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Received: September 18, 2003; Accepted: March 3, 2004

Summary: For rounding arbitrary probabilities on finitely many categories to rational proportions,
the multiplier method with standard rounding stands out. Sainte-Laguë showed in 1910 that the
method minimizes a goodness-of-fit criterion that nowadays classifies as a chi-square divergence.
Assuming the given probabilities to be uniformly distributed, we derive the limiting law of the
Sainte-Laguë divergence, first when the rounding accuracy increases, and then when the number
of categories grows large. The latter limit turns out to be a Lévy-stable distribution.

1 Introduction
Let W = (W1, . . . , Wc) be some “arbitrary” probability vector, for a fixed number of
categories c. We model “arbitrariness” by taking W to follow a uniform distribution on
the probability simplex

Sc =
{
(w1, . . . , wc) ∈ [0, 1]c :

∑
j≤c

w j = 1

}
.

When quoting the weights W j in print, or when processing them otherwise, it is common
practice to round them to rational proportions of the form N j/n, for some prescribed
integer accuracy n. For instance, in contingency table analysis the weights, often relative
frequencies of some raw data, are usually rounded to multiples of a percent (n = 100), or
to multiples of a tenth of a percent (n = 1000). Of course, in order that the proportions
N j/n again form a valid probability vector, the numerators N1, . . . , Nc must sum to n.

The individual rounding of each of the scaled weights nW j in a standard fashion to
integers 〈nW j 〉 does not, however, guarantee that these integers achieve the correct total n.
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Instead, there may remain a nonzero discrepancy

Dc,n =
(∑

j≤c

〈nW j 〉
)

− n,

see Happacher (2001) and the references given there. For this reason many statistical
publications include a salvatory clause that “percentages may not sum to 100 due to
rounding errors” or the like.

There are other spheres of life, though, that do not tolerate such a liberal attitude
towards rounding errors. Most noticeably this concerns apportionment methods for pro-
portional representation in electoral systems. There, the c categories signify the political
bodies participating in the apportionment process, and the accuracy n is the number of
seats to be apportioned among them. For instance, the n = 435 seats of the US House of
Representatives are apportioned to the c = 50 States, proportionally to their population.
Or the n = 598 seats in the German Bundestag are apportioned among c = 5 eligible par-
ties, proportionally to their electoral votes. In the political arena it is plainly not acceptable
that an apportionment procedure would terminate with a nonzero discrepancy, leaving
some seats unaccounted for or creating surplus seats, “due to rounding errors”. In fact,
the field of politics abounds with apportionment methods properly partitioning the total
n into integers N1, . . . , Nc. The seminal monograph of Balinski and Young (1982) is an
excellent source for the political history of proportional representation, as well as for the
mathematical theory of apportionment methods that flows from the historical experience.

One of the early contributors to the subject was the French mathematician André
Sainte-Laguë [sε̃t la′gy] (1882–1950), see the bibliographical note in Marshall, Olkin
and Pukelsheim (2002, p. 888). Sainte-Laguë (1910a, b) set out to minimize a Gaussian-
type squared-error goodness-of-fit criterion, determining the values N1, . . . , Nc so as to
satisfy

∑
j≤c

(N j − nW j )
2

W j

= min

{∑
j≤c

(n j − nW j )
2

W j
: n1, . . . , nc ∈ {0, 1, . . . , n},

∑
j≤c

n j = n

}
.

This approach gives rise to a well-defined apportionment method, the multiplier method
with standard rounding. We will call

Sc,n =
∑
j≤c

(N j − nW j )
2

W j

the Sainte-Laguë divergence, for c categories and accuracy n.
Sainte-Laguë (1910a, b) motivated his criterion from the viewpoint of electoral ap-

plications. If party j gains weight W j = Vj/V , calculated from their vote count Vj and
the vote total V = ∑

i≤c Vi , then

Sc,n = n2

V

∑
j≤c

Vj

(
N j/n

Vj/V
− 1

)2
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is the sum, for each of the Vj voters, of the squared difference between the voter’s realized

success values
N j /n
Vj/V and the common ideal success value 1. These numerical quantities

directly relate to the qualitative requirements that the German Federal Constitutional
Court demands of electoral equality, see Pukelsheim (2000). By mapping qualitative,
constitutional principles into a quantitative, operational formula, the Sainte-Laguë diver-
gence Sc,n provides a measure for assessing the goodness of an apportionment method
that is particularly persuasive from the viewpoint of constitutional law and political
sciences.

Because of the striking similarity of the Sainte-Laguë divergence Sc,n with the χ2-
statistics, the multiplier method with standard rounding may well be the apportionment
method that is most appropriate also for contingency table analysis, see Wainer (1998),
Pukelsheim (1998). However, the statistical assumptions underlying the χ2-analysis do
not apply. This raises the question as to the distributional properties of Sc,n , which is the
topic of the present paper.

In Section 2 we review the multiplier method with standard rounding, and set it up
for the ensuing asymptotic analysis. Section 3 singles out the case of two categories,
because it is particularly transparent. The main step is to show that the rounding residuals
U1,n = nW1 − 〈nW1〉 are, asymptotically, uniformly distributed and independent of W1.
Section 4 derives the asymptotic distribution of the Sainte-Laguë divergence Sc,n for
a fixed number of categories c ≥ 3, as the accuracy n tends to infinity:

Sc,n
D−−−−−→

n→∞ Sc.

Though not of any known type, the distribution of the limiting random variable Sc can be
simulated by computer, as shown in Figure 3.1. Section 5 tackles the asymptotics when
the number of categories, c, grows large, assuming that the weight vector W follows
a uniform distribution on the probability simplex Sc. With appropriate scale constants ac
and shift constants bc we obtain convergence,

acSc − bc
D−−−−−→

c→∞ S,

where S has a Lévy-stable distribution. Figure 5.1 shows that the (simulated) densities
of acSc − bc converge to the density of S, though rather slowly. In Section 6 we indicate
some possible generalizations, such as assuming a Dirichlet distributionD(α) for W , with
form parameter α ∈ (0, 2].

2 The multiplier method with standard rounding

The idea underlying Sainte-Laguë’s apportionment method is simple: Given a set, w1,

. . . , wc, each weight w j is first scaled by some common multiplier µ > 0 and then
rounded in a standard fashion, N j = 〈µw j〉, where the multiplier µ is adjusted so as to
achieve the correct total,

∑
j≤c N j = n. Despite its simplicity we need to take a closer

look at the method, in order to set it up for our asymptotic analysis.
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As a prerequisite we consider the rounding of individual numbers. Standard rounding
maps a real number x ∈ R into its nearest integer 〈x〉 ∈ Z (Abramowitz and Stegun
1970, p. 223; Garfunkel 2003, p. 523). More precisely, if x ∈ [z, z + 1] lies in an interval
delimited by two neighboring integers, z and z + 1, then

〈x〉 =
{

z + 1 for x > z + 1/2,

z for x ≤ z + 1/2.

Standard rounding enjoys the important stationarity property that 〈x + z〉 = 〈x〉 + z, for
all x ∈ R and z ∈ Z.

There is no general agreement in the literature on where to round the dividing points
z +1/2. We have chosen to always round down, 〈z +1/2〉 = z. In order to evade a down-
ward trend, one could alternatively round z + 1/2 to the nearest even integer, see Wallis
and Roberts (1956, p. 175), Bronstein and Semendjajew (1991, Sect. 2.1.1.2). Balinski
and Young (1982, p. 99) resolve a tie x = z + 1/2 by rounding x either up or down,
thus generating multiple apportionment solutions. For our subsequent stochastic analy-
sis, the distributional assumptions make ties disappear in Lebesgue nullsets (Happacher
and Pukelsheim 1996, p. 378), and hence are of no further concern.

Now we turn to apportionment methods, that is, the rounding of sets of numbers subject
to achieving a prespecified total n. Depending on the weights w1, . . . , wc there exists a
multiplier µ > 0 such that the individual roundings N j = 〈µw j 〉 satisfy

∑
j≤c N j = n.

The multiplier µ is thus used as a degree of freedom for the individual roundings to
correctly sum to the desired total. In this way any procedure for individual roundings
gives rise to a multiplier method of apportionment. The method of Sainte-Laguë is the
specific method built on standard rounding.

The definition of standard rounding entails N j − 1/2 < µw j < N j + 1/2 (neglect-
ing ties). Therefore the relation between the final apportionment N1, . . . , Nc and an
appropriate multiplier µ is captured by the max-min inequality

max
j≤c

N j − 1/2

w j
< µ < min

j≤c

N j + 1/2

w j
,

see Balinski and Young (1982, p. 100). However, initially neither the numbers N j nor
a multiplier µ are given. Hence all apportionment methods make use of an algorithmic
approach of some sort or other.

The following Adjustment Algorithm is tailored to our asymptotic needs. In essence
it dates back to the computational scheme proposed by Hagenbach-Bischoff (1905, p. 9),
and it is akin to the rank-index methods of Balinski and Young (1982, p. 142), or to
the two-step algorithm of Happacher and Pukelsheim (1996, p. 378) and Dorfleitner and
Klein (1999, p. 147). Since n is a reasonable choice to initialize the multiplier (Happacher
and Pukelsheim 1996, 2000), this initialization is used to first jump to 〈nw j 〉 and then
adjust these numbers if need be. Let sgn(d) = −1, 0, 1 according as d is negative, zero,
or positive.

Lemma 2.1 (Adjustment Algorithm) For Lebesgue almost all weight vectors (w1, . . . ,

wc) ∈ Sc and for all prespecified totals n, the multiplier method with standard round-



Sainte-Laguë’s chi-square divergence 47

ing (Sainte-Laguë) yields a unique apportionment (N1, . . . , Nc), which may be ob-
tained as follows. With initial multiplier µ0 = n, first calculate the “discrepancy”
d = (

∑
j≤c〈nw j 〉) − n, which is an integer satisfying |d| ≤ 〈(c − 1)/2〉. Then, for

j = 1, . . . , c, adjust the roundings 〈nw j 〉 to obtain

N j = 〈nw j 〉 − sgn(d)m j,n(d),

where m j,n(d) is the count how often index j appears among the |d|-smallest quotients

k − sgn(d)〈nwi〉 + 1/2

wi
, i = 1, . . . , c, k = 0, . . . , |d|.

Proof: The event that one of the weights is zero, w j = 0, or that, for a given multiplier
µ > 0, a scaled component µw j hits a dividing point z + 1/2, is a Lebesgue nullset,
see Happacher and Pukelsheim (1996, p. 378). In all other cases, the Sainte-Laguë
apportionment N1, . . . , Nc is unique, and the max-min inequality is strict,

max
j≤c

N j − 1/2

w j
< µ < min

j≤c

N j + 1/2

w j
.

The discrepancy d is an integer, with values in the interval [−c/2, c/2]; when c is even,
the event that d hits a boundary point ± c/2 is a Lebesgue nullset (Happacher 2001,
p. 173). Hence the discrepancy d equals one of the whole numbers −〈(c − 1)/2〉, . . . ,

〈(c − 1)/2〉.
In case of a negative discrepancy, d < 0, the initial multiplier µ0 = n is too small

and additional assignments are called for, m j,n(d) := N j − 〈nw j 〉 ≥ 0. Upon defining
the quotients

Q(k, z, w) = k + z + 1/2

w
,

the max-min inequality gives µ0 < mini≤c Q(0, 〈nwi〉, wi ) = Q(0, 〈nwi1 〉, wi1 ) = µ1,

say. As µ grows past µ1, a first additional unit is apportioned to i1. Another, second unit is
assigned when µ next passes the smallest among the quotients Q(0, 〈nwi〉, wi) for i 
= i1
and Q(1, 〈nwi1 〉, wi1 ), etc. In other words, m j,n(d) is the count of how often index j
appears among the |d|-smallest values, of the quotients Q(k, 〈nwi〉, wi) for i = 1, . . . , c
and k = 0, . . . , |d|. We obtain N j = 〈nw j 〉 + m j,n(d) = 〈nw j 〉 − sgn(d)m j,n(d).

In case of a vanishing discrepancy, d = 0, no adjustment is needed and N j = 〈nw j 〉 =
〈nw j 〉 − sgn(0)m j,n(0).

In case of a positive discrepancy, d > 0, the multiplier µ0 = n is too large, and we
need to remove m j,n(d) := 〈nw j 〉 − N j ≥ 0 units. The first unit is removed from i1 as
soon as µ falls below maxi≤c(〈nwi〉 − 1/2)/wi = (〈nwi1 〉 − 1/2)/wi1 , say. It transpires
that now m j,n(d) is the count of how often index j ranks among the d-largest values
of the quotients (〈nwi〉 − k − 1/2)/wi . Reversing the sign of the quotients, we may
equivalently count occurrences among the d-smallest quotients Q(k,−〈nwi〉, wi ). Now
we obtain N j = 〈nw j 〉 − m j,n(d) = 〈nw j 〉 − sgn(d)m j,n(d). �



48 Heinrich -- Pukelsheim -- Schwingenschlögl

3 Two categories
We now turn to the stochastic behavior and hence assume that we no longer have a de-
terministic weight vector w, but a random weight vector W . For c = 2 categories, the
multiplier µ0 = n works for almost all weight vectors W = (W1, W2) (Happacher and
Pukelsheim, 1996, p. 379). Theorem 3.1 shows that the rounding residuals nW1 − 〈nW1〉
are, asymptotically, stochastically independent of W1 and uniformly distributed, for a wide
class of distributions of W1.

Theorem 3.1 If W1 has a Riemann integrable Lebesgue density on (0, 1), then(
nW1 − 〈nW1〉

W1

)
D−−−−−→

n→∞

(
U1

W1

)
,

where the random variable U1 is uniformly distributed on (−1/2, 1/2) and independent
of W1. Moreover, we have

S2,n
D−−−−−→

n→∞ S2 := U2
1

W1
+ U2

1

1 − W1
.

Proof: Let f be a Riemann integrable density of W1. In the joint Fourier transform of
U1,n = nW1 − 〈nW1〉 and W1 we substitute nw = u to obtain, for s, t ∈ R,

EeisU1,n+itW1 =
∫ 1

0
exp

(
is (nw − 〈nw〉) + itw

)
f(w) dw

=
∫ n

0
exp

(
is (u − 〈u〉) + it

u

n

)
f
(u

n

) du

n

=
∫ 1

0

1

n

n−1∑
k=0

exp

(
is (u − 〈u〉) + it

u + k

n

)
f

(
u + k

n

)
du,

where the last step uses the stationarity property u + k − 〈u + k〉 = u − 〈u〉. Dominated
convergence and Riemann integrability entail

lim
n→∞ EeisU1,n+itW1 =

∫ 1

0

∫ 1

0
exp

(
is (u − 〈u〉) + itw

)
f(w) dwdu

=
∫ 1/2

−1/2
eisu du ·

∫ 1

0
eitw f(w) dw

= EeisU1 · EeitW1,

since any integrable function h fulfills
∫ 1

0
h (u − 〈u〉) du =

∫ 1/2

0
h(u) du +

∫ 1

1/2
h(u − 1) du =

∫ 1/2

−1/2
h(u) du.

Moreover, in S2,n we substitute W2 = 1 − W1, and nW2 − 〈nW2〉 = 〈nW1〉 − nW1 =
−U1,n . Convergence of S2,n to S2 now follows from the Continuous Mapping Theorem
(Pollard 2002, p. 175). �
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When W1 is uniformly distributed on (0, 1), the density of S2 is given by the following,
where 1A(s) is the usual indicator function of the set A.

Corollary 3.2 If W = (W1, W2) is uniformly distributed on the probability simplex S2,
then the Sainte-Laguë divergences S2,n converge to a random variable S2 with Lebesgue
density g2 given by, for s > 0,

g2(s) = π

8
√

s
− 1

4
√

s

(√
s − 1

s
+ arctan

√
s − 1

)
1[1,∞)(s).

Proof: If W is uniformly distributed on S2, then W1 is uniform on (0, 1). We have
S2 = U2

1/[(W1(1 − W1)]. The variables X = U2
1 and Y = W1(1 − W1) have densities

fX(x) = 1/
√

x and fY (y) = 2/
√

1 − 4y on (0, 1/4). The quotient S2 = X/Y then has
density g2(s) = ∫

fX(sy) fY (y)|y| dy which, after some calculations, takes the form given
above. �

The density g2 is continuous, and is strictly decreasing from infinity at s = 0 to zero
at s = ∞. For large s it behaves like 1/(6s2), that is, lims→∞ g(s)/(6s2) = 1. Hence
S2 has all moments of order less than one finite, while its expectation is infinite. See
Figure 3.1.
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Figure 3.1 Limiting density gc, for c = 2, 3, 4 categories, of the Sainte-Laguë divergences Sc,n
as n → ∞. The density g2 is given in Corollary 3.2, while g3 and g4 are obtained by simulating
one million replicates according to Theorem 4.1. The starting points are g2(0) = ∞, g3(0) =
0.376, and gc(0) = 0 for c ≥ 4. The tails for s → ∞ are of order s−2, whence the moment of
order p is finite if and only if p < 1.
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4 Three or more categories
For c ≥ 3 categories the rounding residuals nW j − 〈nW j 〉 again become independent
of W j and uniform as n grows large. Convergence of the Sainte-Laguë divergences Sc,n

builds on the Adjustment Algorithm from Lemma 2.1.

Theorem 4.1 If the weight vector W(c−1) := (W1, . . . , Wc−1) has a Riemann integrable
Lebesgue density on {(w1, . . . , wc−1) ∈ [0, 1]c−1 : ∑ j<c w j < 1}, then




nW1 − 〈nW1〉
...

nWc−1 − 〈nWc−1〉
W(c−1)




D−−−−−→
n→∞




U1
...

Uc−1
W(c−1)


 ,

where the random variables U1, . . . , Uc−1 are uniformly distributed on (−1/2, 1/2), and
independent of each other as well as independent of W(c−1). Moreover, we have

Sc,n
D−−−−−→

n→∞ Sc :=
〈(c−1)/2〉∑

d=−〈(c−1)/2〉
1



〈∑

j<c

U j

〉
= −d




∑
j≤c

(
U j + sgn(d)m j(d)

)2

W j
,

where Uc := 〈∑ j<c U j〉 − ∑
j<c U j , and m j(d) is the count how often index j appears

among the |d|-smallest quotients

k − sgn(d)Ui + 1/2

wi
, i = 1, . . . , c, k = 0, . . . , |d|.

Proof: The first convergence result follows from a multivariate extension of the Fourier
transform argument used in the proof of Theorem 3.1.

Convergence of Sc,n is established by re-expressing it in terms of W j and U j,n :=
nW j − 〈nW j 〉 for j < c. We set Wc = 1 − ∑

j<c W j , as usual, and define

Uc,n :=
〈∑

j<c

U j,n

〉
−

∑
j<c

U j,n = nWc − 〈nWc〉.

The last equality is a straightforward consequence of the stationarity property of standard
rounding. Thus Uc,n itself is a rounding residual, of the negative cumulative sum of the
rounding residuals U j,n for j < c, or of nWc.

In case Dc,n = d, the Adjustment Algorithm from Lemma 2.1 yields

nW j − N j = U j,n + sgn(d)m j,n(d),

for all j ≤ c, where m j,n(d) counts the occurrences of index j among the |d|-smallest
quotients Q(k, −sgn(d)〈nWi 〉, Wi), with Q(k, z, w) defined as in the proof of Lemma 2.1.
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The latter equal Q(k, sgn(d)Ui,n , Wi)− sgn(d)n, from which the common shift sgn(d)n
may be dropped since it does not affect the ranking. This establishes the representation

Sc,n =
〈(c−1)/2〉∑

d=−〈(c−1)/2〉
1
{

Dc,n = d
}∑

j≤c

(
U j,n + sgn(d)m j,n(d)

)2

W j
.

By definition, we have 〈∑ j<c U j,n〉 = ∑
j≤c U j,n = −Dc,n ; see also Diaconis and

Freedman (1979, p. 361), Happacher and Pukelsheim (2000, p. 155). Now an appeal to
the Continuous Mapping Theorem completes the proof. �

For three categories and uniform weights W = (W1, W2, W3) on the probability
simplex S3, the density g3(s) of S3 may be shown to satisfy

g3(0) = lim
ε→0

1

ε
P

(
U2

1

W j
+ U2

2

W2
+ (U1 + U2)

2

1 − W1 − W2
≤ ε

)
= 4π2

105
= 0.376.

From c ≥ 4 categories on the densities start out from gc(0) = 0. See Figure 3.1.
In Theorem 4.1, Uc = 〈∑ j<c U j〉−∑

j<c U j is evidently not independent of U1, . . . ,

Uc−1, but it shares their distribution by also being uniformly distributed on the interval
(−1/2, 1/2). This follows from Theorem 3.1, or by a direct Fourier transform argument
using the uniform convolution density formula fc−1(v) = ∫ v+1/2

v−1/2 fc−2(x) dx:

Eeit
(〈∑

j<c U j

〉
−∑

j<c U j

)
=

〈(c−1)/2〉∑
d=−〈(c−1)/2〉

∫ d+1/2

d−1/2
eit(d−x) fc−1(x) dx

=
∫ 1/2

−1/2
eituC du,

with

C :=
〈(c−1)/2〉∑

d=−〈(c−1)/2〉
fc−1(d − u) =

〈(c−1)/2〉∑
d=−〈(c−1)/2〉

∫ d−u+1/2

d−u−1/2
fc−2(x) dx

=
∫
R

fc−2(x) dx = 1.

Section 5 will show that the asymptotic behavior of Sc is determined by the sum over
the leading terms U2

j /W j . To this end we provide the following bounds.

Corollary 4.2 With the assumptions and notations of Theorem 4.1, we have

0 ≤ Sc −
∑
j≤c

U2
j

W j
≤ c

∣∣∣∣∣∣
〈∑

j<c

U j

〉∣∣∣∣∣∣ .
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Proof: Expanding the squares
(
U j + sgn(d)m j(d)

)2
we get

Sc −
∑
j≤c

U2
j

W j
=

〈(c−1)/2〉∑
d=−〈(c−1)/2〉

1



〈∑

j<c

U j

〉
= −d




∑
j≤c

2sgn(d)U j + m j(d)

W j
m j(d).

All terms in the last sum are nonnegative, which is evident for m j(d) = 0, and which for
m j(d) ≥ 1 follows from 2sgn(d)U j + m j(d) ≥ 0. This verifies the lower bound zero.

To establish the upper bound we consider the case 〈∑ j<c U j〉 = −d, and characterize
the adjustment counts m j(d) using a multiplier ρ, see Balinski and Young (1982, p. 100).
That is, one has m j(d) = 〈ρW j − sgn(d)U j〉 for all j ≤ c if and only if

max
j≤c

sgn(d)U j + m j(d) − 1/2

W j
< ρ < min

j≤c

sgn(d)U j + m j (d) + 1/2

W j
.

By construction we have
∑

j≤c U j = −d and
∑

j≤c m j(d) = |d|, whence the right
inequality yields

ρ =
∑
j≤c

ρW j < −sgn(d)d + |d| + c

2
= c

2
.

The left inequality is invoked only when m j(d) ≥ 1, giving

2sgn(d)U j + m j (d)

W j
≤ 2

sgn(d)U j + m j (d) − 1/2

W j
< 2ρ < c.

Now c
∑〈(c−1)/2〉

d=−〈(c−1)/2〉 1{〈∑ j<c U j〉 = −d}|d| = c|〈∑ j<c U j〉| completes the proof. �

5 Infinitely many categories
The behavior of Sc for a large number of categories c is studied under the assumption
that, for c fixed, the weight vector W = (W1, . . . , Wc) is uniformly distributed on
the probability simplex Sc. By casting out some negligible terms we approximate the
distribution of Sc by an average over stochastically independent and identically distributed
random variables. This does away with the dependencies, of Wc on W1, . . . , Wc−1, and
of Uc on U1, . . . , Uc−1.

Lemma 5.1 Suppose the distribution of W on Sc is uniform, and let the random vari-
ables V1, E1, V2, E2, . . . be independent such that every Vj is uniformly distributed on
(−1/2, 1/2)and every E j is exponentially distributed with mean one. Then the differences

1

c2
Sc − 1

c

∑
j≤c

V 2
j

E j

converge in probability to zero, as c tends to infinity.
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Proof: Firstly we get, from Corollary 4.2 and using 〈∑ j<c U j〉 ≤ (
∑

j<c U j ) + 1/2,

0 ≤ 1

c2
Sc − 1

c2

∑
j≤c

U2
j

W j
≤

∣∣∣∣∣∣
1

c

∑
j<c

U j

∣∣∣∣∣∣ + 1

2c
.

The latter converges in probability to zero, by the law of large numbers. Hence we may
approximate c−2Sc by c−2 ∑

j≤c U2
j /W j .

Secondly we replace the dependent variable Uc by the independent variable Vc.
Happacher and Pukelsheim (2000, p. 153) show that P(Wc ≤ t) = 1 − (1 − t)c−1. From
|U2

c − V 2
c | ≤ 1/4 we get, for ε > 0,

lim
c→∞ P

(
1

c2

∣∣∣∣U2
c

Wc
− V 2

c

Wc

∣∣∣∣ ≥ ε

)
≤ lim

c→∞ P
(

1

4c2Wc
≥ ε

)

= 1 − lim
c→∞

(
1 − 1

4εc2

)c−1

= 0.

Hence we may approximate c−2 ∑
j≤c U2

j /W j by c−2 ∑
j≤c V 2

j /W j .
Thirdly we represent the uniform distribution on Sc through W j = E j/

∑
i≤c Ei , see

Aitchison (1986, p. 59). Thus the random variables

1

c2

∑
j≤c

V 2
j

W j
and

∑
i≤c Ei

c2

∑
j≤c

V 2
j

E j

have the same distribution. The average c−1 ∑
i≤c Ei converges in probability to one,

by the law of large numbers. Hence we may approximate c−2 ∑
j≤c V 2

j / W j by

c−1 ∑
j≤c V 2

j / E j . The proof is complete. �

The random variables Z j := V 2
j /E j live on [0,∞), and their common density f

satisfies

f(z) = 1√
z

∫ 1/(4z)

0
e−x√x dx = 1

12z2 − 1

80z3 + 1

2688z4 ∓ · · ·

Clearly Z j has infinite expectation, and the averages c−1 ∑
j≤c Z j do not obey the law

of large numbers. Instead, Z j lies in the domain of attraction of a stable distribution, see
Ibragimov and Linnik (1971, p. 76). Let S be a random variable with Fourier transform
given by

EeitS = exp
(

−|t| − 2it

π
log |t|

)
,

for t ∈ R. That is, S has a Lévy-stable distribution with characteristic exponent α = 1
and skewness parameter β = 1, see Zolotarev (1986, p. 9). With Euler’s constant γ =
limk→∞(1 + 1/2 + · · · + 1/k − log k) = 0.5772 · · · , the limiting distribution of the
suitably scaled and shifted statistics Sc is now given by the following.
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Theorem 5.2 Suppose the distribution of W on Sc is uniform. Then we have

acSc − bc
D−−−−−→

c→∞ S,

with scale constants ac = 24

πc2
and shift constants bc = 2

π

(
5

3
− 2γ + log

πc

6

)
.

Proof: In view of Lemma 5.1 and using Slutzky’s Theorem (Pollard 2002, p. 175) it
suffices to show that 24

πc (
∑

j≤c Z j) − bc converges in distribution to S. To this end we
consider their Fourier transforms

ψc(t) := E exp


i

24t

πc

(∑
j≤c

Z j

)
− itbc


 =

(
EeisZ1− it

c bc
)c

,

with t ∈ R fixed, and upon setting s := 24t/(πc). For a passage to the limit as c tends to
infinity, that is, as s tends to zero, we shall establish the following approximation (*):

EeisZ1 = 1 − π|s|
24

+ is

12

(
5

3
− 2γ + log 4 − log |s|

)
+ O

(|s|3/2) (*)

= 1 − |t|
c

+ 2it

πc

(
5

3
− 2γ + log

πc

6
− log |t|

)
+ o

(
1

c

)
.

We multiply by e− it
c bc = 1 − it

c bc + o(1/c) and collect lower order terms to conclude

lim
c→∞ ψc(t) = lim

c→∞

(
1 − |t| + 2it

π
log |t|

c
+ o

(
1

c

))c

= EeitS.

In order to establish the approximation (*), we set a := 1/
√

s and split the pertinent
integral into two:

EeisZ1 − 1 =
∫ a

0

(
eisz − 1

)
f(z) dz +

∫ ∞

a

(
eisz − 1

)
f(z) dz =: I1(a) + I2(a).

In the integral I1(a), we use the inequality
∣∣eisz − 1 − isz

∣∣ f(z) ≤ s2/24, substitute
1/(4z) = y, and integrate by parts, to obtain the first three of the following equalities:

I1(a) = is
∫ a

0

√
z
∫ 1/(4z)

0
e−x√x dxdz + O

(
as2)

= is

8

∫ ∞

1/(4a)

y−5/2
∫ y

0
e−x√x dxdy + O

(
as2)

= is

12

(
(4a)3/2

∫ 1/(4a)

0
e−x√x dx +

∫ ∞

1/(4a)

e−x

x
dx

)
+ O

(
as2)

= is

12

(
2

3
− γ + log 4 + log a

)
+ O

( |s|
a

)
+ O

(
as2).
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The last equality follows from
∫ 1/(4a)

0 e−x√x dx = (2/3)(4a)−3/2 + O(1/a), while the
exponential integral is evaluated from

∫ ∞

ε

e−x

x
dx = −γ − log ε +

∫ ε

0

1 − e−x

x
dx = −γ − log ε + O(ε)

for ε ∈ (0, 1], see Abramowitz and Stegun (1970, Eq. 5.1.11).

In the integral I2(a), the inequality
∣∣eisz − 1

∣∣ ≤ |s|z implies that the remainder∫ ∞
a (eisz − 1)

(
f(z) − 1/(12z2)

)
dz is bounded of order |s|/a. We substitute sz = x

and eix = cos x + i sin x, combine the two cases s > 0 and s < 0 into one, use∫ ∞
0 (1 − cos x)/x2 dx = π/2, and integrate by parts, to obtain the first three of the

following equalities:

I2(a) = 1

12

∫ ∞

a

eisz − 1

z2
dz + O

( |s|
a

)

= − |s|
12

∫ ∞

a|s|
1 − cos x

x2 dx + is

12

∫ ∞

a|s|
sin x

x2 dx + O

( |s|
a

)

= − |s|
12

(
π

2
−

∫ a|s|

0

1 − cos x

x2 dx

)

+ is

12

(
sin(a|s|)

a|s| +
∫ ∞

a|s|
cos x

x
dx

)
+ O

( |s|
a

)

= − π|s|
24

+ is

12
(1 − γ − log a − log |s|) + O

(
as2) + O

( |s|
a

)
.

For the last equality, we use 1−cos x ≤ x2/2 to obtain
∫ a|s|

0 (1−cos x)/x2 dx = O(a|s|).
From 1 − (sin x)/x ≤ x2/6 for x > 0 we get (sin a|s|)/(a|s|) = 1 + O(a2s2). And
the formulas for the sine integral in Abramowitz and Stegun (1970, Eqs. 5.2.2+27)
lead to

∫ ∞

ε

cos x

x
dx = −γ − log ε +

∫ ε

0

1 − cos x

x
dx = −γ − log ε + O

(
ε2)

for ε ∈ (0, 1], whence
∫ ∞

a|s|(cos x)/x dx = −γ − log a − log |s| + O(a2s2). In view

of a = 1/
√|s| all remainder terms are seen to be bounded of order |s|3/2. Now

1 + I1(a) + I2(a) sums to (*), thus completing the proof. �

The density of S can be calculated numerically, see Nolan (1997, 1998). It is known
to be positive over the whole real line, smooth, and unimodal, with mode in the negative
axis, at about −0.435. See Figure 5.1.
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0

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1 2 3 4

Density of acSc-bc for

c = ∞

c = 5

c = 20

c = 100

Figure 5.1 Convergence of ac Sc − bc to a Lévy-stable law when c → ∞. Theorem 5.2,
specifying the scale constants ac and the shift constants bc, only establishes convergence in
distribution, while the figure exhibits convergence of the associated densities. For c = 5, 20, 100,
the density of Sc is obtained by simulating one million replicates according to Theorem 4.1.
The density of the limiting law (c = ∞) is calculated using the program of Nolan (1997).

6 Concluding remarks
Our approach suggests generalizations in various directions. Thus we may assume that
the random variables E j from Lemma 5.1 possess a Gamma density with form parameter
α ∈ (0, 2] and scale parameter 1,

1


(α)
xα−1 e−x, x > 0.

That is, on the simplex Sc the weight vector W , with exchangeable components W j =
E j/

∑
i≤c Ei for j = 1, . . . , c, follows a Dirichlet distribution D(α), see Aitchison

(1986, p. 59). Specifically, α = 1 is the uniform case discussed in Section 5.
Generalizing Lemma 5.1, we find that now, as c tends to infinity,

1

αc1+1/α
Sc − 1

c1/α

∑
j≤c

V 2
j

E j

vanishes in probability when α ∈ (0, 2), while for α = 2 convergence takes place for

1

2c
√

c log c
Sc − 1

1
√

c log c

∑
j≤c

V 2
j

E j
.



Sainte-Laguë’s chi-square divergence 57

The density f of the random variables Z j = V 2
j /E j becomes

f(z) = 1


(α)
√

z

∫ 1/(4z)

0
e−xxα−1/2 dx = 1

(1 + 2α)4α
(α)z1+α
+ r(z).

It remains bounded of order z−1/2 as z tends to zero, and the remainder r(z) is bounded
of order z−(2+α) as z tends to infinity. For α > 1, we obtain E[Z1] = 1/ (12(α − 1)).

For α ∈ (0, 2), Z1 thus belongs to the domain of normal attraction of a stable
distribution with characteristic exponent α. For α = 2, Z1 lies in the non-normal domain
of attraction of the Gaussian law. See Ibragimov and Linnik (1971) for details. After some
lengthy calculations, similar to those in the proof of Theorem 5.2, it transpires that the
appropriate norming constants turn out to be

ac =




(

(1 + α) (1 + 2α) (1 − α)


(2 − α) sin (π(1 − α)/2)

)1/α 4

αc1+1/α
for α ∈ (0, 1) ∪ (1, 2),

4
√

5

c
√

c log c
for α = 2;

bc =




0 for α ∈ (0, 1),

αc2ac

12(α − 1)
for α ∈ (1, 2].

Then acSc−bc is found to converge in distribution to the stable law with Fourier transform
ϕα given by, for α 
= 1,

ϕα(t) = exp
(
−|t|α

(
1 − i sgn(t) tan

πα

2

))
.

Other generalizations are possible. With f(x) = x2 the Sainte-Laguë divergence takes
the form

Sn,c = n2
∑
j≤c

W j f

(
N j/n

W j
− 1

)
.

This is just one choice out of many for generating meaningful statistical distances, see
Liese and Vajda (1987). Other choices would entail a similar analysis as the one presented
here, though their bearing on the rounding problem would need to be explored.
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