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Abstract A short proof is given of the necessary and sufficient conditions for the conver-
gence of the Iterative Proportional Fitting procedure. The input consists of a nonnegative
matrix and of positive target marginals for row sums and for column sums. The output is
a sequence of scaled matrices to approximate the biproportional fit, that is, the scaling of
the input matrix by means of row and column divisors in order to fit row and column sums
to target marginals. Generally it is shown that certain structural properties of a bipropor-
tional scaling do not depend on the particular sequence used to approximate it. Specifically,
the sequence that emerges from the Iterative Proportional Fitting procedure is analyzed by
means of the L1-error that measures how current row and column sums compare to their tar-
get marginals. As a new result a formula for the limiting L1-error is obtained. The formula
is in terms of partial sums of the target marginals, and easily yields the other well-known
convergence characterizations.

Keywords Alternating scaling algorithm · Biproportional fitting · Matrix scaling ·
RAS procedure

1 Introduction

A novel L1-based analysis of the Iterative Proportional Fitting (IPF) procedure is presented.
The IPF procedure is an algorithm for scaling rows and columns of an input k × � weight
matrix A = ((aij )) so that the output matrix B = ((bij )) achieves row sums equal to a pre-
specified vector of row marginals, r = (r1, . . . , rk), and column sums equal to a prespecified
vector of column marginals, s = (s1, . . . , s�). We assume that all weights are nonnegative,
aij ≥ 0, and that at least one entry in each row and column of A is positive. All marginals
are taken to be positive, ri > 0 and sj > 0.
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The problem family has a continuous member, the biproportional fitting problem, and
a discrete member, the biproportional apportionment problem. The continuous case allows
the entries of B to be nonnegative, bij ∈ [0,∞). The output B is called the biproportional
fit of the weight matrix A to the target marginals r and s. The IPF procedure produces
scaled matrices A(t) = ((aij (t))) with matching row sums for odd steps, ai+(t + 1) = ri

for all i ≤ k, and matching column sums for even steps, a+j (t + 2) = sj for all j ≤ �.
Throughout this paper a subscript plus-sign indicates summation over the index concerned,
such as ai+ = ∑

j≤� aij etc. If the biproportional fit B exists, the sequence of scaled matrices
A(t), t ≥ 0, converges to B .

In the discrete case the entries of B are restricted to be natural numbers, bij ∈ {0,

1,2, . . .}, as are the marginal components ri and sj . Now the output B is called a bipro-
portional apportionment, for the weight matrix A and the target marginals r and s. The
discrete problem may be solved using the Alternating Scaling (AS) algorithm. It produces
scaled matrices A(t), but rounds its entries aij (t) to integers. There are rare instances when
the biproportional apportionment B exists while the AS algorithm fails to converge to it. An
example is given by Gaffke and Pukelsheim (2008, p. 157).

The present paper focuses on the continuous fitting problem where the relevant terms
ri, sj , aij (t), bij are not restricted to be integers. Yet our major tool, the L1-error function

f
(
A(t)

) =
∑

i≤k

∣
∣ai+(t) − ri

∣
∣ +

∑

j≤�

∣
∣a+j (t) − sj

∣
∣,

is borrowed from Balinski and Demange’s (1989a, 1989b) inquiry into the discrete appor-
tionment problem. In the discrete case the error function is quite suggestive, simply counting
how many units are wrongly allocated in step t . For the continuous problem the L1-error is,
at first glance, just one out of many ways to assess a lack of fit. At second glance it is a most
appropriate way, as this paper endeavors to show.

1.1 The literature on biproportional fitting

The continuous biproportional fitting problem is the senior member of the problem fam-
ily. It has created an enormous body of literature; we review only the papers that influ-
enced the present research. The term IPF procedure prevails in Statistics, see Fienberg and
Meyer (2006), or Speed (2005). Some Statisticians speak of matrix raking, such as Fagan
and Greenberg (1987). In Operations Research and Econometrics the label RAS method is
popular, pointing to a (diagonal) matrix R of row multipliers, the weight matrix A, and a (di-
agonal) matrix S of column multipliers, as mentioned already by Bacharach (1965, 1970).
Computer scientists prefer the term matrix scaling, as in Rote and Zachariasen (2007).

The IPF procedure became popular through Deming and Stephan (1940), see Fienberg
and Meyer (2006). Deming and Stephan (1940, p. 440) recommend terminating iterations
when the table reproduces itself. This closeness is what is measured by the L1-error function
f (A(t)), see the display preceding Lemma 2 in Sect. 3. While successfully advocating the
merits of the algorithm, Deming and Stephan were somewhat led astray in its analysis, as
communicated by Stephan (1942).

Brown (1959) proposes a convergence proof that Ireland and Kullback (1968) criticize
to lack rigor. The latter authors establish convergence by relating the IPF procedure to the
minimum entropy solution. Csiszár (1975, p. 155) notes that their argument is flawed, and
that the generalization to measure-spaces by Kullback (1968) suffers from a similar defi-
ciency. Csiszár (1975) salvages the entropy approach, and Rüschendorf (1995) extends it to
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general measure-spaces. Rüschendorf and Thomsen (1993, 1997) rectify a technical detail
that escaped Csiszár’s (1975) attention.

Ireland and Kullback (1968, Eqs. (4·32) and (4·33)) ultimately substitute convergence
of entropy by convergence in L1, referring to a result of Kullback (1966). Also Bregman
(1967) starts out with entropy, and then uses the L1-error function. Here we focus on the
L1-approach from start to finish. Ireland and Kullback (1968, p. 184) prove that the en-
tropy criterion decreases monotonically, as does the likelihood function of Bishop et al.
(1975, p. 86), and the L1-error function, see Bregman (1967, p. 197). Marshall and Olkin
(1968) and Macgill (1977) minimize a quadratic objective function. Pretzel (1980) uses a
geometric matrix-mean and makes do with the arithmetic-geometric-mean inequality. The
computational complexity of the IPF procedure is investigated by Kalantari et al. (2008).

The existence question is studied by many authors, such as Brualdi et al. (1966), Roth-
blum and Schneider (1989), Schneider (1990), Brown et al. (1993), Hershkowitz et al.
(1997). Some papers employ network and graph theory by interpreting the problem as a
transportation problem, as reviewed by Pukelsheim et al. (2012). Since this author was un-
able to smooth the arguments used here by employing graph theoretic tools the present
paper’s language is that of linear algebra.

Fienberg (1970) opens up a different route by embedding the IPF procedure into the
geometry of the manifold of constant interaction in a (k�− 1)-dimensional simplex of refer-
ence. The author works with the assumption that all input weights are positive, aij > 0. He
points out (p. 915) that the extension to problems involving zero weights is quite complex,
which is attested to by much of the literature. Ireland and Kullback’s (1968, p. 182) plea of
assuming positive weights in order to simplify the argument is a friendly understatement,
unless it is meant to be the utter truth.

Yet another approach, staying close to calculus and linear algebra, is due to Bacharach
(1965, 1970), and Sinkhorn (1964, 1966, 1967, 1972, 1974) and Sinkhorn and Knopp
(1967). Our viewpoint follows their lead. Michael Owen Leslie Bacharach (b. 1936, d. 2002)
was an Oxford econometrician. In 1965 he earned a PhD degree in Mathematics from Cam-
bridge. His thesis was published as Bacharach (1965), and became Sect. 4 of Bacharach
(1970). Richard Dennis Sinkhorn (b. 1934, d. 1995) received his Mathematics PhD in 1962
from the University of Wisconsin–Madison, with a thesis entitled On Two Problems Con-
cerning Doubly Stochastic Matrices. Throughout his career he served as a Mathematics
professor with the University of Houston. Though contemporaries, neither of the two ever
quoted the other.

1.2 The literature on biproportional apportionment

The discrete biproportional apportionment problem is the junior member of the problem
family. It was put forward first by Balinski and Demange (1989a, 1989b), see also Simeone
and Pukelsheim (2006). The rounding of scaled quantities to integers is appropriate for the
statistical analysis of frequency tables, as noted by Wainer (1998) and Pukelsheim (1998).
It disposes of any disclaimer that the adjusted figures are rounded off, hence when summed
may occasionally disagree a unit or so, as warned in Table I of Deming and Stephan (1940,
p. 433). When calculating percentages, as in Table 3.6-4 of Bishop et al. (1975, p. 99), the
method finishes off with 100 percent and does not stop short with 99 percent. Yet Balinski’s
motivation was not contingency table analysis in statistics, but proportional representation
systems for parliamentary elections.

The task of allocating seats of a parliamentary body to political parties does not toler-
ate any disclaimer excusing residual rounding errors. Methods must account for every seat.
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This is achieved by biproportional methods. In 2003, the Swiss Canton of Zurich adopted
a doubly proportional system, the biproportional divisor method with standard rounding,
see Pukelsheim and Schuhmacher (2004, 2011), and Balinski and Pukelsheim (2006). The
method may be attractive also for other countries as studied by Pennisi (2006) for Italy,
Zachariassen and Zachariasen (2006) for the Farœ Islands, Ramírez et al. (2008) for Spain,
and Oelbermann and Pukelsheim (2011) for the European Union. A computer program
for the calculations is provided at www.uni-augsburg.de/bazi, see Pukelsheim (2004), Joas
(2005), Maier (2009). The user may choose to run the IPF procedure, the AS algorithm,
the Tie-and-Transfer (TT) algorithm of Balinski and Demange (1989b), or various hybrid
combinations. The performance of these algorithms is studied by Maier et al. (2010).

In the electoral application the entries aij in the input weight matrix A signify vote
counts. When a party j does not campaign in district i it enters into the final evaluations
with vote count aij = 0. Therefore weights that are zero must be properly dealt with, even if
the labor entailed becomes quite complex. It is no longer appropriate to assume all weights
to be positive in order to simplify the argument.

1.3 Section overview

A brief overview of the paper is as follows. Section 2 investigates biproportional scalings
of a given weight matrix A. A biproportional scaling reweighs rows and columns of A

moderately enough so that none of the rows nor columns is annihilated. If two scalings
share the same row and column sums, then they coincide (Theorem 1). A scaling is called
direct when a passage to the limit, though allowed by definition, becomes superfluous. In
such a case the input matrix A and the output matrix B decompose accordingly (Lemma 1),
see also Balinski and Demange (1989a), Gietl (2009). Theorem 2 establishes necessary and
sufficient conditions to check for directness.

Section 3 turns to the IPF procedure by adjoining the goal to match prespecified row
marginals r and prespecified column marginals s. In each step t a scaled weight matrix A(t)

is produced that has matching rows for odd t , and matching columns for even t . The fit
of A(t) is measured by the L1-error function mentioned above. Lemma 2 ascertains that
the L1-error is non-increasing, and admits a finite set of lower bounds. The largest lower
bound turns out to be equal to the L1-error limit. The L1-error limit formula is new. Its
proof makes use of the result that the IPF even-step subsequence is always convergent, as
shown by Gietl and Reffel (2013) on the basis of the information divergence approach of
Csiszár and Tusnády (1984). The result replaces the IPF conjecture on which a previous
version of the present paper relied, see Pukelsheim (2013). Based on the limiting L1-errror
formula Theorem 3 offers a brief proof of the necessary and sufficient conditions for the IPF
sequence to converge to the biproportional fit.

2 Biproportional scalings

Let A = ((aij )) be a given k × � weight matrix, that is, A is assumed to have nonnegative
entries and no zero row nor zero column. Whether rows i ≤ k or columns j ≤ � do not
vanish is conveniently read off from their component sums, ai+ > 0 and a+j > 0. Another
weight matrix B is said to preserve the zeros of A when all zeros of A are zeros also of B ,
aij = 0 ⇒ bij = 0. Two matrices A and B have the same zeros when aij = 0 ⇔ bij = 0. We
concentrate on true matrix problems, k ≥ 2 and � ≥ 2.
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Definition 1 A k × � weight matrix B = ((bij )) is called a biproportional scaling of A

when for all rows i ≤ k and for all columns j ≤ � there are sequences of positive row
divisors ρi(1), ρi(2), . . . and of positive column divisors σj (1), σj (2), . . . such that

bij = lim
n→∞

aij

ρi(n)σj (n)
.

A biproportional scaling B is termed direct when its associated divisor sequences can be
chosen to be constant, that is, for all rows i ≤ k and for all columns j ≤ � there are positive
divisors μi and νj such that bij = aij /(μiνj ).

The requirement that B is a weight matrix necessitates positive row and column sums
and imposes a certain balance on row and column divisors. Neither can grow unboundedly
of an order dwarfing the other lest a vanishing row or column invalidates the definition.
Furthermore the requirement implies uniqueness of biproportional scalings that share the
same marginals.

Theorem 1 (Uniqueness) If two biproportional scalings B and C of a weight matrix A

share the same row and column sums, bi+ = ci+ for all rows i ≤ k and b+j = c+j for all
columns j ≤ �, then they coincide, B = C.

Proof The proof is by contraposition. Assuming the two scalings to be distinct, B 	= C, the
difference B − C is nonzero, but has row and column sums vanishing. We construct a cycle
of cells

(i1, j1), (i1, j2), (i2, j2), (i2, j3), . . . , (iq−1, jq−1), (iq−1, jq), (iq , jq), (iq , j1) (CC)

along which the entries in B − C alternate in sign. First we assemble a “long list” of cells
(i1, j1), (i1, j2), (i2, j2), . . . , (iQ, jQ), (iQ, j1), as follows. We start with a cell (i1, j1) where
bi1j1 > ci1j1 . In row i1 there is a cell (i1, j2) with bi1j2 < ci1j2 . Next we search in column
j2 a row i2 where bi2j2 > ci2j2 . Then we look for a column j3 such that bi2j3 < ci2j3 . The
long list terminates when encountering a column jQ already listed, that is, when for some
P > Q we find jP = jQ. The initial P − 1 cells are discarded, and the remaining “short list”
is relabeled as in (CC).

A cyclic ratio is a ratio having the entries along a given cell cycle alternately appear in the
numerator and in the denominator. Since aij = 0 implies bij = cij = 0, the cell cycle [CC]
involves only positive entries of the weight matrix A. Let ρi(n) and σj (n) be the divisor
sequences for B , and μi(n) and νj (n) for C. Since biproportionality preserves cyclic ratios,
the cyclic ratios in A, B , and C are seen to be equal,

∏

p≤q

aipjp

aipjp+1

=
∏

p≤q

aipjp

ρip (n)σjp (n)

aipjp+1
ρip (n)σjp+1 (n)

=
∏

p≤q

bipjp

bipjp+1

=
∏

p≤q

aipjp

μip (n)νjp (n)

aipjp+1
μip (n)νjp+1 (n)

=
∏

p≤q

cipjp

cipjp+1

,

where jq+1 = j1. The first and third equation signs are obvious. The fourth equality involves
a passage to the limit as n tends to ∞ and holds since the limiting denominator is posi-
tive, cipjp+1 > bipjp+1 ≥ 0. As the quotient is positive, the numerator must be positive, too,
cipjp > 0. A similar argument establishes the second equality.
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But the cycle (CC) precludes equality,
∏

p≤q bipjp /bipjp+1 >
∏

p≤q cipjp /cipjp+1 . Hence
the assumption B 	= C is untenable and uniqueness obtains, B = C. �

Directness of a biproportional scaling is closely related to the notion of connectedness.
However, disconnectedness is defined first. A nonzero matrix D is called disconnected when
a suitable permutation of rows and a suitable permutation of columns give rise to a row
subset I and a column subset J such that D acquires block structure,

D =
(

J J ′

I D(1) 0
I ′ 0 D(2)

)

,

where at least one of the subsets I or J is non-empty and proper, ∅ � I � {1, . . . , k} or
∅ � J � {1, . . . , �}. Throughout this paper a prime denotes a set complement, such as I ′ =
{1, . . . , k} \ I etc. In most applications both subsets I and J are non-empty and proper.
A nonzero matrix C is said to be connected when it is not disconnected.

For keeping track of the nonzero entries in a weight matrix A we associate with every
row subset I ⊆ {1, . . . , k} the set of columns connected in A with I ,

JA(I) = {j ≤ � | aij > 0 for some i ∈ I }.
The complement JA(I)′ embraces the columns j with entries aij = 0 for all i ∈ I . Hence
the I × JA(I)′ submatrix of A vanishes and the sum of its entries is zero, aI×JA(I)′ = 0.
The extreme settings provide simple examples. If we choose I = {1, . . . , k} then we get
JA(I) = {1, . . . , �}, since no row nor column of A vanishes. If I = ∅ then JA(I) = ∅.

The term “connectness” is used in the same way that is familiar from graph theory. The
matrix A is connected, in the sense of linear algebra as defined above, if and only if the
bipartite graph with rows and columns as vertices and with non-zero entries in A as edges
is connected, in the sense of graph theory.

When the input weight matrix A is disconnected, the calculation of a biproportional
scaling B decomposes into several separate instances. Hence there is no loss of generality
of assuming A to be connected. An ensuing biproportional scaling B may still turn out to
be disconnected. If so, the pattern of zeros in the output matrix B has repercussions on the
pattern of zeros in the input matrix A, as follows.

Lemma 1 (Joint decomposition) For every connected weight matrix A and for every dis-
connected biproportional scaling B of A there exists a non-empty and proper subset I of
rows, ∅ � I � {1, . . . , k}, such that A acquires block-triangular structure and B acquires
block-diagonal structure,

A =
(

JA(I) JA(I )′

I A(1) 0
I ′ A(2,1) A(2)

)

, B =
(

JB(I) JB(I )′

I B(1) 0
I ′ 0 B(2)

)

,

where the sets of columns connected in A or B with I are equal, JA(I) = JB(I).

Proof Without loss of generality we assume the largest accumulation point of the column di-
visors to be positive, lim supn→∞ σmax(n) = M ∈ (0,∞), where σmax(n) = max{σ1(n), . . . ,

σ�(n)}. If need be, we would adjust the divisors according to ρ̃i(n) = ρi(n)σmax(n) and
σ̃j (n) = σj (n)/σmax(n) ≤ 1, and use M = 1. Let an arrow → indicate a passage to the limit
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as n tends to infinity. The set I is defined to contain the rows with divisors not degenerating,
in the sense of not diverging to infinity,

I = {
i ≤ k | ρi(n) 	→ ∞}

, I ′ = {
i ≤ k | ρi(n) → ∞}

.

Likewise the columns connected in B with I will turn out to have their divisors not degen-
erating, but now in the sense of not converging to zero,

JB(I) = {
j ≤ � | σj (n) 	→ 0

}
, JB(I )′ = {

j ≤ � | σj (n) → 0
}
.

With A connected and B disconnected there exists a cell (i, j) that is fading, aij > 0 =
bij . This implies limn→∞ ρi(n)σj (n) = ∞ and, since column divisors stay bounded by as-
sumption, limn→∞ ρi(n) = ∞. Hence I ′ is not empty, nor is JB(I ′)—which in the end will
turn out to coincide with JB(I)′. By definition of JB(I ′), the I ′ × JB(I ′)′ block of B is zero.

The columns j ∈ JB(I ′) have their divisors converge to zero, limt→∞ σj (n) = 0. Indeed,
there exists a row i ∈ I ′ with bij > 0. In this cell we have limn→∞ ρi(n)σj (n) = aij /bij < ∞.
Since the divisors of row i ∈ I ′ diverge to infinity, column j has its divisors converge to zero.

By assumption the column divisors satisfy σmax(n) > M/2 infinitely often. Thus there
exists a column j with divisors fulfilling σj (n) > M/2 again and again and not converging
to zero. Hence JB(I ′)′ is not empty, nor is I .

Now every column j ∈ JB(I ′)′ has its divisors not converging to zero, lim supn→∞
σj (n) > 0. Indeed, there is a row i ∈ I with bij > 0. In this cell we have limn→∞ ρi(n)

σj (n) = aij /bij > 0. Since column j admits a divisor subsequence bounded away from
zero, the row divisors that go along cannot diverge to infinity.

The I × JB(I ′) top right block of A has aij = 0. Indeed, the case aij > 0 would admit a
row divisor subsequence bounded from above, in the presence of column divisors converging
to zero. But aij > 0 and limn→∞ ρi(n)σj (n) = 0 lead to the contradiction bij = ∞. The top
right block of B inherits the zeros of A. The structures of B and A entail JB(I ′)′ = JB(I) =
JA(I). �

Given a biproportional scaling B , there are various ways to check for directness.

Theorem 2 (Directness) For every connected weight matrix A and for every biproportional
scaling B of A the following five statements are equivalent:

(a) The biproportional scaling B is direct.
(b) The matrices A and B have the same zeros.
(c) There exists a weight matrix C sharing the same zeros with A and the same row and

column sums with B .
(d) For every non-empty and proper subset I of rows, ∅ � I � {1, . . . , k}, partial row and

column sums of B fulfill
∑

i∈I bi+ <
∑

j∈JA(I) b+j .
(e) The matrix B is connected.

Proof
(a) ⇒ (b). A direct scaling, bij = aij /(μiνj ), has the same zeros as has A.
(b) ⇒ (c). The scaling B , sharing all zeros with A, is of the type asked for in (c).
(c) ⇒ (d). For every row subset I we have aI×JA(I)′ = 0, and hence cI×JA(I)′ = 0. If I is

non-empty and proper then cI ′×JA(I) > 0, as otherwise C were disconnected and so would
be A. We get

∑
i∈I bi+ = cI×JA(I) < cI×JA(I) + cI ′×JA(I) = ∑

j∈JA(I) b+j .
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(d) ⇒ (e). The proof is by contraposition. If B is disconnected, then Lemma 1 provides
a non-empty and proper row set I fulfilling

∑
i∈I bi+ = bI×JA(I) = ∑

j∈JA(I) b+j .
(e) ⇒ (a). Row divisors μi and column divisors νj for B are constructed in the course of

a scanning process. The process is initialized by standardizing the given divisor sequences
according to ρ̃i (n) = ρi(n)/ρ1(n) and σ̃j (n) = ρ1(n)σj (n), thus equipping the first row with
constant divisor unity, ρ̃1(n) = 1 = μ1, n ≥ 1. Then the process scans all columns j with
b1j > 0, and sets

0 < νj = a1j

μ1b1j

= limn→∞ ρ̃1(n)̃σj (n)

limn→∞ ρ̃1(n)
= lim

n→∞ σ̃j (n), whence b1j = a1j

μ1νj

.

Next all unscanned rows i with bij > 0 for some scanned column j are scanned, setting

0 < μi = aij

bij νj

= limn→∞ ρ̃i (n)̃σj (n)

limn→∞ σ̃j (n)
= lim

n→∞ ρ̃i(n), whence bij = aij

μiνj

.

Thereafter the process turns to columns again, then rows. In this fashion it keeps enlarging
the scanned sets of rows and columns, terminating after at most k + � steps. The terminal
scanned row set I and column set J enforce a block structure upon B ,

B =
(

J J ′

I B(1) 0
I ′ 0 B(2)

)

.

Connectedness of B lets the scanned sets be exhaustive, I = {1, . . . , k} and J = {1, . . . , �}.
All rows and all columns having constant divisors, the scaling is direct. �

We now turn to the Iterative Proportional Fitting (IPF) procedure proper.

3 The IPF procedure

The IPF procedure seeks to calculate a biproportional scaling B that achieves pre-specified
row marginals r and pre-specified column marginals s. Let A be a given k×� weight matrix.
Furthermore let r = (r1, . . . , rk) and s = (s1, . . . , s�) be given vectors with positive entries,
called target row marginals and target column marginals.

Definition A k × � nonnegative matrix B = ((bij )) is said to match the target marginals r

and s when its row sums are equal to r and its column sums are equal to s, that is, bi+ = ri

for all i ≤ k and b+j = sj for all j ≤ �. A weight matrix B is called a biproportional fit of
the weight matrix A to the target marginals r and s when B is a biproportional scaling of A

and B matches the target marginals r and s.

With this terminology the IPF procedure aims to determine a biproportional fit of the
weight matrix A to the target marginals r and s. If a fit exists then it is unique, by Theorem 1.
An existing fit B necessitates equal totals of the marginals, r+ = b++ = s+. We do not
assume equality of the totals, though, since the IPF procedure is well-defined without this
assumption and since distinct marginal subtotals may evolve when the procedure leads to
accumulation points that are disconnected.

The IPF procedure starts by scaling A into a matrix A(0) with column sums equal to tar-
get column marginals. That is, with column divisors βj (0) = a+j /sj the entries of A(0) are
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defined to be aij (0) = aij /βj (0), for all i ≤ k and j ≤ �. Thereafter the procedure advances
in pairs of an odd step t + 1 and an even step t + 2, for t = 0,2, . . . :

• Odd steps t + 1 fit row sums to target row marginals by calculating row divisors αi(t + 1)

from the preceding even step t , and scaled weights aij (t + 1):

αi(t + 1) = ai+(t)

ri

, (IPF1)

aij (t + 1) = aij (t)

αi(t + 1)
, (IPF2)

for all rows i ≤ k and for all columns j ≤ �.
• Even steps t + 2 fit column sums to target column marginals by calculating column divi-

sors βj (t + 2) from the preceding odd step t + 1, and scaled weights aij (t + 2):

βj (t + 2) = a+j (t + 1)

sj

, (IPF3)

aij (t + 2) = aij (t + 1)

βj (t + 2)
, (IPF4)

for all columns j ≤ � and for all rows i ≤ k.

The incremental row divisors αi(1), αi(3), . . . from [IPF1] give rise to cumulative row
divisors ρi , and the incremental column divisors βj (2), βj (4), . . . from [IPF3] generate cu-
mulative column divisors σj . They are defined, for steps t = 0,2, . . . , through

αi(1)αi(3) · · · αi(t + 1) = ρi(t + 1) = ρi(t + 2),

βj (0)βj (2)βj (4) · · · βj (t + 2) = σj (t + 2) = σj (t + 3).

Adjoining ρi(0) = 1 and σj (0) = σj (1) = βj (0), cumulative divisors are defined for all steps
t ≥ 0. The scaled weights take the form aij (t) = aij /(ρi(t)σj (t)).

The scaled weight matrices A(t) = ((aij (t))), t ≥ 0, constitute the IPF sequence, for the
fitting of the weight matrix A to the target marginals r and s. An L1-error function f is
employed to assess the goodness-of-fit of a scaled weight matrix A(t). It checks whether
any row is underfitted, ai+(t) < ri , or overfitted, ai+(t) > ri , as well as whether any column
is under- or overfitted, and then totals the absolute deviations between current sums and
target marginals,

f
(
A(t)

) =
∑

i≤k

∣
∣ai+(t) − ri

∣
∣ +

∑

j≤�

∣
∣a+j (t) − sj

∣
∣.

Odd steps t have row sums matching their target marginals, whence the L1-error f (A(t))

is equal to the (second) column-error sum. For even steps t , the (first) row-error sum is
decisive.

The L1-error coincides with the L1-distance between a scaled weight matrix and its suc-
cessor. To see this for an even step t , we substitute ri = ai+(t)/αi(t + 1) from (IPF1) and
aij (t)/αi(t + 1) = aij (t + 1) from (IPF2) to obtain

f
(
A(t)

) =
∑

i≤k

∣
∣
∣
∣1 − 1

αi(t + 1)

∣
∣
∣
∣ai+(t) =

∑

i≤k

∑

j≤�

∣
∣aij (t) − aij (t + 1)

∣
∣.
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Definitions (IPF3) and (IPF4) confirm the result for odd steps t . Deming and Stephan (1940,
p. 440) recommend that the IPF procedure is continued until the table reproduces itself.
This is exactly what is captured by the error function f : The table reproduces itself, A(t) =
A(t + 1), if and only if the L1-error is zero, f (A(t)) = 0.

Lemma 2 shows that the L1-error is non-increasing in t , admits a finite set of lower
bounds, and converges to the largest of these bound as t → ∞. The new limit formula in
part (c) greatly simplifies the proof of the Convergence Theorem 3 below.

Lemma 2 (L1-error) Let A(t), t ≥ 0, be the IPF sequence for the fitting of the weight
matrix A to the target marginals r and s. Then we have for all steps t ≥ 0:

(a) The L1-error is non-increasing, f (A(t)) ≥ f (A(t + 1)).
(b) The L1-error is bounded according to f (A(t)) ≥ rI − sJA(I) + sJA(I)′ − rI ′ , for all row

subsets I ⊆ {1, . . . , k}.
(c) The limiting L1-error is given by

lim
t→∞f

(
A(t)

) = max
I⊆{1,...,k}

(rI − sJA(I) + sJA(I)′ − rI ′).

Proof
(a) Let step t ≥ 0 be even, whence A(t) has fitted columns and its L1-error originates

from rows. From (IPF1) and ai+(t) = αi(t + 1)ri we get f (A(t)) = ∑
i≤k |ai+(t) − ri | =∑

i≤k |αi(t + 1) − 1|ri . Insertion of ri = ∑
j≤� aij (t + 1) allows us to apply the triangle

inequality within each column j ,

∑

j≤�

∑

i≤k

∣
∣1 − αi(t + 1)

∣
∣aij (t + 1) ≥

∑

j≤�

∣
∣
∣
∣

∑

i≤k

(
1 − αi(t + 1)

)
aij (t + 1)

∣
∣
∣
∣.

From (IPF2) and
∑

i≤k αi(t +1)aij (t +1) = a+j (t) = sj we obtain
∑

j≤� |a+j (t +1)−sj | =
f (A(t + 1)). With Definitions (IPF3) and (IPF4) the argument carries over to odd steps
t ≥ 1. Thus monotonicity is established.

(b) Because of monotonicity we may assume step t to be even. Let I be a subset of
rows. Since

∑
i∈I (ai+(t) − ri) + ∑

i∈I ′(ai+(t) − ri) = s+ − r+, the complement I ′ satisfies∑
i∈I ′(ai+(t) − ri) = s+ − r+ + rI − ∑

i∈I ai+(t). Hence we obtain

f
(
A(t)

) ≥
∑

i∈I

(
ri − ai+(t)

) +
∑

i∈I ′

(
ai+(t) − ri

) = s+ − r+ + 2rI − 2
∑

i∈I

ai+(t).

From
∑

i∈I ai+(t) = ∑
i∈I

∑
j∈JA(I) aij (t) ≤ ∑

j∈JA(I)

∑
i≤k aij (t) = sJA(I) we get

s+ − r+ + 2rI − 2
∑

i∈I

ai+(t) ≥ s+ − r+ + 2rI − 2sJA(I) = rI − sJA(I) + sJA(I)′ − rI ′ .

This establishes the lower bounds in (b).
(c) Theorem 5.3 of Gietl and Reffel (2013) states that the IPF even-step subsequence is

convergent, limt=0,2,4,... A(t) = B say. In view of part (i) every accumulation point minimizes
the L1-error, whence limt→∞ f (A(t)) = limt=0,2,4,... f (A(t)) = f (B). We claim that U =
{i ≤ k | bi+ < ri}, the set of underfitted rows in B , fulfills

f (B) = rU − sJA(U) + sJA(U)′ − rU ′ . (1)
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This and the boundedness part (b) establish the limit formula in part (c). If the set U is
empty, U = ∅, then f (B) = s+ − r+ verifies (1). If the set U is exhaustive, U = {1, . . . , k},
then f (B) = r+ − s+ verifies (1). Generally (1) is verified in four steps.

The first step claims that all row sums of B are positive, bi+ > 0 for all i ≤ k. Indeed,
Definition (IPF3) implies a uniform upper bound for the column divisors, βj (t + 2) =
a+j (t + 1)/sj ≤ a++(t + 1)/smin = r+/smin, where smin = min{s1, . . . , sk}. Now definition
(IPF4) yields a lower bound,

ai+(t + 2) =
∑

j≤�

aij (t + 1)

βj (t + 2)
≥ smin

r+
ai+(t + 1) = smin

r+
ri .

Thus the limiting row sums remain positive, bi+ ≥ sminri/r+ > 0, as claimed.
Hence the accumulation point B is a weight matrix itself. Let γi = bi+/ri > 0 denote

the row divisor to scale row i of B so as to meet the target marginal ri . Upon defining the
matrix B(1) with entries bij (1) = bij /γi , let δj = b+j (1)/sj denote the column divisor to fit
column j to the target marginal sj .

The second step establishes a relation between the divisors γi and δj ,

bij > 0 ⇒ γiδj = 1 for all i ≤ k and j ≤ �. (2)

To see this we note that γi is the limit of the incremental row divisors αi(t + 1),

γi = bi+
ri

= lim
t=0,2,4,...

ai+(t)

ri

= lim
t=0,2,4,...

αi(t + 1), (3)

as follows from (IPF1). Now (3), (IPF2), and (IPF3) yield

δj = b+j (1)

sj

=
∑

i≤k

bij

γisj

= lim
t=0,2,4,...

∑

i≤k

aij (t)

αi(t + 1)sj

= lim
t=0,2,4,...

βj (t + 2). (4)

From (IPF2) and (IPF4) we get aij (t) = αi(t + 1)aij (t + 1) = αi(t + 1)βj (t + 2)aij (t + 2).
Hence the L1-distance between the scaled weight matrices A(t) and A(t + 2) is

∑

i≤k

∑

j≤�

∣
∣aij (t) − aij (t + 2)

∣
∣ =

∑

i≤k

∑

j≤�

∣
∣αi(t + 1)βj (t + 2) − 1

∣
∣aij (t + 2).

Convergence of the IPF even-step subsequence forces the L1-distance to vanish in the limit.
Together with (3) and (4) we obtain 0 = ∑

i≤k

∑
j≤� |γiδj − 1|bij , that is, (2).

The third step depicts the structure of B as follows:

B =

JB(U) JB(U)′

U

U ′

(
B(1) 0

0 B(2)

)
γi < 1

γi ≥ 1

δj > 1 δj ≤ 1

Indeed, the top right block is zero because JB(U) contains all columns connected in B

with U . Being underfitted rows i ∈ U satisfy γi < 1. Complementary rows i ∈ U ′ fulfill
γi ≥ 1. Columns j ∈ JB(U) are connected in B with U and have δj > 1, by (2). Columns
j ∈ JB(U)′ ⊆ JB(U ′), connected in B with U ′, have δj ≤ 1, also by (2). Finally the bottom
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left block is seen to be zero, since i ∈ U ′ and j ∈ JB(U) have γiδj > 1 while bij > 0 would
imply γiδj = 1, by (2). Now the structure of B entails

∑
i∈U bi+ = sJB(U) and

∑
i∈U ′ bi+ =

sJB(U)′ . The L1-error of B , depending on rows only, turns into

f (B) =
∑

i∈U

(ri − bi+) +
∑

i∈U ′
(bi+ − ri) = rU − sJB(U) + sJB(U)′ − rU ′ . (5)

The fourth step establishes JB(U) = JA(U). The inclusion JB(U) ⊆ JA(U) holds true
since bij > 0 implies aij > 0. As for the converse inclusion we note that the top right
block U × JB(U)′ has γiδj < 1. Since the products αi(t + 1)βj (t + 2) converge to
γiδj < 1, by (3) and (4), the cumulative divisors tend to zero, limt→∞ ρi(t)σj (t) = 0.
Now limt→∞ aij /(ρi(t)σj (t)) = bij = 0 forces aij = 0. But aij = 0 on U × JB(U)′ implies
JA(U) ⊆ JB(U). This proves JA(U) = JB(U), and turns (5) into (1). �

Lemma 2 allows a remarkably brief proof of the well-known necessary and sufficient
conditions for the convergence of the IPF procedure. The arrangement of conditions runs
parallel to the characterizations of directness in Theorem 2.

Theorem 3 (Convergence) For the fitting of a weight matrix A to the target marginals r

and s the following five statements are equivalent:

(a) The IPF sequence A(t), t ≥ 0, is convergent.
(b) The biproportional fit of A to r and s exists.
(c) There exists a weight matrix D preserving the zeros of A and matching the target

marginals r and s.
(d) Marginal totals are equal, r+ = s+ and marginal partial row and column sums fulfill

rI ≤ sJA(I), for every row subset I ⊆ {1, . . . , k}.
(e) The L1-errors of the IPF sequence A(t), t ≥ 0, tend to zero, limt→∞ f (A(t)) = 0.

Proof
(a) ⇒ (b). If the IPF sequence converges then its limit B is a biproportional scaling of A.

It inherits matching row sums along odd steps and matching column sums along even steps.
By Theorem 1, B is the unique biproportional fit.

(b) ⇒ (c). The biproportional fit clearly qualifies for a matrix D asked for in (c).
(c) ⇒ (d). As in the proof of Theorem 2, the definition of JA(I) yields dI×JA(I)′ = 0 ≤

dI ′×JA(I), and rI = dI×JA(I) + dI×JA(I)′ ≤ dI×JA(I) + dI ′×JA(I) = sJA(I).
(d) ⇒ (e). Equal marginal totals entail rI − sJA(I) + sJA(I)′ − rI ′ = 2(rI − sJA(I)). With

Lemma 2(c) we get 0 ≤ limt→∞ f (A(t)) = 2 maxI⊆{1,...,k}(rI − sJA(I)) ≤ 0.
(e) ⇒ (a). Since the entries of A(t) are nonnegative and sum to r+ in odd steps and

to s+ in even steps, the IPF sequence A(t) stays in the compact set [0,max{r+, s+}]k×�.
Let B be an accumulation point along a subsequence A(tn), n ≥ 1. From (e) we get
f (B) = limn→∞ f (A(tn)) = limt→∞ f (A(t)) = 0. With row and column sums fitted, B is a
biproportional fit. By Theorem 1 there exists but one. Hence the IPF sequence A(t), t ≥ 0,
has B for its unique accumulation point, and converges. �

If all weights are positive, aij > 0, and marginal totals coincide, r+ = s+, life simplifies
dramatically. Statement (c) is fulfilled by the matrix D with entries dij = risj /r+ > 0. State-
ment (d) holds true since non-empty row subsets I satisfy JA(I) = {1, . . . , �} and hence
rI ≤ sJA(I) = r+. Either way the IPF sequence is seen to converge (Theorem 3), and the
resulting biproportional fit transpires to be direct (Theorem 2).
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The results disclose their power if some weight is zero. In the general case it is not easy to
decide whether the IPF sequence converges or not. However, the equivalence of statements
(c) and (d) is known as the Feasible Distribution Theorem of network theory, see Gale (1957,
p. 1075) or Rockafellar (1984, p. 69). It is well-known that statement (d) may be quickly
checked by means of the Max-flow Min-cut Theorem.
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