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1. Introduction

The Coherence Theorem of Balinski and Young is a principal
result of the axiomatic approach in the theory of apportionment.
Apportionment methods serve to calculate seat numbers in
parliament, for political parties proportionately to vote counts
arising from a popular election, or for geographical regions
proportionately to population figures emerging from a periodic
census. Inevitably, then, apportionment methods deal with
numbers. However, numerical peculiarities do not constitute the
principal aspects of apportionment methods. Rather, we ‘should
argue the merits of the properties of methods, and let their
conclusions in principle determine the methods and thus the
numbers’, as emphasized by Balinski and Young (1978, page 849).
This is what the axiomatic approach is meant to achieve.

Over the past decades, the structural properties relevant for this
paper have varied in content and nomenclature. Such variations
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may be found in the publications of the same author(s) and,
of course, in those of different authors. For the purpose of this
Introduction, we glance over many of the subtleties and unify the
terminology by resorting to the notions as used in Pukelsheim
(2014).

Apportionment methods are seat allocation rules satisfying
five organizing principles: anonymity, balancedness, concordance,
decency, and exactness. Coherence is yet another axiomatic
property. It demands that every overall apportionment solution
– a solution embracing all claimants present – is such that
its embedded partial results are also viable solutions, whatever
partial set of claimants is singled out. Coherence is the concrete
specification of the abstract goal that the whole and its parts fit
together in a fairmanner. In a reviewof the origins of the coherence
principle, Young (1994, page 173) points out that coherence and
its ramifications play a vital role for many and diverse decision
procedures. Balinski (2003), too, places coherence into a rather
broad perspective.

In the theory of apportionment, the gist of a Coherence Theorem
is to show that together with all or some of the organizing
principles coherence forces the apportionment method under
investigation to be a divisor method. Versions of a Coherence
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Theorem are due to Balinski and Young (1978) and, independently,
to Hylland (1978), see Balinski and Young (1980, page 2).

The Coherence Theorem of Hylland (1978, Theorems 3 and 10)
says as follows:

If a coherent apportionment rule is balanced, concordant, and
decent, then it is compatible with a divisor method.

Anonymity is missing, its lack is outweighed by an appropriate
definition of the other notions. Nor does Hylland mention
exactness since his notion of divisor methods differs slightly from
what has become the standard definition later on.

Balinski and coauthors present two versions of the Coherence
Theorem.

1. If a coherent apportionment rule is anonymous, concordant,
decent, and weakly exact, then it is a divisor method.

This is Theorem 8.4 in Balinski and Young (1982, page 147). The
result is quoted as Theorem 8 in Young (1994, page 187), and as
Theorem 1 in Balinski and Ramírez (1999, page 114). Balancedness
is left out because it is implied by the other properties. The text
preceding Theorem 8.4 sounds as if the theorem holds in the
absence of completeness. The other version reads as follows:

2. If a coherent apportionment rule is anonymous, order-
preserving, decent, weakly exact, and complete, then it is a
divisor method.

This is Theorem 2.2 in Balinski and Rachev (1997, page 8). The
authors announce the result as ‘a modification’ of the first version,
without commenting on why they modified the previous version
and to what avail.

The proof of version 1 goes a long way for passing from a
rank-index method via its accompanying priority ordering to the
signpost sequence sought. Asmoaned byHylland (1978, page 108),
the approach is ‘implicit and indirect’. In contrast, we classify
the proof of version 2 to be explicit and direct, albeit terse and
compact. While version 2 has the nicer proof, version 1 has the
nicer assumptions.

Our motivation for looking into the problem was the desire to
merge the nice features of version 1 with those of version 2. The
result is a version of the Coherence Theorem not assuming order
preservation, but instead exploiting concordance. This is achieved
by the VRM-Lemma in Section 4 showing that concordance
(together with other principles) implies vote ratio monotonicity
(and hence order-preservation). A minor challenge was to replace
completeness by strong exactness.

In our work, we felt the need to amend the definitions of two
properties, exactness and house size monotonicity. In Section 2,
we distinguish between weak exactness, the traditional notion of
exactness, and strong exactness, the new notion that carries with
it a residual dose of completeness. Strong exactness is needed in
Part IV of the proof of the Coherence Theorem in Section 5. In
Section 4,we explicate the amendment of house sizemonotonicity.
Two-party systems require a different definition than systemswith
three or more parties. The amended definition enters the proofs of
the VRM-Lemma and of the Coherence Theorem.

The paper is organized as follows. Section 2 defines apportion-
ment rules and discusses the five organizing principles that turn
a rule into a method. Section 3 introduces divisor methods. Ev-
ery divisor method originates from a suitable signpost sequence.
We comment on the inverse problem of retrieving the signpost se-
quence when the divisor method is given.

Section 4 introduces the notion of coherence. The HSM-Lemma
shows that coherent apportionment methods are house size
monotone. In part, the lemma mimics Lemma 2.2 of Balinski and
Rachev (1997), and Lemma 4 of Balinski and Ramírez (1999). The
VRM-Lemma establishes that coherent apportionment methods
are vote ratio monotone. This lemma is new. It links concordance
and vote ratio monotonicity in a way missing so far.

With these preparations, the Coherence Theorem in Section 5
assumes a catchy form for which the present paper provides an
explicit and direct proof:

If a coherent apportionment rule is anonymous, balanced, con-
cordant, decent, and strongly exact, then it is compatible with
a divisor method.

Strong exactness supersedes weak exactness. Balancedness would
be redundant since implied by the other properties; we prefer to
list it explicitly.

When adjoining completeness, it is an immediate corollary that
the rule actually is equal to a divisor method, rather than only
being compatible with it. Thus, the Coherence Theorem entails a
characterization of divisor methods: An apportionment method is
coherent and complete if and only if it is a divisormethod. Section 6
concludes with a discussion.

2. Apportionment methods

The problem formulation, in our standard setting, assumes
that there is a parliamentary house whose h seats are to be
apportioned among ℓ party lists proportionately to their vote
weights v1, . . . , vℓ. When the weights are vote counts they are
integers, when they are shares of votes they are real numbers
between zero and unity. Generally they are assumed to be
nonnegative numbers, vj ≥ 0. The same apportionment problem
arises when allocating h seats among s states proportionately to
population figures p1, . . . , ps, as in Balinski and Young (1982).

A solution to the problem is an integer vector x = (x1, . . . , xℓ)
with vanishing components for vanishing weights, vj = 0 ⇒ xj =

0, and with all components summing to the ‘‘house size’’ h. The
integer xj is construed to be the ‘‘seat number of party j’’, for j ≤ ℓ.
We call ℓ the ‘‘system size’’, and x a ‘‘seat vector’’.

Definition. An ‘‘apportionment rule’’ A is a set-valued mapping
associating with a given house size h, a given system size ℓ, and a
given ‘‘weight vector’’ v = (v1, . . . , vℓ) a nonempty set A(h; v) =

A

h; (v1, . . . , vℓ)


of seat vectors.

Hylland (1978, page 5) calls A an ‘‘allotment method’’.
In order to be elevated to a viable method of practical interest,

an apportionment rule must satisfy five organizing principles.

Definition. An ‘‘apportionmentmethod’’ is defined to be an appor-
tionment rule that is (A) anonymous, (B) balanced, (C) concordant,
(D) decent, and (sE) strongly exact.

Balinski and Young (1982, pages 97, 144, 147) use the same
concepts, but with different names. Anonymity is referred to
as symmetry, balancedness has the same name, concordance is
called weak population monotonicity, decency is homogeneity,
and exactness is termed weak proportionality. Subsequent papers
by Balinski and coauthors, and by other authors use further
terminological alternatives. Our notions follow Pukelsheim (2014).

The precise definitions of the five organizing principles are as
follows.

(A) An apportionment rule A is called ‘‘anonymous’’ when every
rearrangement of the vote weights goes along with the same
rearrangement of the seat numbers.

(B) An apportionment rule A is called ‘‘balanced’’ when the seat
numbers of equally strong parties differ by at most one seat.
That is, all seat vectors (x1, . . . , xℓ) ∈ A


h; (v1, . . . , vℓ)


and

all parties i, j ≤ ℓ satisfy vi = vj ⇒ |xi − xj| ≤ 1.
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(C) An apportionment rule A is called ‘‘concordant’’ when a
stronger party gets at least as many seats as a weaker party.
That is, all seat vectors (x1, . . . , xℓ) ∈ A


h; (v1, . . . , vℓ)


and

all parties i, j ≤ ℓ satisfy vi > vj ⇒ xi ≥ xj.
(D) An apportionment rule A is called ‘‘decent’’, or homogeneous

of degree zero, when a rescaling of the weight vector does
not change the solution sets. That is, for all positive scalars
a > 0 the rule satisfies A(h; v) = A(h; av).

(E) Exactness is the only organizing principle amended by the
present paper. We distinguish between ‘‘weak exactness’’,
the common notion so far in use, and ‘‘strong exactness’’,
the novel notion needed to prove the Coherence Theorem in
Section 5.

(wE) An apportionment rule A is called ‘‘weakly exact’’ when every
integer weight vector x = (x1, . . . , xℓ) with component sum
h reproduces itself as the unique solution. That is, we have
x ∈ A(h; x), and if y ∈ A(h; x) then y = x.

(sE) An apportionment rule A is called ‘‘strongly exact’’ when ev-
ery integer weight vector x = (x1, . . . , xℓ) with component
sum h reproduces itself as the unique solution for all weight
vectors in neighborhood of the weight vector x. That is, we
have x ∈ A(h; x), and

y ∈ A

h; v(k)


for all k ≥ 1 =⇒ y = x

for all sequences of weight vectors v(k), k ≥ 1, that converge
to x, where vj(k) = 0 when xj = 0.

Strong exactness implies weak exactness. This is evident from
inserting the constant sequence v(k) = x.

Weak exactness does not imply strong exactness. As an
example, consider the apportionment method Q that starts out by
allocating to every party j ≤ ℓ its lower quota, xj = ⌊wjh⌋, where
wj = vj/(v1 + · · · + vℓ). The seats remaining are taken care of by
instead assigning the upper quota xj = ⌈wjh⌉ to as many stronger
parties as need be. EvidentlyQ is weakly exact. However, when the
vote weights are (4+1/k, 2−1/k), the apportionment of six seats
results in the seat vector y = (5, 1) for all k ≥ 1. For the limiting
weights (4, 2), the method produces the seat vector x = (4, 2).
Since y ≠ x, the method Q is not strongly exact.

Another notion met in the study of coherent apportionment
methods is completeness. An apportionment method A is called
‘‘complete’’ when all seat vectors that are obtainable in a
neighborhood around a weight vector v belong to its solution set,

y ∈ A

h; v(k)


for all k ≥ 1 =⇒ y ∈ A(h; v)

for all sequences of weight vectors v(k), k ≥ 1, that converge to v,
where vj(k) = 0 when vj = 0.

In the presence of completeness, weak exactness implies strong
exactness.

Completeness is a notion of disputed status as it is not in
line with electoral practice. It forces an apportionment method to
include all tied seat vectors into its solutions sets. But there are
electoral laws which, while aiming at an apportionment method
A, modify it into a method B by adopting a tie resolution rule such
as favoring stronger parties at the expense of weaker parties. That
is, in the presence of ties the seat numbers of stronger parties
are rounded upwards and the seat numbers of weaker parties are
rounded downwards. Thus, B features ties only between parties
whose vote counts are literally the same. This modification was
already pointed out by Hylland (1978, page 120, note 50), and is
actually practiced in Spain and in other countries. If the original
method A is complete andweakly exact (and hence strongly exact),
then themodifiedmethod B, though no longer complete, continues
to be strongly exact.

The class of all apportionment methods comprises two impor-
tant subclasses: the family of divisor methods, and the family of
quota methods. In essence, every apportionment method involves
two steps: scaling and rounding. Divisormethods employ a flexible
scaling step and a fixed rounding step,while quotamethods rely on
a fixed scaling step and a flexible rounding step, see Pukelsheim
(2014, Chapters 4 and 5).

A divisor method scales all weights vj by some quantity d
traditionally called ‘‘divisor’’; hence the name divisor method.
Then, it applies a preordained rounding rule to pass from the
quotients vj/d to integers xj. The flexibility of the divisor is
instrumental to secure the desired component sum, x1 + · · · +

xℓ = h.
A quota method scales all weights vj by a formulaic quantity q

commonly called ‘‘quota’’; hence the name quota method. Then, it
applies some rounding procedure to turn the quotients vj/q into
integers xj. The flexibility of the rounding step is employed to
achieve the desired component sum, x1 + · · · + xℓ = h.

At first glance, the two approaches may seem to differ only
insignificantly. That this is not so is one of the main messages of
the monograph of Balinski and Young (1982). Divisor methods are
procedures that are superior to quota methods from almost every
practical and theoretical viewpoint. The Coherence Theorem is but
one instance. For this reason, the next section takes a closer look at
divisor methods.

3. Divisor methods

Every divisor method D is induced by a specific rounding rule
[[·]]. The method D maps a house size h and a weight vector v =

(v1, . . . , vℓ) into D(h; v), the seat vector set given by

D(h; v) =


(x1, . . . , xℓ)

x1 ∈

v1

d


, . . . , xℓ ∈

vℓ

d


for some d > 0, x1 + · · · + xℓ = h


.

That is, the seat number xj is obtained by applying the rounding
rule [[·]] to the quotient vj/d of the weight vj and the divisor d. The
divisor is determined so that the sum of all seat numbers becomes
equal to the house size, x1 + · · · + xℓ = h.

The rounding rule [[·]] is a set-valued mapping, as follows. A
quotient q = vj/d lying in the interval [n − 1; n] is rounded to the
lower or upper integer endpoint, or to both. The value s(n) ∈ [n −

1; n] that determines the split into the region where q is rounded
downwards, and the other region where q is rounded upwards, is
called the ‘‘nth signpost’’, for n ≥ 1. It is convenient to prepend the
initial signpost s(0) = 0. Thus, the interval [s(n); s(n + 1)] is the
domain of attraction for rounding to the integer n, for all n ≥ 0,
and the union of these intervals covers the half-axis [0; ∞).

The notation in Balinski and Young (1982, page 99) differs by
an index shift of one unit. Those authors place their dividing points
d(a) into the interval [a; a+1], while our signposts s(n) are located
in the interval [n − 1; n]. Hence the notations are related through
d(a) = s(a + 1), and s(n) = d(n − 1). As a consequence, the
sequence of dividing points is initialized by d(−1) = 0, see Balinski
and Young (1982, page 120).

A vanishing quotient, q = 0, is uniquely rounded to zero, [[0]] =

{0}. A quotient q ∈ [n − 1; n] to the right of the signpost, q ∈
s(n); n


, is rounded upwards, [[q]] = {n}. A quotient q ∈ [n; n+1]

to the left of the signpost, q ∈

n; s(n+1)


, is rounded downwards,

[[q]] = {n}. A quotient that is equal to a positive signpost, q =

s(n) > 0, is rounded ambiguously to either endpoint, [[s(n)]] =

{n − 1; n}. It is this ambiguity which necessitates a rounding rule
to be a set-valued mapping. Altogether we have, for all q ≥ 0 and
n ≥ 0,

[[q]] =

{0} in case q = 0,
{n} in case q ∈


s(n), s(n + 1)


,

{n − 1, n} in case q = s(n) > 0.
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Besides initialization and localization, s(0) = 0 and s(n) ∈ [n−

1; n] for n ≥ 1, a ‘‘signpost sequence’’ s(0), s(1), s(2), . . . must
fulfill yet another property so that the induced rounding rule
leads to a proper divisor method. The third property, called
the ‘‘left–right disjunction’’, demands the following. If there is
a signpost hitting the right endpoint of its localization interval
then all signposts lie above their left endpoints, and if there is a
signpost hitting the left endpoint of its localization interval then
all signposts stay below their right endpoints:

s(n) = n for some n ≥ 1 =⇒ s(m) > m − 1 for allm ≥ 2,
s(m) = m − 1 for somem ≥ 2 =⇒ s(n) < n for all n ≥ 1.

The left–right disjunction is missing from the monograph of
Balinski and Young (1982). Its first mentioning is in Balinski and
Rachev (1997, page 6)who show that it is indispensable for proving
that divisor methods are weakly exact.

In fact, every divisormethod is an apportionment rule satisfying
the five organizing principles of being anonymous, balanced,
concordant, decent, and strongly exact, as is easily verified. Hence a
divisormethod is a proper apportionmentmethod. This is reflected
by speaking of a divisormethod (and not just of a divisor rule).

Normally, a divisor method D is given by the underlying sign-
post sequence s(0), s(1), s(2), . . . and its accompanying rounding
rule [[·]]. Then any solution setD(h; v) calls for a suitable divisor d to
verify the definition. As a preparation for the Coherence Theorem
in Section 5, it is instructive to study the inverse problem. Given all
solution sets D(h; v) of a divisor method D, how do we go about to
reconstruct the underlying signpost sequence s(0), s(1), s(2), . . .?

The clue is to start out from a sequence that is proportional
to the signpost sequence, but that has one of its members scaled
to be equal to unity. Scaling by the first signpost s(1) ∈ [0; 1] is
problematic since s(1) may be zero. The second signpost is
certainly positive, s(2) ≥ 1. Therefore, we introduce the scaled
sequence

t(1) =
s(1)
s(2)

, t(2) = 1, t(3) =
s(3)
s(2)

, . . . , t(n) =
s(n)
s(2)

, . . . .

Two-party systems suffice to rebuild the signpost sequence, as
we shall see in our coherence discussion. Fix n ≥ 1 and consider
the apportionment of n + 1 seats among a first party with weight
t(n) and a second party with weight unity. Decency permits to
multiply the weights by s(2), whence we get D


n+ 1; (t(n), 1)


=

D

n + 1;


s(n), s(2)


=


(n, 1), (n − 1, 2)


. This is so because

(with divisor d = 1) the signpost s(n) may be rounded upwards
to n or downwards to n − 1, while s(2) may be rounded upwards
to 2 or downwards to 1. Since the house size is n + 1, one weight
must be rounded upwards and the other weight must be rounded
downwards. This gives rise to the two solution vectors (n, 1) and
(n − 1, 2).

Now let the first party lose weight, t < t(n), while the second
partymaintains its weight unity. The seat vector (n, 1) ceases to be
valid. Thus, the value t(n) is the infimumweight for a party to win
n seats in a house of size n + 1 when competing against another
party whose weight is unity,

t(n) = inf

t > 0

(n, 1) ∈ D

n + 1; (t, 1)


.

The infimum is taken over a set containing the value t = n, by
exactness. This entails t(n) ≤ n and t(n)/n ≤ 1. The quotients
t(n)/n converge to a limit L,

L = lim
n→∞

t(n)
n

=
1

s(2)
lim
n→∞

s(n)
n

=
1

s(2)
,

since the localization property s(n) ∈ [n − 1; n] implies limn→∞

s(n)/n = 1. A division by L reproduces the original signpost
sequence, t(n)/L = s(n).

In summary, the reconstruction of the signpost sequence
underlying a given divisor method Dwould proceed in three steps.
The first step uses the relations (n, 1) ∈ D


n + 1; (t, 1)


to define

the sequence t(n). The second step calculates the limit L of the
quotients t(n)/n. The third step scales the sequence t(n) to retrieve
the signposts, t(n)/L = s(n).

These steps reappear in the proof of the Coherence Theorem in
Section 5. However, the Coherence Theorem is more demanding
since it does not presuppose the existence of the signpost
sequence, but needs to construct it from scratch.

4. Coherence and monotonicity

An established strategy to analyze a large problem with many
variables is to dissect it into partial problems with fewer variables.
A solution for the whole problem should comprise viable solutions
for the partial problems. Balinski and Young (1982, page 141) put
it this way: ‘An inherent principle of any fair division is that every
part of a fair division should be fair.’ The whole and its parts must fit
together in a coherent way.

The definition below follows Balinski and Young (1982, page
141) where the concept is called ‘‘uniformity’’. Young (1994, page
171) speaks of ‘‘consistency’’. The term ‘‘coherence’’ is popularized
by Balinski (2003). In the following, we continue to use the latter
term since uniformity and consistency are notions to be found also
in other contexts of mathematics and statistics.

An apportionment method appears to be coherent when its
overall seat vectors are such that their partial seat vectors are valid
solutions for the partial problems. In otherwords, if the overall seat
vector (x1, . . . , xℓ) is a solution for the apportionment of h seats in
a large system of ℓ parties, then a party subsystem I ⊂ {1, . . . , ℓ}
admits the subvector (xi)i∈I as a solution for the apportionment of

i∈I xi seats among the parties in I . Moreover, if the subproblem
features another solution (yi)i∈I besides (xi)i∈I , then substituting
one for the other yields another overall solution.

While the abstract motivation is persuasive, the concrete
definition of coherent apportionment methods is notationally
cumbersome. Let x+ = x1 + · · · + xℓ be an abbreviation for the
overall component sum of the seat vector x. We denote partial
sums of components by xI =


i∈I xi, and complementary sets by

I ′ = {1, . . . , ℓ} \ I .

Definition. An apportionment method A is called ‘‘coherent’’
when, for all system sizes ℓ ≥ 2 and allweight vectors (v1, . . . , vℓ),
every seat vector x ∈ A(x+; v) fulfills the following two properties
for all party subsets I ⊂ {1, . . . , ℓ}:

1. Coherence of partial problems: A partial vector of x solves the
associated partial apportionment problem, that is, (xi)i∈I ∈ A
xI; (vi)i∈I


.

2. Coherence of substituted solutions:Whenever tied partial solu-
tions are substituted for partial vectors of x, then the resulting
vector is an overall solution as is x, that is, all seat vectors (yi)i∈I
∈ A


xI; (vi)i∈I


and (zk)k∈I ′ ∈ A


xI ′; (vk)k∈I ′


satisfy


(yi)i∈I ,

(zk)k∈I ′


∈ A

x+;


(vi)i∈I , (vk)k∈I ′


.

Coherence of partial problems means that every partial vec-
tor that is extracted from an overall seat vector is a valid appor-
tionment solution of the associated partial problem. Coherence of
substituted solutions says that tied solutions of a partial problem,
when substituted into an overall solution, yield tied overall so-
lutions. That is, if an overall seat vector x =


(xi)i∈I , (xk)k∈I ′


∈
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A

x+;


(vi)i∈I , (vk)k∈I ′


is modified by replacing the partial vec-

tor (xi)i∈I by a tied seat vector (yi)i∈I ∈ A

xI; (vi)i∈I


, the re-

sulting seat vector yields an overall tie,

(yi)i∈I , (xk)k∈I ′


∈

A

x+;


(vi)i∈I , (vk)k∈I ′


. The same reasoning applies to the com-

plementary subsystem I ′.
The definition makes sense only in the presence of anonymity.

Without anonymity we would have to observe the order in
which the parties are presented, which would force us to
consider subsequences. With anonymity the order is negligible,
and consideration of subsets suffices.

As soon as coherence is adjoined to the five organizing
principles of anonymity, balancedness, concordance, decency,
and exactness, it is well known that balancedness becomes
dispensable. Balancedness is implied by anonymity, exactness, and
coherence, see, for example, Lemma 2.1 in Balinski and Rachev
(1997, page 7).

The mutual dependences among these properties is of lesser
interest than their joint consequences. Consequences that prove
crucial for the Coherence Theorem concern two notions of mono-
tonicity, house size monotonicity and vote ratio monotonicity.
Their proper meanings are detailed below. In a nutshell, house size
monotonicity deals with varying house sizes in the presence of a
constant weight vector. Vote ratio monotonicity addresses vary-
ing weight vectors in the presence of a constant house size. The
present section shows that coherence implies monotonicity, in ei-
ther sense.

House size monotonicity is the only other notion besides
exactness which we need to amend. Let x ≤ y denote the
componentwise ordering of two seat vectors x and y, that is, xj ≤

yj for all j ≤ ℓ. Balinski and Young (1982, page 117) define an
apportionmentmethod A to be house sizemonotonewhen, given a
house size h and aweight vector v, for every seat vector x ∈ A(h; v)
there exists a seat vector y ∈ A(h + 1; v) satisfying x ≤ y. This is
the definition adopted by most of the current literature.

The fact that there is at least some vector y ∈ A(h + 1; v)
which satisfies the componentwise increase x ≤ y accounts for the
occurrence of ties, or more precisely, of too many ties. Among the
tied solutions there may be others for which the componentwise
increase does not hold true. For an example, see Table 4.2 in
Pukelsheim (2014, page 64). For this reason, it is asking too much
to have all seat vectors y ∈ A(h+1; v) satisfy x ≤ y. The definition
demands only that at least one of the tied seat vectors works out
fine. Yet the current definition is deficient, for two reasons.

Firstly, ties are unproblematic in two-party systems. In tied
situations, there are just two equally justified seat vectors
according to whether the last seat goes to one party or the other.
Here, the notion of house size monotonicity is less sophisticated,
by requiring all seat vectors x ∈ A(h; v) and all seat vectors y ∈

A(h + 1; v) to satisfy x ≤ y. This is equivalent to saying that all
seat vectors y ∈ A(h + 1; v) and all seat vectors x ∈ A(h; v)
satisfy y ≥ x. Hence, the requirement covers house sizes that
are increasing, from h to h + 1, as well as house sizes that are
decreasing, from h + 1 to h.

Secondly, systems with three or more parties may comprise
situations where the number of tied solutions is much larger. For
systems of size ℓ ≥ 3 the existential quantifier ‘‘there exists a seat
vector y’’ is indispensable and cannot be relaxed to the universal
quantifier ‘‘for all seat vectors y’’, see Pukelsheim (2014, page 120).
However, since the particular succession of quantifiers demands
that ‘‘for every seat vector x ∈ A(h; v) there exists a seat vector
y ∈ A(h+ 1; v)’’, the current definition applies only to house sizes
that are increasing, from h to h + 1. It is silent on what happens
when stepping down from a larger house size h + 1 to the smaller
house size h, as observed already by Hylland (1978, page 19).

The amended definition resolves the two deficiencies, as
follows.
An apportionment method A is called ‘‘house size monotone’’
when, given house sizes h < k and a two-party weight vector (v1,
v2), all seat vectors (x1, x2) ∈ A


h; (v1, v2)


and all seat vectors

(y1, y2) ∈ A

k; (v1, v2)


satisfy (x1, x2) ≤ (y1, y2), and when,

given house sizes h ≠ k and a weight vector v in a system with
three or more parties, for every seat vector x ∈ A(h; v) there exists
a seat vector y ∈ A(k; v) satisfying x ≤ y in case h < k, and x ≥ y
in case h > k.

HSM-Lemma. Every coherent apportionment method is house size
monotone.

Proof. The proof is subdivided into two parts. Part I treats systems
with two parties, Part II systems with an arbitrary number of
parties. Let A denote a coherent apportionment method.

I. Part I is restricted to two-party systems. It suffices to establish
the assertion for house size k = h + 1. Given a vote vector v =

(v1, v2) we set t = v1/v2 and pass to the scaled weights v/v2 =

(t, 1), which is allowed by decency. For two arbitrary seat vectors,
(y1, y2) ∈ A


h; (t, 1)


and (z1, z2) ∈ A


h + 1; (t, 1)


we need to

show that (y1, y2) ≤ (z1, z2).
Consider the apportionment of 2h+ 1 seats among four parties

with respective vote weights t , 1, t , and 1. We claim that in every
solution (x1, x2, x3, x4) the sum of the first two components equals
h or h + 1,

(x1, x2, x3, x4) ∈ A

2h + 1; (t, 1, t, 1)


=⇒ x1 + x2 ∈ {h, h + 1}.

The claim is proved as follows. Since x1 and x3 are tied via the
weight t , and x2 and x4 are tied via the weight 1, balancedness
restricts the ranges of x3 and x4, namely x1 − 1 ≤ x3 ≤ x1 + 1
and x2 − 1 ≤ x4 ≤ x2 + 1. If the sum of the first two components
is h − 1 seats or less, or if it is h + 2 seats or more, then the sum of
all four components cannot match the house size 2h + 1,

x1 + x2 ≤ h − 1 =⇒ x+ ≤ (h − 1) + (x1 + 1) + (x2 + 1)
≤ 2(h − 1) + 2 = 2h,

x1 + x2 ≥ h + 2 =⇒ x+ ≥ (h + 2) + (x1 − 1) + (x2 − 1)
≥ 2(h + 2) − 2 = 2h + 2.

The only possibilities left are x1 + x2 = h or x1 + x2 = h + 1. The
claim is proved.

The set A

2h + 1; (t, 1, t, 1)


also contains the solution

(x3, x4, x1, x2) where the first two components are interchanged
with the last two components, because of anonymity. If x1+x2 = h
then x3 + x4 = h + 1, while if x1 + x2 = h + 1 then x3 + x4 = h.
We continue with the first case, x1 + x2 = h. The second case is
handled similarly.

On the one hand coherence of partial problems secures
that (x1, x2) lies in A


h; (t, 1)


, as does (y1, y2). Coherence of

substituted solutions allows to replace in the seat vector (x1, x2,
x3, x4) the first two components by (y1, y2),

(y1, y2, x3, x4) ∈ A

2h + 1; (t, 1, t, 1)


.

On the other hand, coherence of partial problems ascertains
that (x3, x4) lies in A


h + 1; (t, 1)


, as does (z1, z2). Coherence

of substituted solutions allows to replace in the seat vector
(y1, y2, x3, x4) the last two components by (z1, z2),

(y1, y2, z1, z2) ∈ A

2h + 1; (t, 1, t, 1)


.

Here, y1 and z1 are tied via the weight t , and y2 and z2 are tied
via the weight 1. Balancedness restricts the ranges of z1 and z2 to
y1 − 1 ≤ z1 ≤ y1 + 1 and y2 − 1 ≤ z2 ≤ y2 + 1. The option
z1 = y1 − 1 fails since it implies z1 + z2 ≤ (y1 − 1) + (y2 + 1) ≤ h
which contradicts z1 + z2 = h+ 1. The option z2 = y2 − 1 fails for
the same reason. The remaining options entail y1 ≤ z1 and y2 ≤ z2.
The proof of Part I is complete.
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II. Part II turns to larger party systems, ℓ ≥ 3. The case k = h+1
is presented in detail. We assume that the apportionment method
A is house size monotone for all systems up to size ℓ − 1, but
violates house size monotonicity for an ℓ-party system with some
weight vector v = (v1, . . . , vℓ). That is, there exists a seat vector
(x1, . . . , xℓ) ∈ A(h; v) such that all seat vectors z = (z1, . . . , zℓ) ∈

A(h+1; v) feature some party i that loses seats, xi > zi. We fix such
a vector z. Since the house size grows there must be another party
j ≠ i that does better than before, xj < zj. Anonymity permits to
move the two parties up front, i = 1 and j = 2. Hence, we have
x1 > z1 and x2 < z2.

Coherence of partial problems yields (x1, x2) ∈ A

x1 + x2; (v1,

v2)

and (z1, z2) ∈ A


z1 + z2; (v1, v2)


. In case x1 + x2 < z1 + z2,

Part I implies x1 ≤ z1 which contradicts x1 > z1. In case x1 + x2 >
z1 + z2, Part I implies x2 ≥ z2 which contradicts x2 < z2. The case
left is x1 + x2 = z1 + z2. Setting k = h− (x1 + x2) = h− (z1 + z2),
coherence of partial problems secures

(x3, . . . , xℓ) ∈ A

k; (v3, . . . , vℓ)


,

(z3, . . . , zℓ) ∈ A

k + 1; (v3, . . . , vℓ)


.

By assumption there is a seat vector (y3, . . . , yℓ) ∈ A

k + 1; (v3,

. . . , vℓ)

satisfying (x3, . . . , xℓ) ≤ (y3, . . . , yℓ). Coherence of

substituted solutions allows to replace in z the first two
components by (x1, x2), and the last ℓ−2 components by (y3, . . . ,
yℓ). The two substitutions yield a vector

y = (x1, x2, y3, . . . , yℓ) ∈ A(h + 1; v)

satisfying x ≤ y. This contradicts the assumption that the appor-
tionment method A violates house size monotonicity for the ℓ-
party system with weight vector v.

The case k = h − 1 is handled similarly. The proof of Part II is
complete. �

Part I of our proof is similar to the proofs of Lemma 2.2 in
Balinski and Rachev (1997), and of Lemma 4 in Balinski and
Ramírez (1999). A closely related result is Theorem 3 in Hylland
(1978, page 25) though the technical assumptions differ slightly.

The other monotonicity notion is vote ratio monotonicity, as
it is called in Pukelsheim (2014, page 121). Balinski and Young
(1982, page 108) speak of population monotonicity. The issue is
to compare a seat vector x originating from a weight vector v =

(v1, . . . , vℓ) with a seat vector y belonging to a weight vector w =

(w1, . . . , wℓ), while keeping the house size the same, x ∈ A(h; v)
and y ∈ A(h; w). When the first two parties are to be compared,
the input becomes more transparent by standardizing the weight
of the second party to be unity. Since this kind of standardization
is permitted by decency we switch to the weight vectors

1
v2

v =


v1

v2
, 1,

v3

v2
, . . . ,

vℓ

v2


,

1
w2

w =


w1

w2
, 1,

w3

w2
, . . . ,

wℓ

w2


.

Which seat numbers appear adequate when the weight of the
first party increases, v1/v2 < w1/w2, while the second party
continues to have weight unity? Common sense would frown
upon an outcome where the first party loses seats, x1 > y1, while
simultaneously the second party gains seats, x2 < y2. The opposite
should happen, the first party, doing better, may gain seats, x1 ≤

y1, or the second party, not doing better, may lose seats, x2 ≥ y2.
This view leads to the notion of vote ratio monotonicity as in
Pukelsheim (2014, page 121).

An apportionment method A is called ‘‘vote ratio monotone’’
when, for every house size h, system size ℓ, and weight vectors
v = (v1, . . . , vℓ) and w = (w1, . . . , wℓ), all seat vectors x ∈

A(h; v) and y ∈ A(h; w) and all parties i, j ≤ ℓ satisfy
vi

vj
<

wi

wj
=⇒ xi ≤ yi or xj ≥ yj.

VRM-Lemma. Every coherent apportionment method is vote ratio
monotone.

Proof. The proof comes in two parts, first treating systems with
two parties and then passing to systems with an arbitrary number
of parties. Let A denote a coherent apportionment method.

I. Part I handles two-party systems. For every pair of seat vectors
(z1, z2) ∈ A


h; (v1, v2)


and (y1, y2) ∈ A


h; (w1, w2)


, we need to

show that v1/v2 < w1/w2 implies z1 ≤ y1 or z2 ≥ y2. Upon setting
s = v1/v2 and t = w1/w2 decency allows the more comfortable
notation (y1, y2) ∈ A


h; (t, 1)


and (z1, z2) ∈ A


h; (s, 1)


.

Consider the apportionment of 2h seats among four partieswith
respective vote weights t , 1, s, and 1, where t > s. We claim that in
every solution (x1, x2, x3, x4) the sum of the first two components
is greater than or equal to h,

(x1, x2, x3, x4) ∈ A

2h; (t, 1, s, 1)


=⇒ x1 + x2 ≥ h.

The claim is proved by establishing the inequality x1+x2 ≥ x3+x4.
The inequality instantly gives 2(x1 + x2) ≥ x+ = 2h, whence
x1 + x2 ≥ h. In view of t > s concordance yields x1 ≥ x3. In
case x2 ≥ x4, the inequality x1 + x2 ≥ x3 + x4 is immediate.
In case x2 < x4, balancedness entails x4 = x2 + 1, whence
x2 + x4 = 2x2 + 1 is odd. Since x+ = 2h is even, x1 + x3 is odd, too.
It follows that x1 ≠ x3, whence x1 > x3, that is, x1 ≥ x3 + 1. Now
x1 + x2 ≥ (x3 + 1) + (x4 − 1) = x3 + x4 establishes the inequality
in case x2 < x4. The claim is proved.

The conclusion x1 + x2 ≥ h is split into two cases: x1 + x2 = h
and x1 + x2 > h. The case x1 + x2 = h comes with x3 + x4 = h.
Coherence of substituted solutions allows to substitute (y1, y2) for
(x1, x2), and (z1, z2) for (x3, x4). In the seat vector (y1, y2, z1, z2) ∈

A

2h; (t, 1, s, 1)


concordance ascertains y1 ≥ z1, whence y2 ≤ z2.

The case x1 + x2 > h is more intricate. On the one hand,
coherence of partial problems secures (x1, x2) ∈ A


x1 + x2; (t, 1)


.

Compared with (y1, y2) ∈ A

h; (t, 1)


house size monotonicity

implies x2 ≥ y2.
On the other hand, coherence of partial problems ascertains

(x3, x4) ∈ A

x3 + x4; (s, 1)


, where x3 + x4 = 2h − (x1 + x2) < h.

Compared with (z1, z2) ∈ A

h; (s, 1)


house size monotonicity

implies x4 ≤ z2.
The set A


2h; (t, 1, s, 1)


also contains the solution with

second and fourth components interchanged, (x1, x4, x3, x2), by
anonymity. By balancedness, one of the two solutions has its
second component less than or equal to its fourth component;
without loss of generality, we continue with x2 ≤ x4. This allows
to concatenate the preceding inequalities, y2 ≤ x2 ≤ x4 ≤ z2,
implying y1 = h−y2 ≥ h−z2 = z1. The proof of Part I is complete.

II. Part II treats systems of size ℓ ≥ 3. The argument is indirect.
Suppose that a coherent apportionment methods A fails to be vote
ratio monotone. Then, it features seat vectors z ∈ A(h; v) and
y ∈ A(h; w) such that two parties i and j—where without loss of
generality we take i = 1 and j = 2—satisfy v1/v2 < w1/w2 as well
as z1 > y1 and z2 < y2. Upon setting s = v1/v2 and t = w1/w2,
coherence of partial problems yields (z1, z2) ∈ A


z1 + z2; (s, 1)


and (y1, y2) ∈ A


y1 + y2; (t, 1)


, where s < t as well as z1 > y1

and z2 < y2. Contradictions evolve, as follows.
In case z1 + z2 = y1 + y2, Part I yields z1 ≤ y1, whence z2 ≥ y2.

This contradicts both, z1 > y1 as well as z2 < y2.
In case z1 + z2 < y1 + y2, we introduce a solution (x1, x2) ∈

A

y1 + y2; (s, 1)


. For the passage from (z1, z2) to (x1, x2), house

size monotonicity yields z1 ≤ x1 and z2 ≤ x2. For the passage from
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(x1, x2) to (y1, y2), Part I gives x1 ≤ y1, whence x2 ≥ y2. Altogether
we get z1 ≤ y1, which contradicts z1 > y1.

In case z1 + z2 > y1 + y2, we introduce a solution (x1, x2) ∈

A

z1 + z2; (t, 1)


. For the passage from (z1, z2) to (x1, x2), Part I

gives z1 ≤ x1, whence z2 ≥ x2. For the passage from (x1, x2) to
(y1, y2), house size monotonicity yields x1 ≥ y1 and x2 ≥ y2.
Altogether, we get z2 ≥ y2, which contradicts z2 < y2. The proof
of Part II is complete. �

Balinski and Rachev (1997, page 6) resort to the notion of
order-preservation. They call an apportionment method A ‘‘order-
preserving’’ when all seat vectors x ∈ A(h; v) and y ∈ A(h; w)
with v1 < w1 and vj = wj for all j ≥ 2 satisfy x1 ≤ y1. Wemention
in passing that Balinski and Young (1982, page 106) address this
notion and promptly brush it aside because ‘it is not relevant to
the problem in an applied sense, since such comparisons scarcely
ever occur in practice’.

As a matter of fact, every apportionment method that is vote
ratio monotone is order-preserving. The opposite ordering x1 >
y1 is ruled out. Because of a common house size h there would
have to be a party j ≥ 2 with vj = wj and xj < yj. But vote
ratio monotonicity does not allow a situation where v1/vj <
w1/wj occurs together with x1 > y1 and xj < yj. Hence order-
preservation comes for free once we know that vote ratio
monotonicity holds true. There is no need to assume order-
preservation as a premise when the VRM-Lemma delivers vote
ratio monotonicity as a conclusion.

A breach of monotonicity is commonly referred to as a paradox.
Quota methods provide ample examples. The most notorious
example is the Alabama paradox which illustrates a breach
of house size monotonicity. Moreover quota methods may fail
vote ratio monotonicity, as is exemplified by Brams and Straffin
(1982), Young (1994, page 60), and Pukelsheim (2014, page 122).
Quota methods even violate order-preservation. Dančišin (2014)
presents an examplewhere a partywinsmore votes, but gets fewer
seats. This is an instance of the no-showparadox, also knownunder
the heading of negative vote weight.

5. The Coherence Theorem

The main result of the present paper states that coherent
apportionment methods coincide with divisor methods, except
possibly for the handling of ties. See Section 1 for a more detailed
survey of the relevant literature.

An apportionment method A is called ‘‘compatible with the
apportionmentmethodD’’, when every solution set of A is included
in the corresponding solution set of D, that is A(h; v) ⊆ D(h; v) for
all house sizes h and all weight vectors v.

Hylland (1978, pages 6, 32) calls a method A that is compatible
with D a ‘‘submethod’’ of D and, when D is a divisor method, a
‘‘partial divisor method’’.

Compatibility means that every seat vector of A is a valid seat
vector ofD as well. Hence, the twomethods actually yield identical
solutions whenever the solution set D(h; v) is a singleton. Only
when D(h; v) contains two or more seat vectors, not all of them
need to make their appearance in the solution set A(h; v).

Coherence Theorem. Every coherent apportionment method is
compatible with a divisor method.

Proof. The proof is subdivided into Parts I–V. Let A denote a
coherent apportionment method. Parts I–III investigate two-party
solution sets A(h; v). Part I considers equal weights v = (1, 1),
Part II special weights v = (t, 1), and Part III arbitrary weights
v = (v1, v2). Part IV constructs the signpost sequence that induces
the desired divisor method D. Part V verifies that A is compatible
with D.
I. Part I begins with two parties with equal vote weights,
v1 = v2. Decency permits a passage to the weight vector (1, 1).
Here, the solution sets are fully determined through the organizing
principles. If the house size is even, balancedness forces the
two parties to split the seats evenly. If the house size is odd,
balancedness permits a party to be one seat ahead of the other
party. Anonymity lets the solution set also comprise the permuted
solution, with the other party ahead of the first. In summary,

A

n + 1; (1, 1)


=




n + 1
2

,
n + 1
2


in case n + 1 is even,n

2
+ 1,

n
2


,
n
2
,
n
2

+ 1


in case n + 1 is odd.
(1)

II. Part II discusses two-party systems where the second party
has weight unity. That is, theweight vector is of the form (t, 1). For
n ≥ 1 we introduce the set Tn consisting of all t > 0 so that in a
house of size n+1 the first party with weight t gets n seats and the
second party with weight unity gets one seat,

Tn =


t > 0

(n, 1) ∈ A

n + 1; (t, 1)


.

These sets are nonempty since n ∈ Tn, by exactness. Vote ratio
monotonicity entails that they are intervals, but this fact is not
needed in the sequel. Central quantities for the proof are the infima
of the sets Tn,

t(n) = inf Tn ∈ [0; n]. (2)

The infimum weights fulfill

t(2) = 1 ≤ t(n) for all n > 2. (3)

Indeed (1) says (2, 1) ∈ A

3; (1, 1)


, whence 1 ∈ T2; thus t(2) ≤ 1.

For t < 1 concordance yields (2, 1) ∉ A

3; (t, 1)


, whence t ∉ T2

and t(2) ≥ 1. Thus, we get t(2) = 1. For n > 2 we have t ∉ Tn for
t < 1, whence t(n) ≥ 1.

For large weights t > t(n) definition (2) implies a lower bound
for the seats of the first party or an upper bound for the seats
of the second party, for all house sizes h and for all seat vectors
(x1, x2) ∈ A


h; (t, 1)


:

t > t(n) =⇒ x1 ≥ n or x2 ≤ 1. (4)

To see this, we observe that vote ratio monotonicity and (2) let
all solutions (y1, y2) ∈ A


n + 1; (t, 1)


satisfy y1 ≥ n, whence

y2 ≤ 1. For house sizes h ≠ n+1 and arbitrary solutions (x1, x2) ∈

A

h; (t, 1)


, we apply house size monotonicity: either h > n + 1

and x1 ≥ y1 ≥ n, or h < n + 1 and x2 ≤ y2 ≤ 1. This leads to (4).
Similarly, small weights 0 < s < t(m) imply an upper bound

for the seats of the first party or a lower bound for the seats of the
second party, for all house sizes h and for all seat vectors (x1, x2) ∈

A

h; (s, 1)


:

s < t(m) =⇒ x1 ≤ m − 1 or x2 ≥ 2. (5)

Here, vote ratio monotonicity and (2) let all solutions (y1, y2) ∈

A

m + 1; (s, 1)


fulfill y1 ≤ m − 1, whence y2 ≥ 2. For house

sizes h ≠ m + 1 and arbitrary solutions (x1, x2) ∈ A

h; (s, 1)


again house size monotonicity is applied: either h < m + 1 and
x1 ≤ y1 ≤ m − 1, or h > m + 1 and x2 ≥ y2 ≥ 2. This proves (5).

III. Part III turns to two-party systems with an arbitrary weight
vector (v1, v2). We claim that, for all house sizes h and n,m ≥ 1
with t(m) > 0, every seat vector (y1, y2) ∈ A


h; (v1, v2)


satisfies

v1

v2
>

t(n)
t(m)

=⇒ y1 ≥ n or y2 ≤ m − 1. (6)
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The proof of (6) is as follows. By assumption, we have t(n)/v1 <
t(m)/v2. Using the average a =


t(n)/v1 + t(m)/v2


/2, we rescale

the weights into t = av1 and s = av2. Since t > t(n) and s < t(m)
the new weights allow to employ (4) and (5). We remark that (6)
reduces to (4) whenm = 2, and to (5) when n = 2.

Consider the apportionment of n+m seats among three parties
with respective weights t , s, and 1. We verify that in every solution
(x1, x2, x3) the component x1 is greater than or equal to n, while x2
is less than or equal tom − 1,

(x1, x2, x3) ∈ A

n + m; (t, s, 1)


=⇒ x1 ≥ n and x2 ≤ m − 1. (7)

Verification of (7) is in two steps. The first step assumes x3 ≥

2. Coherence of partial problems ascertains (x1, x3) ∈ A

x1 +

x3; (t, 1)

. From (4),we get x1 ≥ n or x3 ≤ 1. The latter inequality is

ruled out by assumption, hence x1 ≥ n holds true. We cannot have
x2 > m − 2 since it implies x+ > n + (m − 2) + 2 = n + m = x+,
a contradiction. Hence x2 ≤ m − 1 holds true, too, as demanded
in (7).

The second step handles the remaining case, x3 ≤ 1. Coherence
of partial problems ascertains (x2, x3) ∈ A


x2 + x3; (s, 1)


. From

(5), we get x2 ≤ m − 1 or x3 ≥ 2. The latter inequality is ruled
out by assumption, hence x2 ≤ m − 1 holds true. We cannot have
x1 < n since it implies x+ < n + (m − 1) + 1 = n + m = x+, a
contradiction. Hence, x1 ≥ n holds true, too, as called for in (7).

In (7), coherence of partial problems secures (x1, x2) ∈ A

x1 +

x2; (t, s)

, with x1 ≥ n and x2 ≤ m − 1. Finally we consider

arbitrary seat vectors (y1, y2) ∈ A

h; (v1, v2)


= A


h; (t, s)


, the

identity following from decency. In case h = x1 + x2 coherence
of substituted solutions yields (y1, y2, x3) ∈ A


n + m; (t, s, 1)


,

whence (7) implies (6). Otherwise (7) is supplemented by house
size monotonicity: either h > x1 + x2 and y1 ≥ x1 ≥ n, or
h < x1 + x2 and y2 ≤ x2 ≤ m − 1. The proof of (6) is complete.

IV. Part IV establishes and explores the inequalities

n
m − 1

>
t(n)
t(m)

for all n ≥ 1 and for allm ≥ 2. (8)

We remark that (3) secures t(m) > 0. Theproof of (8) is indirect.
Assume that there are integers n ≥ 1 and m ≥ 2 satisfying
n/(m − 1) ≤ t(n)/t(m). This inequality necessitates t(n) > 0.
By passing to reciprocals, (m − 1)/n ≥ t(m)/t(n), we move closer
to (6) except that the premise in (6) features a strict inequality.

By exactness, the seat vector x = (m − 1, n) is contained in
the solution set A(m − 1 + n; x). For k ≥ 1, we define the weights
v1(k) = m−1+1/k > m−1, and the constant weights v2(k) = n.
They fulfill

v1(k)
v2(k)

>
v1(k + 1)
v2(k + 1)

>
m − 1

n
≥

t(m)

t(n)
.

Upon setting v(k) =

v1(k), v2(k)


, the vectors


y1(k), y2(k)


∈

A

m − 1 + n; v(k)


satisfy y1(k) ≥ y1(k + 1), by vote ratio

monotonicity. From (6) we get the lower bound y1(k) ≥ m.
Therefore, the integer sequence y1(k), k ≥ 1, is eventually constant
to some integer y1 ≥ m. Now the seat vector y = (y1,m−1+n−y1)
lies in A


m−1+n; v(k)


for eventually all k. But y ≠ x contradicts

strong exactness. Thus, (8) is established.
Exploration of (8) relies on the equivalent relations t(n)/n <

t(m)/(m − 1). These relations entail a string of inequalities,

lim sup
n→∞

t(n)
n

≤ sup
n≥1

t(n)
n

≤ inf
m≥2

t(m)

m − 1
≤ lim inf

m→∞

t(m)

m − 1

= lim inf
n→∞

t(n)
n

.

Since the right limit inferior is less than or equal to the left limit
superior, equality holds throughout. Thus, the quotients t(n)/n
converge to a limit, limn→∞ t(n)/n = L say. The limit equals the
supremum of t(n)/n and the infimum of t(m)/(m − 1), whence

t(n)
n

≤ L ≤
t(m)

m − 1
for all n ≥ 1 and for all m ≥ 2. (9)

This puts us in a position to define the numbers s(0) = 0 and
s(n) = t(n)/L for n ≥ 1. They form a signpost sequence. Indeed,
inequality (9) with n = m ≥ 2 yields s(n)/n ≤ 1 ≤ s(n)/(n − 1).
This is just another way of expressing the localization property
s(n) ∈ [n − 1; n]. For n = 1, we get s(1) ∈ [0; 1] from (2) and (9).
Furthermore, (8) may be rearranged into s(n)/n < s(m)/(m − 1),
for all n ≥ 1 and m ≥ 2. This is just another way of expressing the
left–right disjunction.

V. Part V verifies that the apportionment method A is
compatible with the divisor method D that is induced by the
signpost sequence s(n), n ≥ 0. It suffices to show that the seat
vectors x ∈ A(h; v) satisfy the max–min inequality that belongs to
D,

max
i≤ℓ

vi

s(xi + 1)
≤ min

j≤ℓ

vj

s(xj)
. (10)

The proof of (10) is as follows. For every two parties i ≠ j
coherence of partial problems ascertains that (xi, xj) ∈ A


xi + xj;

(vi, vj)

. Suppose that some such pair with xi ≥ 0 and xj ≥ 1

violates (10) by fulfilling

vi

vj
>

s(xi + 1)
s(xj)

=
t(n)
t(m)

,

where we have set n = xi + 1 and m = xj. From (6) we get xi ≥

n = xi + 1 or xj ≤ m − 1 = xj − 1, a contradiction. Therefore, we
have vi/s(xi + 1) ≤ vj/s(xj), and obtain maxi≤ℓ vi/s(xi + 1) ≤

minj:xj≥1 vj/s(xj). Upon recalling the convention vj/0 = ∞, no
harm is done by adjoining to the right hand minimum the cases
xj = 0. The proof of (10) is complete and concludes the proof of
the Coherence Theorem. �

Corollary. An apportionmentmethod is coherent and complete if and
only if it is a divisor method.

Proof. First consider the direct part of the proof. The Coherence
Theorem tells us that a coherent apportionment method A has
solution setswhich are subsets of the solutions sets of some divisor
method D. Since A is also assumed to be complete, its solution sets
include all tied solutions. The solution sets of D do so, too, by the
definition of divisor methods. Hence, the solutions sets coincide.
Now A = D shows that A is a divisor method.

For the converse part, we need to verify that a divisor
method is coherent and complete. But this is well known, see for
instance Balinski and Rachev (1997, page 8) or Pukelsheim (2014,
page 118). �

6. Discussion

Balinski and Young (1982, page 98) declare ‘the rock-bottom
requirements that must be satisfied by any method that is
worthy of consideration’ to be anonymity, decency, exactness, and
completeness. The present paper suggests to drop completeness
from the list, and to add balancedness and concordance. This
handful of properties constitute the organizing principles bywhich
an apportionment rule is elevated to an apportionment method, in
the terminology of Pukelsheim (2014, page 58).

Coherence reduces the vast class of all apportionment methods
to the subclass of methods compatible with a divisor method. If
additionally assuming that the divisor method transfers properly
then it must be parametric, see Theorem 3 in Balinski and Ramírez
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(2014, page 44). In the language of Pukelsheim (2014), these are
the divisor methods with stationary rounding.

Moreover, Young (1994, pages 49–50, 190) proves that
the divisor method with standard rounding is the unique
apportionment method that is a coherent extension of the natural
two-party apportionments. See also Section 9.3 in Pukelsheim
(2014).

Altogether, the axiomatic approach points to a dominant family
of apportionment methods, the parametric stationary divisor
methods. As envisioned by Balinski and Young (1978, page 849),
the Coherence Theorem characterizes these methods primarily
by structural properties; mechanical peculiarities are secondary.
Procedural transparency and numerical ease of these methods are
an added bonus that comes for free.
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