, and it is hoped that
the exposition conveys some of the fascination that grows out of merging three otherwise
distinct mathematical disciplines.

The result is a unified optimality theory that embraces an amazingly wide variety of
design problems. My aim is not encyclopedic coverage, but rather to outline typical settings
such as D-, A-, and E-optimal polynomial regression designs, Bayes designs, designs for
model discrimination, balanced incomplete block designs, or rotatable response surface
designs. Pulling together formerly separate entities to build a greater community will
always face opponents who fear an assault on their way of thinking. On the contrary,
my intention is constructive, to generate a frame for those design problems that share a



common goal. The goal of investigating optimal, theoretical designs is to provide a gauge
for identifying efficient, practical designs.

Il meglio ¢ inimico del bene.
Dictionnaire Philosophique (1770), Art Dramatique, VOLTAIRE
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Outline of the Book

CHAPTERS 1, 2, 3, 4: LINEAR MODELS AND INFORMATION
MATRICES

Chapters 1 and 3 are basic. Chapter 1 centers around the Gauss—Markov Theorem, not
only because it justifies the introduction of designs and their moment matrices in Sec-
tion 1.24. Equally important, it permits us to define in Section 3.2 the information matrix
for a parameter system of interest K 'f in a way that best supports the general theory.
The definition is extended to rank deficient coefficient matrices K in Section 3.21. Be-
cause of the dual purpose the Gauss—Markov Theorem is formulated as a general result
of matrix algebra. First results on optimal designs are presented in Chapter 2, for pa-
rameter subsystems which are one-dimensional, and in Chapter 4, in the case optimality
can be achieved relative to the Loewner ordering among information matrices. (This is
rare, see Section 4.7.) These results also follow from the General Equivalence Theorem in
Chapter 7, whence Chapters 2 and 4 are not needed for their technical details.

CHAPTERS 5, 6: INFORMATION FUNCTIONS

Chapters 5 and 6 are reference chapters, developing the concavity properties of prospective
optimality criteria. In Section 5.8 we introduce information functions ¢, which by definition
are required to be positively homogeneous, superadditive, nonnegative, nonconstant, and
upper semicontinuous. Information functions submit themselves to pleasing functional
operations (Section 5.11), of which polarity (Section 5.12) is crucial for the sequel. The
most important class of information functions are the matrix means ¢,, with parameter
p € [—o0;1]. They are the topic of Chapter 6, starting from the classical D-, A-, E-criterion
as the special cases ¢g, ¢_1, ¢_, respectively.
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CHAPTERS 7, 8, 12: OPTIMAL APPROXIMATE DESIGNS AND
EFFICIENT DISCRETE DESIGNS

The General Equivalence Theorem 7.14 is the key result of optimal design theory, offering
necessary and sufficient conditions for a design’s moment matrix M to be ¢-optimal for K '8
in M. The generic result of this type is due to Kiefer and Wolfowitz (1960), concerning
D-optimality for 6 in M(Z). The present theorem is more general in three respects, in
allowing for the competing moment matrices to form a set M which is compact and
convex, rather than restricting attention to the largest possible set M (=) of all moment
matrices, in admitting parameter subsystems K ', rather than concentrating on the full
parameter vector 8, and in permitting as optimality criterion any information function ¢,
rather than restricting attention to the classical D-criterion. Specifying these quantities
gives rise to a number of corollaries which are discussed in the second half of Chapter 7.
The first half is a self-contained exposition of arguments which lead to a proof of the
General Equivalence Theorem, based on subgradients and normal vectors to a convex
set. Duality theory of convex analysis might be another starting point; here we obtain a
duality theorem as an intermediate step, as Theorem 7.12. Yet another approach would
be based on directional derivatives; however, their calculus is quite involved when it comes
to handling a composition ¢ o Ck like the one underlying the optimal design problem.

Chapter 8 deals with the practical consequences which the General Equivalence The-
orem implies about the support points z; and the weights w; of an optimal design £. The
theory permits a weight w; to be any real number between zero and one, prescribing the
proportion of observations to be drawn under z;. In contrast, a design for sample size n
replaces w; by an integer n;, as the replication number for z;. In Chapter 12 we propose
the eflicient design apportionment as a systematic and easy way to pass from w; to n;.
This discretization procedure is the most efficient one, in the sense of Theorem 12.7. For
growing sample size n the efficiency loss relative to the optimal design stays bounded of

asymptotic order n!; in case of differentiability the order improves to n=2.

CHAPTERS 9, 10, 11: INSTANCES OF DESIGN OPTIMALITY

D-, A-, and E-optimal polynomial regression designs over the interval [—1;1] are char-
acterized and exhibited in Chapter 9. Chapter 10 discusses admissibility of the moment
matrix of a polynomial regression design, and of the contrast information matrix of a
block design in a two-way classification model. Prominent as these examples may be,
it is up to Chapter 11 to exploit the power of the General Equivalence Theorem to its
fullest. Various sets of competing moment matrices are considered, such as M, for Bayes
designs, M(E[a; b]) for designs with bounded weights, M (™) for mixture model designs,
{(M,...,M): M e M} for mixture criteria designs, and M{™ N {ap > A} for designs with
guaranteed efficiencies. And they are evaluated using an information function ¢ = ® o
that is a composition of a set of m information functions, ¢ = (¥1,...,%m), together with
an information function ® on the nonnegative orthant IR7".
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CHAPTERS 13, 14, 15: OPTIMAL INVARIANT DESIGNS

As with other statistical problems, invariance considerations can be of great help in re-
ducing the dimensionality and complexity of the general design problem, at the expense
of handling some additional theoretical concepts. The foundations are laid in Chapter 13,
investigating various groups and their actions as they pertain to an experimental domain
design 7, a regression range design £ = 7o f~!, a moment matrix M(£{), an information
matrix Cx (M), or an information function ¢(C). The idea of ‘increased symmetry’ or
‘greater balancedness’ is captured by the matrix majorization ordering of Section 14.1.
This concept is brought together with the Loewner matrix ordering to create the Kiefer
ordering of Section 14.2: An information matrix C is at least as good as another matrix D,
C > D, when relative to the Loewner ordering C' is above some intermediate matrix which
is majorized by D. The concept is due to Kiefer (1975) who introduced it in a block design
setting and called it universal optimality. We demonstrate its usefulness with balanced
incomplete block designs (Section 14.9), optimal designs for a linear fit over the unit cube
(Section 14.10), and rotatable designs for response surface methodology (Chapter 15).

The final Comments and References include historical remarks and mention the rele-
vant literature. I do not claim to have traced every detail to its first contributor and I must
admit that the book makes no mention of many other, important design topics, such as nu-
merical algorithms, orthogonal arrays, mixture designs, polynomial regression designs on
the cube, sequential and adaptive designs, designs for nonlinear models, robust designs, etc.
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