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Abstract When � probabilities are rounded to integer multiples of a given accuracy n,
the sum of the numerators may deviate from n by a nonzero discrepancy. It is proved
that, for large accuracies n → ∞, the limiting discrepancy distribution has variance
�/12. The relation to the uniform distribution over the interval [−1/2, 1/2], whose
variance is 1/12, is explored in detail.
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1 Introduction

Suppose we are given � probabilities, p1, . . . , p�. In printed publications the probabil-
ities are rounded usually to percentages, or to multiples of tenths of a percent. That is,
they are converted into integer multiples of n = 100, or of n = 1000. More generally
each probability p j is rounded into a fraction n j/n, with some integer numerator n j

relative to a given “accuracy” n. The fractions n j/n provide a valid distribution only
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364 L. Heinrich et al.

if the sum of the numerators is equal to the denominator, n1 + · · · + n� = n. It is
well-known that individual rounding of the probabilities p j may fail to satisfy this
equation. Rather, a discrepancy Z = (n1 + · · · + n�) − n is observed which may be
nonzero. Happacher (2001) calculates the distribution of Z for finite accuracy n when
the probability vectorp(�) = (p1, . . . , p�) is uniformly distributed over the probability
simplex. He also shows that these unwieldy distributions converge for large accura-
cies to the elegant distribution in display (2.1) below, the “discrepancy distribution”.
Because of symmetry its expectation is zero. Its variance is zero when � = 1 or � = 2.
Using Maple, Mathematica or similar software (2.1) allows an easy computational
verification that the variance is equal to �/12, for all � ≥ 3 that computers can handle.

In Sect. 2 the variance formula is proved in a rigorous way. Our proof is based on
the Euler–Maclaurin formula and complements an alternative approach using charac-
teristic functions (short: CF) that is due to Gawronski and Neuschel (2013) and Janson
(2013). Section 3 discusses an invariance principle according to which the discrepancy
distribution is the limiting distributionwhenever the distribution of the probability vec-
tor p(�) = (p1, . . . , p�) is absolutely continuous. The invariance principles explains
the universal applicability of the discrepancy distribution and provides a second proof
of the variance formula. Section 4 reviews briefly the approach of Gawronski and
Neuschel (2013) and Janson (2013). An alternative Fourier-analytic derivation of the
CF function of the discrepancy distribution is given in Sect. 5. These results lead to a
third proof of the variance formula.

2 Discrepancy variance

When rounding two ormore proportions p1, . . . , p� to integer percentages n1, . . . , n�,
the resulting percentages do not necessarily sum exactly to 100% points, but possibly
leave a positive or negative discrepancy z = (n1 +· · ·+n�)−100. Considering many
and varied sets of � ≥ 2 proportions, we may view the discrepancy to be a random
variable Z taking its values in Z, the set of all integers. Happacher (2001) shows that,
for all practical purposes, the distribution of the discrepancy Z is modelled well by
P(Z = z) = g�(z), where the probabilities are given by

g�(z) =
�∑

k=0

(−1)k

(� − 1)!
(

�

k

)(
�

2
+ z − k

)�−1

+
, z ∈ Z. (2.1)

The notation yn+ is short for (y+)n , where y+ = y in case y > 0 and y+ = 0 otherwise.
It is not hard to see (as reviewed below) that the probabilities are symmetric around

zero, g�(z) = g�(−z). Hence all odd moments of Z vanish. In particular the expec-
tation of the discrepancy is zero, that is, the instances when the sum of the rounded
percentages is larger than 100 outweigh the instances when the sum is smaller.

What about the discrepancy variance? It is not hard to see (and reviewed below) that
the probability g�(z) is positive only for |z| ≤ L , where here and throughout we put

L :=
⌊� − 1

2

⌋
.
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Variance of the discrepancy distribution of rounding... 365

With � = 2 the discrepancy attains the value z = 0 with probability one, whence the
variance is zero. For three or more proportions this section establishes the following.

Theorem 1 For � ≥ 3 the discrepancy variance is �/12.

Theorem 1 focuses on variances because of its use in Theorem 2. However, the proof
of Theorem 1 shows that the statement extends to all even moments of order less than
�, as pointed out in the Remark at the end of this section and stated more explicitly by
(5.4) at the end of Sect. 5.

Before turning to the proof of Theorem 1 we take the time for some preliminary
remarks. The theorem states that a sum which appears to be rather elementary admits
a simple evaluation,

∑

z∈Z
z2 g�(z) =

L∑

z=−L

z2 g�(z) = �

12
. (2.2)

Identity (2.2) looks like an innocuous exercise for an introductory probability course.
The appearance is deceiving, we do not know of an easy proof of (2.2). Our first proof
builds on the Euler–Maclaurin formula, see Abramowitz and Stegun (1970) (p. 806,
formula 23.1.30).

The Euler–Maclaurin formula establishes a relation between a sum—the left hand
side of (2.2)—and an integral. The right hand side of (2.2) becomes an integral by
noting that it is the variance of V1 + · · · + V�, where V1, . . . , V� are independent and
identically distributed random variables whose common distribution is uniform over
the interval [−1/2, 1/2].

The (well-known) Lebesgue density of V1 + · · · + V� is obtained by way of the
convolution lemma,

g�(x) =
∫

g�−1(y)g1(x − y) dy =
∫ x+1/2

x−1/2
g�−1(y) dy. (2.3)

Starting from the indicator function g1(x) = 1[−1/2,1/2](x) for � = 1, the density for
� ≥ 2 is found to be

g�(x) =
�∑

k=0

(−1)k

(� − 1)!
(

�

k

)(
�

2
+ x − k

)�−1

+
, x ∈ R. (2.4)

This is the same function as in (2.1), except that the domain of definition is extended
from Z in (2.1), to R in (2.4).

The interrelation between (2.1) and (2.4) entails three useful implications. Firstly,
the probabilities in (2.1) add to unity as they should,

∑

z∈Z
g�(z) =

∑

z∈Z

∫ z+1/2

z−1/2
g�−1(y) dy =

∫

R

g�−1(y) dy = 1.

Secondly, the function g� is symmetric. This is obvious for g1. Assuming g�−1 is
symmetric, g�−1(y) = g�−1(−y), so is g�, as seen by
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366 L. Heinrich et al.

g�(x) =
∫ x+1/2

x−1/2
g�−1(y) dy =

∫ x+1/2

x−1/2
g�−1(−y) dy

=
∫ −x+1/2

−x−1/2
g�−1(y) dy = g�(−x).

Thirdly, the Lebesgue density in (2.4) takes positive values on the open interval
(−�/2, �/2) for � ≥ 2. Indeed, for x ≤ −�/2 we have �/2 + x − k ≤ 0.
With all positive parts in (2.4) vanishing we get g�(x) = 0. For x ≥ �/2 sym-
metry entails g�(x) = g�(−x) = 0. Using the recursive definition (2.3) it is
easily seen by induction that g�(x) > 0 for x ∈ (−�/2, �/2) and � ≥ 2. From
g�(z) = ∫ z+1/2

z−1/2 g�−1(y) dy it follows that the probabilities in (2.1) are positive only

for the integers z ∈ {0,±1, . . . ,±L}. Upon introducing f�(x) = x2g�(x) we may
write identity (2.2) as

L∑

z=−L

f�(z) =
∫ �/2

−�/2
f�(x) dx . (2.5)

The Euler–Maclaurin formula relates sum and integral whenever f� is a smooth
function. However, g�(x) in (2.4) is smooth only piecewise, on the integer intervals
[z, z + 1] when � is even, and on the shifted intervals [z − 1/2, z + 1/2] when � is
odd. Therefore the proof of Theorem 1 treats even � and odd � separately.

Proof of Theorem 1 Parts I and II deal with � even. Part I restricts attention to integer
intervals [z, z+1] to apply the Euler–Maclaurin formula. Part II aggregates the interval
results in order to establish the desired identity (2.5). Part III handles odd �.

I. We fix an integer z ∈ Z. For x ≤ z+1 the term (�/2+ x − k)�−1+ in (2.4) is positive
only for 0 < �/2+ x − k ≤ �/2+ z+1− k, that is, k < �/2+ z+1 and k ≤ �/2+ z.
If additionally x ≥ z then �/2 + x − k ≥ �/2 + z − k ≥ 0. The passage to positive
parts becomes superfluous, (�/2 + x − k)�−1+ = (�/2 + x − k)�−1. This shows that
on the interval [z, z + 1] the function g�(x) is a polynomial of degree � − 1, namely,

g�(x) =
�/2+z∑

k=0

(−1)k

(� − 1)!
(

�

k

) (
�

2
+ x − k

)�−1

for z ≤ x ≤ z + 1 . (2.6)

Hence on [z, z + 1] the function f�(x) = x2g�(x) is a polynomial of degree � + 1.
Let g(q)

� (z+) and f (q)(z+) denote the derivatives of order q at the left endpoint

of [z, z + 1], and g(q)
� (z + 1−) and f (q)(z + 1−) those at the right endpoint of

[z, z + 1]. The Euler–Maclaurin formula invokes the Bernoulli numbers B2k and the
odd derivatives f (2k−1) which we include up to order �−1. The formula finishes with
a balancing term depending on the (�+ 2)nd derivative of f� which is zero. Therefore
the balancing term disappears, in our application. Thus the Euler–Maclaurin formula
yields an identity,
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Variance of the discrepancy distribution of rounding... 367

1

2
f�(z) + 1

2
f�(z + 1) =

∫ z+1

z
f�(x) dx

+
�/2∑

k=1

B2k

(2k)!
(
f (2k−1)(z + 1−) − f (2k−1)(z+)

)
. (2.7)

The derivatives of f� are obtained from the Leibniz rule,

f (q)(x) =
q∑

j=0

(
q

j

)
d j

dx j
x2

dq− j

dxq− j
g�(x)

= x2 g(q)
� (x) + 2q x g(q−1)

� (x) + q (q − 1) g(q−2)
� (x). (2.8)

The derivatives of g� in (2.6) are

g(q)
� (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�/2+z∑

k=0

(−1)k

(� − 1 − q)!
(

�

k

) (
�

2
+ x − k

)�−1−q

if q < � − 1 ,

�/2+z∑

k=0

(−1)k
(

�

k

)
if q = � − 1 ,

0 if q > � − 1 .

(2.9)

For orders q < � − 1 the qth derivative g(q)
� (z+) at the left endpoint of [z, z + 1]

coincideswith theqth derivative g(q)
� (z−) at the right endpoint of the preceding interval

[z − 1, z],

g(q)
� (z+) =

�/2+z∑

k=0

(−1)k

(� − 1 − q)!
(

�

k

) (
�

2
+ z − k

)�−1−q

=
�/2+z−1∑

k=0

(−1)k

(� − 1 − q)!
(

�

k

)(
�

2
+ z − k

)�−1−q

= g(q)
� (z−).

Therefore g� and f� are q times differentiable also at the knots z ∈ Z, with derivatives
g(q)
� (z) = g(q)

� (z+) = g(q)
� (z−) and f (q)(z) = f (q)(z+) = f (q)(z−), as long as

q < � − 1.

II. Now we sum (2.7) over z ∈ Z. Since (2.1) has support points −L , . . . , L and (2.4)
has support (−�/2, �/2) aggregation of the Euler–Maclaurin formulas yields

L∑

z=−L

f�(z) =
∫ �/2

−�/2
f�(x) dx

+
�/2∑

k=1

B2k

(2k)!
L∑

z=−L

(
f (2k−1)(z + 1−) − f (2k−1)(z+)

)
. (2.10)
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368 L. Heinrich et al.

Thus it suffices to show that

L∑

z=−L

(
f (2k−1)(z + 1−) − f (2k−1)(z+)

)
= 0, k = 1, . . . , �/2. (2.11)

For k < �/2 the order is q = 2k − 1 < � − 1 for which f� is q times differentiable.
Thus (2.11) is a telescope sum and simplifies to a plain difference,

�∑

z=−�

(
f (q)(z + 1) − f (q)(z)

)
= f (q)(� + 1) − f (q)(−�) = 0.

For k = �/2 with ensuing order q = � − 1 we must evaluate the sum

S =
L∑

z=−L

(
f (�−1)(z + 1−) − f (�−1)(z+)

)
.

The Leibniz rule (2.8) includes lower order derivatives g(�−2)
� and g(�−3)

� . They, too,
lead to telescope sums that vanish and hence contribute nothing to S. As for the (�−1)st
derivative, (2.9) gives g(�−1)

� (z+) = g(�−1)
� (z + 1−) = ∑�/2+z

k=0 (−1)k
(
�
k

)
. We obtain

S =
L∑

z=−L

(
(z + 1)2 − z2

) �/2+z∑

k=0

(−1)k
(

�

k

)
=

�∑

k=0

(−1)k
(

�

k

) �/2∑

z=k−�/2

(
(z + 1)2 − z2

)

with

�/2∑

z=k−�/2

(
(z + 1)2 − z2

)
=

(
�

2
+ 1

)2

−
(
k − �

2

)2

= (� + 1) + (� − 1)k − k(k − 1).

The binomial theorem and multiple uses of the identity
(
�
k

)
k = �

(
�−1
k−1

)
result in

S = (� + 1)(1 − 1)� − �(� − 1)(1 − 1)�−1 − �(� − 1)(1 − 1)�−2. (2.12)

This gives S = 0 whenever � ≥ 3, and establishes (2.11). Now (2.10) reduces to (2.5).
The proof of Theorem 1 for even � is complete.

III. In case � is odd we again start out with a fixed integer z ∈ Z. Since � is odd the
polynomial structure of the function g� holds true on the shifted interval,

g�(x) =
(�−1)/2+z∑

k=0

(−1)k

(� − 1)!
(

�

k

)(
�

2
+ x − k

)�−1

for z − 1

2
≤ x ≤ z + 1

2
.
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Variance of the discrepancy distribution of rounding... 369

The derivatives of g� are the same as in (2.9), except that the upper summation limit
now reads (� − 1)/2. The function f�(x) = x2 g�(x) continues to be a polynomial of
degree � + 1.

As in (2.7) the Euler–Maclaurin formula yields the identity

1

2
f
(
z − 1

2

)
+ 1

2
f
(
z + 1

2

)
=

∫ z+1/2

z−1/2
f�(x) dx +

(�+1)/2∑

k=1

B2k

(2k)!Δ(k),

where we have set Δ(k) := f (2k−1)(z + 1/2−) − f (2k−1)(z − 1/2+) for short. The
formula permits a refinement by dividing the underlying interval into two equal parts
in order to pick up the value of f� at the interval midpoint z,

1

2
f
(
z − 1

2

)
+ f�(z) + 1

2
f
(
z + 1

2

)
= 2

∫ z+1/2

z−1/2
f�(x) dx

+
(�+1)/2∑

k=1

1

22k−1

B2k

(2k)!Δ(k).

Subtraction of the first equation from the second yields the version to be pursued
further,

f�(z) =
∫ z+1/2

z−1/2
f�(x) dx −

(�+1)/2∑

k=1

(
1 − 1

22k−1

)
B2k

(2k)!Δ(k).

Summation over z ∈ Z leads to

L∑

z=−L

f�(z) =
∫ �

−�

f�(x) dx −
(�+1)/2∑

k=1

(
1 − 1

22k−1

)
B2k

(2k)!
L∑

z=−L

Δ(k). (2.13)

We aim to verify that the last sum is zero, that is,

L∑

z=−L

(
f (2k−1)

(
z + 1

2
−

)
− f (2k−1)

(
z − 1

2
+

))
= 0, k = 1, . . . ,

� + 1

2
.

(2.14)

For k < (� + 1)/2 the order of the derivative is q = 2k − 1 < �. Since q and � are
odd this forces q < � − 1, whence the sum in (2.14) is a telescope sum that vanishes.

For k = (� + 1)/2 the order is q = 2k − 1 = �. The sum in (2.14) becomes

S =
L∑

z=−L

(
f (�)

(
z + 1

2
−

)
− f (�)

(
z − 1

2
+

))
.
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370 L. Heinrich et al.

Applying the Leibniz rule (2.8) to f (�) we find that the first term depends on g(�)
�

which is zero throughout. The third term, involving g(�−2)
� , leads to another telescope

sum that vanishes. Thus S is determined by the second term,

S = 2�
L∑

z=−L

(�−1)/2+z∑

k=0

(−1)k
(

�

k

)
= 2�

�∑

k=0

(−1)k
(

�

k

) (�+1)/2∑

z=k−(�−1)/2

1.

Since the last sum counts (� + 1) − k ones, the result is

S = 2(� + 1)�(1 − 1)� + 2�2(1 − 1)�−1.

Now S = 0 verifies (2.14), whence (2.13) turns into (2.5). Thus, Theorem 1 is com-
pletely proved. ��
Remark The proof generalizes to functions of the type f�(x) = x p g�(x), with p < �

even. Hence the discrepancy Z and the sum V1 + · · · + V� share not only the same
variance �/12, but also all even moments up to order p < �.

The aggregated Euler–Maclaurin identity (2.10) remains valid also when � = 2.
The discrepancy variance on the left is 0, as mentioned in the paragraph prior to
Theorem 1. On the other hand (2.12) results in S = −2. Inserting B2 = 1/6 turns the
right hand side of (2.10) into 2/12+ (1/6)(−2)/2 = 0, too. In the same way identity
(2.13) maintains its validity when � = 1.

3 Discrepancy representation as a sum of uniform random variables

Happacher (2001) derives the discrepancy distribution (2.1) under the assumption
that the vector of proportions p(�) = (p1, . . . , p�) follows a uniform distribution on
the probability simplex Ω� = {(p1, . . . , p�) ∈ (0, 1)� | p1 + · · · + p� = 1}. This
assumption is too specific to justify the universal applicability of the discrepancy
distribution (2.1). Rather, the justification originates from an invariance principle that
allows to replace the uniform distribution onΩ� by an arbitrary absolutely continuous
distribution on Ω�.

The general task is to round proportions p j to integer multiples n j of a preordained
accuracy n. The accuracy is n = 100 for percentages, n = 1000 for tenths of a percent,
etc. An obvious approach is to multiply a proportion by n, and to round the scaled
quantity np j to an integer n j . We designate the standard rounding function by angle
brackets 〈x〉, as do Abramowitz and Stegun (1970, p. 223). That is, if the fractional
part of x > 0 is smaller than one half then x is rounded downwards, 〈x〉 = �x�. If the
fractional part is larger than or equal to one half then x is rounded upwards, 〈x〉 = x�.

The rounding procedure gives rise to the rounding residualsUj (n) = 〈np j 〉− np j .
As 〈np j 〉 = n j the discrepancy Z coincides with the sum of the rounding residuals,

Z = (n1 + · · · + n�) − n = U1(n) + · · · +U�(n).
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Variance of the discrepancy distribution of rounding... 371

The representation has dramatic consequences. The distribution of Z depends an the
distributional assumption for the proportions (p1, . . . , p�) on Ω� only through the
induced distribution of the rounding residualsU1(n), . . . ,U�(n). While every specific
distributional assumption for the proportions (p1, . . . , p�) sparks objections as to its
universal validity, this is not so for rounding residuals.

Rounding residuals Uj (n) are “known” to be uniformly distributed over the inter-
val [−1/2, 1/2]. This knowledge is scientific commonplace to an extent that every
reference which makes use of it can be surpassed by a prior reference that has done
so earlier. Examples abound, as Seal (1950) demonstrates in his witty note “Spot the
prior reference”; see Happacher (2001) for a reprint of the note. While there exist
numerous publications modeling a rounding residual by the uniform distribution, we
know of just a handful of sources proposing a rigorous argument how the uniform
distribution comes into being.

The work of Happacher (2001) implies that for finite accuracy n the discrepancy
fails the distribution (2.1), and that the rounding residuals cannot have a uniform
distribution. Even when assuming that each rounding residual is uniformly distributed
over the interval [−1/2, 1/2] they cannot be jointly independent, because their sum
has the discrete distribution (2.1) and not the convolution distribution (2.4).

It seems natural to resort to an asymptotic approach. Janson (2013) assumes that
the accuracies n are uniformly distributed over a finite range {1, . . . , N }. Then he lets
the range tend to infinity, N → ∞. In the present paper we assume an absolutely con-
tinuous distribution for the vector of proportions, as do Diaconis and Freedman (1979)
and Janson (2013). Then we let the accuracy tend to infinity, n → ∞. In this setting
Heinrich et al. (2004) prove that the limiting distribution of the rounding residual
becomes uniform if the underlying distribution admits a Riemann integrable density.
Janson (2013) shows that the conclusion remains valid if the underlying distribution
is absolutely continuous. Only recently did we spot the prior reference Tuckey (1938)
who establishes the same result. The state of the art is summarized by the invariance
principle for rounding residuals as given in the following Theorem 2. A precursor to
the invariance principle is Theorem 3 in Diaconis and Freedman (1979).

Theorem 2 Assume that, for � ≥ 2, the proportions p(�) = (p1, . . . , p�) follow an
absolutely continuous distribution on the probability simplex Ω�. Then the vector of
rounding residuals U(�)(n) = (U1(n), . . . ,U�(n)) for accuracy n and the vector of
proportions p(�) jointly converge in distribution,

(
U(�)(n),p(�)

) in distribution−−−−−−−→
n→∞ (U(�),p(�)) ,

where the components of the limit random vector U(�) = (U1, . . . ,U�) are uniformly
distributed over the interval [−1/2, 1/2], exchangeable, and independent of p(�).
Omitting an arbitrary component U j , the remaining � − 1 variables Uk, k �= j , are
independent. If � ≥ 3 then the variables U1, . . . ,U� are uncorrelated.

Proof Theorem 2 coincides with Theorem 6.10 in Pukelsheim (2014) where the asser-
tions are proved, except for uncorrelatedness. But uncorrelatedness is an immediate
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372 L. Heinrich et al.

consequence of the preceding statement. If � ≥ 3 then any two variables are indepen-
dent and hence uncorrelated. ��

Theorem 2 provides a second, one-line proof for the variance formula in Theorem 1.
Assuming � ≥ 3 uncorrelatedness yields Var(Z) = Var

(
U1 + · · · + U�

) = �/12 +
�(� − 1)Cov(U1,U2) = �/12.

Theorem 2 provides a solid justification for the commonplace assumption that
rounding residuals follow a uniform distribution. Theorem 2 also justifies the universal
applicability of the discrepancy distribution (2.1). Indeed, from Z = U1+· · ·+U� we
see that the discrepancy Z attains a value z ∈ Z if and only ifU1+· · ·+U�−1 = z−U�.
Evidently we have z −U� ∈ [z − 1/2, z + 1/2]. This yields

{
Z = z

}
=

{
U1 + · · · +U�−1 ∈

[
z − 1

2
, z + 1

2

]}
. (3.1)

When for n → ∞ the limit distributions take over, the probability of the event on the
right hand side in (3.1) becomes

∫ z+1/2
z−1/2 g�−1(y) dy = g�(z) as stipulated by (2.1).

This shows that for large accuracies the distribution of the discrepancy Z is given by
(2.1).

Standard rounding permits yet another representation. Since the right hand side in
(3.1) may be expressed as

{〈U1 + · · · +U�−1〉 = z
}
, the discrepancy satisfies

Z = 〈U1 + · · · +U�−1〉 .

That is, the discrepancy Z behaves as if standard rounding is applied to the sum of
� − 1 copies of uniform random variables.

4 Euler–Frobenius distributions

The shifted discrepancy Z+L is a discrete random variable that is nonnegative. Hence
its probability generating function is a polynomial. Gawronski and Neuschel (2013)
identify this polynomial to be an Euler–Frobenius polynomial and study the induced
distributions. Janson (2013) calls them Euler–Frobenius distributions, and provides
many additional results. The distribution of the discrepancy Z is the Euler–Frobenius
distribution E�−1,�/2.

Gawronski and Neuschel (2013) (p. 7) and Janson (2013) (p. 10) also calculate the
CF of Euler–Frobenius distributions. The discrepancy distribution turns out to have
CF

ϕ�(s) = i−�e−i�s/2
(
eis − 1

)�
∞∑

k=−∞

e−π ik�

(s + 2πk)�
. (4.1)

Thus, by calculating the negative second derivative of the CF (4.1) at s = 0, the
variance is found to be �/12. This approach provides another proof of Theorem 1.
Section 5 concludes with an alternative derivation of the CF (4.1) in addition to those
in Gawronski and Neuschel (2013) and Janson (2013).
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5 An alternative Fourier-analytic approach

To complete this paper we present a further way to obtain the CF (4.1) which seems
to be more direct and different from the methods used in Gawronski and Neuschel
(2013) and Janson (2013). Among others our approach is related with so-called sinc-
integrals which recently attracted much interest due to their unexpected properties, see
e.g. Schmid (2014), Almkvist and Gustavsson (2014). The sinc-function is defined as
follows: sinc(t) := sin(t)/t for t ∈ R\{0} and sinc(0) := 1. It is easily verified
that the CF u�(t) := E exp{it (V1 + · · · + V�)} of independent and uniformly on
[−1/2, 1/2] distributed random variables V1, . . . , V�, see Sect. 2, can be expressed
by u�(t) = (

sinc(t/2)
)�. Since u�(t) is absolutely integrable for � ≥ 2, the Fourier

inversion theorem, see e.g. Taylor (1996) (p. 271) combined with sinc(−t) = sinc(t),
allows to express the symmetric density of V1 + · · · + V� given in (2.4) as Fourier
integral

g�(x) = 1

2π

∫ ∞

−∞
e−it x u�(t) dt = 1

π

∫ ∞

−∞
e2it x

(
sinc(t)

)�
dt

= 1

π

∫ ∞

−∞
cos(2 t x)

(
sinc(t)

)�
dt > 0 for |x | <

�

2
. (5.1)

The right hand integral disappears for |x | ≥ �/2. For x ∈ {0,±1, . . . ,±L} we get the
symmetric lattice distribution (2.1) of the discrepancy introduced in Sect. 1. Its CF
ψ�(s) is defined by

ψ�(s) :=
L∑

z=−L

eiszg�(z) = 1

π

∫ ∞

−∞

L∑

z=−L

ei(s+2 t)z (
sinc(t)

)�
dt . (5.2)

We may rewrite this CF as follows:

Theorem 3 For � ≥ 2 and all s ∈ R we have the identity

ψ�(s) = 1

π

∫ ∞

−∞
sin((2L + 1)( s2 + t))

sin( s2 + t)

(
sinc(t)

)�
dt =

∑

k∈Z

(
sinc(

s

2
+ kπ)

)�

= ϕ�(s).

Proof The first equality of Theorem 3 is immediately seen by inserting the Dirichlet
kernel

∑L
z=−L e

2i x z = sin((2 L + 1)x)/ sin(x), see e.g. Taylor (1996) (p. 162), into
the right hand integral of (5.2) for x = s/2 + t . The third equality can be checked
simply by rewriting all members of the doubly infinite series (4.1) by inserting Eulers
formula eix = cos(x) + i sin(x). It remains to verify the middle equality between the
improper integral on the left and the double-sided infinite series on the right for any
real s. It is rapidly seen that bothψ�(s) as well as ϕ(s) (as uniformly convergent series
for � ≥ 2) are even and 2π -periodic functions that are infinitely often differentiable
and take the value 1 at s = 0. Here, ψ�(0) = 1 is obvious for a CF but it also follows
in the special case a = 2L + 1, k = � from the “sinc integral”

123

Author's personal copy



374 L. Heinrich et al.

∫ ∞

−∞
sin(at)

sin(t)
(sinc(t))k dt = π for any real a > 0 and k = 1, . . . , �a� + 1,

see Schmid (2014) (pp. 15–17). Now, we prove that ψ�(s) and ϕ�(s) have the same
Fourier expansions. For doing this we show that the corresponding coefficients at
cos( js) are identical for all j ∈ Z. The expansion (5.2) reveals that the j th Fourier
coefficient of ψ�(s) coincides with g�( j) as expressed in (5.1) for j ∈ Z, where
g�( j) = 0 for | j | > L . Assuming an expansion ϕ�(s) = ∑

j∈Z c�( j) cos( js) we can
calculate the coefficients c�( j) as follows:

c�( j) = 1

2π

∫ π

−π

cos( js)ϕ�(s)ds = 1

π

∫ π/2

−π/2
cos(2 js)

∑

k∈Z

(
sinc(s + kπ)

)�
ds

= 1

π

∑

k∈Z

∫ π/2+kπ

−π/2+kπ
cos

(
2 j (s − kπ)

)(
sinc(s)

)�
ds

= 1

π

∫ ∞

−∞
cos(2 js)

(
sinc(s)

)�
ds .

Together with (5.1) we have c�( j) = g�( j) for all j ∈ Z which was to be proved. ��
Theorem 3 and the identity sinc( s2 + kπ) = sinc( s2 ) (−1)k s/(s + 2kπ) for k ∈ Z

imply that

logψ�(s) = � logE exp{isV1} + r�(s) with r�(s) = log

( ∑

k∈Z

( (−1)ks

s + 2kπ

)�
)

.

(5.3)

The rules of differentiation yield that the derivatives of r�(s) up to order �−1 disappear
at s = 0. Using this fact the relation (5.3) reveals that themth cumulant of the discrep-
ancy distribution (2.1) is just equal to � times the mth cumulant of V1 (abbreviated by
Cm(V1)) for m = 1, . . . , � − 1, see also Theorem 5.3 in Janson (2013).

In the particular case m = 2 this confirms once more the variance formula in
Theorem 1. Moreover (5.3) allows to determine the moments M (�)

m of the discrepancy
distribution (2.1) for even m ≥ 2 and � ≥ m + 1. In particular, (5.3) yields M (�)

4 =
�C4(V1) + 3 �C2(V1) M

(�)
2 when � ≥ 5, whereas for � = 3 and � = 4 the fourth

moment M (�)
4 follows directly from (2.1):

M (�)
4 =

L∑

z=−L

z4 g�(z) =
⎧
⎨

⎩

�(5� − 2)/240 if � ≥ 5 ,

1/3 if � = 4 ,

1/4 if � = 3 .

Awell-known general relationship between cumulants and moments applied to the
special case Ck(V1) = M (�)

k = 0 for odd k ≥ 1 and Ck(V1) = Bk/k for even k ≥ 2,
see e.g. Theorem 5.3 in Janson (2013), leads to the recursion formula
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M (�)
m = �

m
2 −1∑

k=0

(
m − 1

2 k

)
Cm−2k(V1) M (�)

2k = �

m

m
2 −1∑

k=0

(
m

2 k

)
Bm−2k M (�)

2k (5.4)

for all evenm ≥ 2 and � ≥ m+1 . Here, B0, B1, B2, . . . denote the Bernoulli numbers
(which already appeared in the Euler–Maclaurin formula in Sect. 2) defined by the
generating function x/(ex − 1) = ∑∞

k=0 Bk xk/k!
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