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Matrices and politics

Michel Balinski & Friedrich Pukelsheim

Abstract. Biproportional apportionment methods provide a novel approach
of translating electoral votes into parliamentary seats. A two-way propor-
tionality is achieved, to districts relative to their populations, and to parties
relative to their total votes. The methods apply when the electoral region
is subdivided into several electoral districts, each with a prespecified “dis-
trict magnitude,” that is, the number of seats per district. The input data
thus consists of a matrix with rows and columns corresponding to districts
and parties, and entries to party votes in districts. A biproportional appor-
tionment method converts the party votes into an apportionment matrix
of corresponding seat-numbers such that, within a district, the sum of the
seat-numbers matches the prespecified district magnitude, while within a
party, the seat-numbers sum to the overall party seats that are proportional
to the vote totals across the whole electoral region. The method had its world
premiere in February 2006, with the election of the Zürich City Parliament.
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1 Introduction

A new technique for converting votes into seats is described for parliamen-
tary systems where the whole electoral region is subdivided into various
electoral districts. Biproportional apportionment methods achieve a two-way
proportionality: to the populations of the districts, and to the parties’ vote
totals.

In Section 2 we illustrate the approach by means of the new Zürich appor-
tionment procedure [Neues Zürcher Zuteilungsverfahren, NZZ]. The example
constitutes the world premiere of the method, the election of the Zürich City
Parliament on 12 February 2006. The use of biproportional apportionment
methods will undoubtedly proliferate.
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The new methods may be viewed as discrete counterparts of the continu-
ous Iterative Proportional Fitting procedure for the adjustment of statistical
tables to match prespecified marginals. However, there are vital differences.
Section 3 reviews the pertinent literature, contrasting the continuous and
discrete aspects of the problem.

2 The new Zürich apportionment procedure

A geographical subdivision of a large electoral region into several electoral
districts is an ubiquitous tool for ensuring that electoral systems honor
historically drawn political and administrative subdivisions. Many systems
apportion the total number of seats well ahead of election day, in the middle
of the legislative period say, on the grounds of population counts. Thus each
district is assigned its district magnitude, the number of seats allocated to it.
The methods to carry out apportionment are well understood, as expounded
in the monograph of Balinski and Young (2001).

There are and have been some ten parties in Zürich. Formerly, parties
presented lists of candidates in districts, and votes were converted into seats
within each of them separately. However, due to population mobility some of
the districts shrank to as few as two or three seats, making it impossible to
meet the ideal of proportionality. In particular, some voters could justifiably
complain that their votes counted for naught, and did! A citizen in a district
with few seats who repeatedly voted for a party that received no seats in the
district brought suit complaining that his vote counted for nothing, and won.
This provided the impetus to amend the electoral law and to implement a
biproportional system.

Biproportional apportionment methods originate with Balinski and De-
mange (1989a,b), and were explored further by Balinski and Rachev (1993,
1997). Balinski and Ramírez-González (1997, 1999a,b) pointed out that the
then Mexican electoral system suffered from severe deficiencies that might
be overcome by using a biproportional method. M. B. wrote a popular science
article (Balinski 2002) outlining the idea of biproportional representation and
how it could answer the implicit demands of the Mexican law. F. P. translated
the article into German, when shortly afterwards Christian Schuhmacher
from the Zürich Justice and Interior Department hit upon the Augsburg
group in the Internet. Pukelsheim and Schuhmacher (2004) adopted Balin-
ski’s idea to the Zürich situation. The new Zürich apportionment procedure
[Neues Zürcher Zuteilungsverfahren, NZZ] celebrated its debut performance
with the Zürich City Parliament election on 12 February 2006.

The 2006 Zürich election data and apportionment are presented here.
Eight of the competing parties had sufficient votes to participate in the
apportionment process. The initial step, the superapportionment, allocates all
125 City Parliament seats among the parties proportionally to their vote totals
in all districts, resulting in the overall party seats. The superapportionment
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Table 1. Biproportional divisor method with standard rounding, Zürich City Parliament
election of 12 February 2006.

SP SVP FDP Grüne CVP EVP AL SD
City

divisor

Support size 23180 12633 10300 7501 5418 3088 2517 1692 530

Biproportional apportionment, based on party ballot counts

125 44 24 19 14 10 6 5 3
District
divisor

“1+2” 12 28518-4 15305-2 21833-3 12401-2 7318-1 2829-0 2413-0 1651-0 7000
“3” 16 45541-7 22060-3 10450-1 17319-3 8661-1 2816-0 7418-1 3173-0 6900
“4+5” 13 26673-5 8174-2 4536-1 10221-2 4099-1 1029-0 9086-2 1406-0 5000
“6” 10 24092-4 9676-1 10919-2 8420-1 4399-1 3422-1 2304-0 1106-0 6600
“7+8” 17 61738-5 27906-2 51252-5 25486-2 14223-1 10508-1 5483-1 2454-0 11200
“9” 16 42044-6 31559-4 12060-2 9154-1 11333-1 9841-1 2465-0 5333-1 7580
“10” 12 35259-4 19557-3 15267-2 9689-1 8347-1 4690-1 2539-0 1490-0 7800
“11” 19 56547-6 40144-4 19744-2 12559-1 14762-2 11998-2 3623-1 6226-1 9000
“12” 10 13215-3 10248-3 3066-1 2187-1 4941-1 0-0 429-0 2078-1 4000

Party divisor 1.006 1.002 1.01 0.97 1 0.88 0.8 1

A table entry is of the form p-s, where p is the party ballot count in the district, and s is the seat-
number apportioned to that party’s list in the district. The party ballot count p is divided by the
associated district and party divisors, and then rounded to obtain s. In district “1+2”, party SP had
p = 28518 ballots and was awarded s = 4 seats, since p/(7000× 1.006) = 4.05 ↘ 4. The divisors
(right and bottom, in italics) are such that the district magnitudes and the overall party seats (left
and top, in italics) are met exactly. The overall party seats result from the superapportionment
based on the electorate support sizes.

responds to the recent constitutional order to assure that each person’s vote
counts. It no longer matters whether voters cast their ballots in districts that
are large or small.

A peculiar feature of the Zürich electoral law is that each voter has as
many ballots as are given by the district magnitude. Thus voters in district
“1+2” command 12 ballots, in district “3” they have 16, etc. The counts of
the ballots provide the raw data that are returned from the polling stations,
called party ballot counts [Parteistimmen], as shown in the body of Table 1.
For the aggregation across the whole electoral region, the districtwise party
ballot counts are adjusted so that every person (as opposed to every ballot)
has equal weight. Party ballot counts are divided by the district magnitude
and rounded, yielding the district support size [Distriktwählerzahl] of a party.
District support sizes are taken to be integer numbers, in order to support
the interpretation that they designate the number of people in the district
who back the party considered. The sum of the district support sizes, the
overall support size [Wählerzahl], is the number of persons who back the
party across the whole electoral region (in this case: the City of Zürich). The
transition to overall support sizes adjusts for the different number of ballots
in the districts, so that each voter contributes equally to the superapportion-
ment.
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In Table 1, the SP’s district support size in district “1+2” is 28518/12 =
2376.5 ↗ 2377, while in district “3” it is 45541/16 = 2846.3 ↘ 2846. The
eight parties eligible to receive seats had overall support sizes of 23180 :
12633 : 10300 : 7501 : 5418 : 3088 : 2517 : 1692. Using the divisor method
with standard rounding (often named after D. Webster or A. Sainte-Laguë),
the superapportionment results in the overall party seats 44 : 24 : 19 : 14 :
10 : 6 : 5 : 3 (city divisor 530).

At the final step, the biproportional divisor method with standard round-
ing computes the subapportionment. It secures a two-way proportionality,
verifying the prespecified district magnitudes as well as allocating all of
the overall party seats. These restrictions form the left and top borders of
Table 1, printed in italics. The body of the table displays the original party
ballot counts. Two sets of divisors are needed, district divisors and party
divisors, bordering Table 1 on the right and at the bottom. Every party bal-
lot count is divided by the associated district divisor and the associated
party divisor, and the resulting quotient is rounded in the standard way
to obtain the seat-number. For instance, the SP in district “1+2” receives
28518/(7000 · 1.006) = 4.05 ↘ 4 seats. All party ballot counts in a given
district are adjusted by the same (district) divisor, so that in effect they have
simply been rescaled. Similarly, in all districts the party ballot counts of a
given party are adjusted by the same (party) divisor, so they, too, are only
rescaled. It may be proved that the resulting apportionment is unique (except
possibly for ties).

Two-way proportionality is of interest in political systems beyond the
one of Zürich. Bochsler (2005) studies its use for the election of the Swiss
national parliament. Balinski (2004) discusses its application to elect France’s
representatives in the European Parliament. Biproportionality is a possible
remedy to the corruptive effects of gerrymandering in the USA (Balinski
2006b), and in the current Italian electoral law it would remove “The Bug” de-
scribed by Pennisi (2006). Legislative preparations to install a biproportional
system are under way in the Faroe Islands (Zachariassen and Zachariasen
2005, 2006).

District and party divisors are the key quantities [Wahlschlüssel] of bipro-
portional methods. They are not unique, since nothing is changed when the
districts’ divisors are multiplied by a scalar and the party divisors are divided
by the same amount. Moreover, a slight variation does not matter as long
as the resulting quotients round to the same integers. The divisors cannot
be obtained from a closed formula, but must be determined algorithmically.
The BAZI program, available at www.uni-augsburg.de/bazi, implements sev-
eral approaches to finding them (Pukelsheim 2004, 2006). While BAZI now
offers a selection of algorithms (Maier 2006), it originally started out with
an Alternating Scaling algorithm that is similar to the Iterative Proportional
Fitting procedure.
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3 Biproportional apportionment
and iterative proportional fitting

The breakthrough to a practically persuasive and theoretically convincing
approach to the matrix biproportional apportionment problem is due to
Balinski and coauthors (see Section 1). The starting point is an axiomatic
theory of apportionment for vector problems developed by Balinski and
Young (2001). A major result is that among all conceivable apportionment
methods, divisor methods are the only acceptable ones. They are in one-to-
one correspondence with rounding functions, that is, with the prescription
of how to round a positive real number to one of its neighboring integers, in
each closed interval [n− 1, n] (n = 1,2, . . . ) of the nonnegative half-line.

For vector problems, divisor methods determine a divisor (multiplier, scal-
ing constant) so that when the input weights are scaled and rounded, using
the rounding function that comes with the method, the resulting integers
verify the prespecified side condition. The same approach works for matrix
problems, except that now two sets of divisors are needed, row divisors and
column divisors, and that an entry of the input weight matrix is scaled twice,
by its row divisor and by its column divisor, before it is rounded to an integer.
It is thus tempting to aim at a theory emphasizing the similarity of vector
and matrix problems (Balinski 2006a).

Gaffke and Pukelsheim (2006a) formulate the matrix apportionment prob-
lem as an integer optimization problem, exhibiting the apportionment as
the mode of a multinomial-type probability density function. This optimiza-
tion approach is delineated already by Carnal (1993), for the specific divisor
method with rounding down (T. Jefferson, V. D’Hondt, E. Hagenbach-Bischoff),
referring to the electoral system for the Swiss Canton of Bern, see also Carnal
and Riedwyl (1982). Once the primal optimization problem is set up, the row
and column divisors then emerge as the values of the solution to an asso-
ciated dual problem. This suggests a classification of algorithms as primal
algorithms, or as dual algorithms (Gaffke and Pukelsheim 2006b).

From a statistical viewpoint, the biproportional apportionment problem
is identical with the problem of adjusting a frequency table so as to meet
prespecified row and column marginals. For a textbook example see Cochran
(1977, page 124). The original paper on the statistical problem is Deming
and Stephan (1940); the authors proposed what since has become known
as the Iterative Proportional Fitting (IPF) procedure, but their convergence
proof was flawed. Further research eventually established the conjectured
convergence of the IPF procedure, see the encyclopedia article by Fienberg
and Meyer (1983). In statistical jargon, the IPF procedure is sometimes called
raking (Fagan and Greenberg 1987).

Besides statistics, Bacharach (1965, 1970) applies IPF to economic input-
output analysis. Lamond and Stewart (1981) use it to solve transportation
problems, and provide references from that field. In probability theory, the
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procedure has been used to convert a nonnegative matrix into a doubly
stochastic matrix, by scaling rows and columns so that each of them sums to
one. This problem generated a series of research papers, see Sinkhorn (1964,
1966, 1967, 1972), Sinkhorn and Knopp (1967), Marshall and Olkin (1968),
Cottle, Duvali, and Zikan (1986), Khachiyan and Kalantari (1992).

However, IPF does not solve the problems of biproportional apportion-
ment. It rescales a nonnegative matrix into another matrix with nonnegative
real entries – not integer entries – that verify prespecified marginals. An
iterative procedure, it stops when the side conditions are met to within a
given error bound, so its solutions come with a disclaimer that, due to nu-
merical inaccuracies, the marginal restrictions may not be met exactly, as
in Bacharach (1970). The disclaimer is standard in statistical publications,
when a frequency table is converted into percentages or tenths of a percent
(Wainer 1998; Pukelsheim 1998). The disclaimer poses no problem as far
as descriptive statistics or Bacharach’s input-output analysis are concerned.
It becomes problematic when stochastic matrices are generated where the
probabilities must sum to one exactly, not just approximately. The disclaimer
becomes definitely untenable in the context of apportioning the seats of a
parliamentary body. It is unacceptable to leave a seat empty, or to create an
extra seat, with the excuse that inaccuracies of the mathematical method
cannot do better.

The IPF procedure is part of “continuous” mathematics, while bipropor-
tional apportionment belongs to “discrete” mathematics. Interestingly, this
is an example where a presumably “soft science” such as political decision
making insists on exact results, whereas a purportedly “exact science” such
as calculus makes do with approximations.

A particular dual algorithm is alternating scaling (AS), a discrete variant
of the (continuous) IPF procedure. While the IPF procedure is known to
converge always, the AS algorithm may “stall”, cycling from a solution that
satisfies the row but not the column constraints to one that satisfies the
column but not the row constraints, and back again. Extensive simulations
suggest that this may happen only if there are sufficiently many ties in the
solutions. For empirical election data, ties are extremely rare. Hence it is
fair to say that the AS algorithm works fine, for all practical purposes. The
reason is that empirical data usually are “well behaved” in that they are
not only free of ties but determined by relatively large intervals of divisors.
The BAZI program uses the AS algorithm because of its fast initial progress.
The program safeguards against stalling by switching, if needed, to the “Tie-
and-Transfer” algorithm of Balinski and Demange (1989b), as outlined by
Maier (2006). Further algorithmic improvements are being investigated by
Zachariasen (2006).

An entirely different approach to the biproportional problem has been
proposed in the context of rounding census data. Called controlled rounding it
may be interpreted as a generalization of the method of greatest remainders
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for vector rounding (often named after A. Hamilton, T. Hare / H. F. Niemeyer)
to that of rounding matrices. Developed in a series of papers by Cox and
coauthors (Cox and Ernst 1982; Causey, Cox, and Ernst 1985; Cox 1987, 2003;
Cox and George 1989), it has been recommended for the Belgian electoral
system (De Meur, Gassner, and Hubaut 1985; De Meur and Hubaut 1986;
De Meur and Gassner 1987; Gassner 1988, 1989, 1991, 2000). It has severe
drawbacks: it seriously distorts proportionality, and it lacks any axiomatic or
theoretical justification.
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