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1 Introduction

Many practical problems are associated with the in-
vestigation of mixture ingredients ¢;,ts,...,tm of m
factors, with ¢; > 0 and being further restricted by
YI . ti = 1. The definitive text Cornell (1990)
lists numerous examples and provides a thorough
discussion of both theory and practice. Early semi-
nal work was done by Scheffé (1958, 1963) in which
he suggested (1958, page 347) and analyzed canon-
ical model forms when the regression function for
the expected response y = y(t) is a polynomial of
degree one, two, or three. We shall refer to these
as the S-polynomials, or S-models; for example, the
second-degree S-polynomial has the form

y(t) = z Biti + E Bij tit;. (1)

1<i<m 1<i<j<m

In this paper, we use the alternative representa-
tion of mixture models introduced in Draper and
Pukelsheim (1998b, 1999). Our versions are based
on the Kronecker algebra of vectors and matrices,
and give rise to homogeneous model functions and
moment matrices. We refer to the corresponding
expressions as the K-models, or K-polynomials. We
emphasize, however, that our results on the Kiefer
ordering of experimental designs for second-degree
mixture models are the same whether the S-model
or the K-model is employed.

Our notation is the same as in the previous pa-
pers Draper and Pukelsheim (1998b, 1999). We
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consider multifactor experiments, for m determin-
istic ingredients that are assumed to influence the
response only through the percentages or propor-
tions in which they are blended together. For i =
1,...,m, let t; € [0,1] be the proportion of ingre-
dient 7 in the mixture. As usual, we assemble the
individual components to form the column vector
of experimental conditions, t = (¢1,...,tm)". It
ranges over the experimental domain 7, the stan-
dard probability simplex in the space R™. Let
1, =(1,...,1)) € R™ be the unity vector, whence
1.t =t + -+t is the sum of the components of
a vector t. Therefore, in our case, the experimental
domain is 7 = {t € [0,1]™ : 1]t = 1}.

Under experimental conditions ¢t € 7, the exper-
imental response Y; is taken to be a scalar random
variable. Replications under identical experimental
conditions, or responses from distinct experimental
conditions are assumed to be of equal (unknown)
variance o2, and uncorrelated. When the regression
function is a second-degree K-polynomial, the ex-
pected response takes the form

E[Y;] = () =iit,tﬂu =(tet)s. (2)

i=1 j=i

An experimental design 7 on the experimental do-
main 7 is a probability measure having a finite num-
ber of support points. If 7 assigns weights w;, w, . ..
to its points of support in 7, then the experimenter
is directed to draw proportions wy,ws, ... of all ob-
servations under the respective eéxperimental condi-
tions. We associate with 7 its (second-degree K-)
moment matrix,

M(1) =/T(t®t)(t®t)’dr. (3)

The Kronecker square (t ® t) in (2) repeats the
mixed products.t;t; = t;t;, i < j, and thus over-
parameterizes the quadratic response function y,
(while the corresponding Scheffé setup (1) is based
on a minimal parameterization). As a consequence,
(2) is a non-parsimonious representation of (1), as,
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Nevertheless we propose to utilize the K-model (2)
instead of (1), since the Kronecker algebra is pow-
erful enough to outweigh the overparameterization,
and, more importantly, in the K-model the moment
matrices from (3) have all entries homogeneous of de-
gree four. This homogeneity is a distinctive advan-
tage over the S-model for which some of the entries
of the moment matrix are homogeneous of degree
two, others of degree three, and the rest of degree
four. A closely related emphasis on proper stan-
dardization is put forward by Dette (1997) though
the motivation, rescaling the experimental domain,
is different. In our work, the experimental domain
T is the simplex and stays fixed.

Given an arbitrary design 7, we obtain an ex-
changeable (permutation invariant) design 7 by av-
eraging over the permutation group,

-1 -1
T= m ZREPerm(m) TR

If the original design 7 itself is exchangeable then
it is reproduced, 7 = 7. Otherwise the average 7
is an improvement over 7, in that it exhibits more
symmetry and balancedness. In terms of matrix ma-
jorization (relative to the congruence action that is
induced on the moment matrices M), the moment
matrix of the averaged design 7 is majorized by the
moment matrix of 7, M(7) < M(r). The termi-
nology “is majorized by” is standard, even though
for design purposes the emphasis is reversed: M (7),
being more balanced, is superior to M (7). As a con-
sequence, the design 7 yields better values than 7,
under a large class of optimality criteria (Pukelsheim
1993, page 349). For a recent review of invariance
and optimality of polynomial regression designs see
Gaffke and Heiligers (1996).

Symmetry and balancedness have always been a
prime attribute of good experimental designs, and
comprise the first step of the Kiefer design ordering.
The second step concerns the usual Loewner matrix
ordering. Lemma 1 in Heiligers (1991) and Theorem
2 in Heiligers (1992) imply that any second-degree
mixture design which is not a weighted centroid de-
sign can be improved upon, in the sense of the Kiefer
ordering, by a weighted centroid design. Here we
show how to derive the improving design from the
properties of the starter design.

We shall restrict ourself to the K-model (2) with
m = 4 ingredients, only. We show that the class

of weighted centroid designs is minimal complete,
see Theorem 4. As a consequence, the search for
optimal designs may be restricted to weighted cen-
troid designs, for most criteria. For particular crite-
ria, this was observed already by Kiefer (1959, 1975,
1978), and Galil and Kiefer (1977). Related results
on Kiefer ordering completeness of rotatable designs
on the ball are reviewed by Draper and Pukelsheim
(1998a). The setting of Cheng (1995) is slightly dif-
ferent, in that his permutations act on the regression
vector z = t ® t, rather than on the experimental
conditions t.

While for models with two or three factors Kiefer
comparability of exchangeable moment matrices is
described by one parameter only, cf. Draper and
Pukelsheim (1999), the corresponding result in the
four factor model is more complicated as it involves
two dependent parameters, see Lemma 1, below.
This is also true for m > § factors—these models,
however, have to cope with some ambiguity intro-
ducing additional complications. Setups with five or
more ingredients are discussed in Draper, Heiligers
and Pukelsheim (1998); that paper also provides a
complementary, geometric view of the present Com-
plete Class Theorem 4.

Our approach is an extension of Draper and
Pukelsheim (1998a, 1999). In view of the initial
symmetrization step it suffices to search for an im-
provement in the Loewner ordering sense, among
exchangeable moment matrices only. We first aim
at finding necessary and sufficient conditions for
two exchangeable second-degree K-moment matrices
to be comparable in the Loewner matrix ordering.
The “Comparison Lemma” 1 provides conditions in
terms of two moment inequalities, in the spirit of
Theorem 2 of Heiligers (1992). Weighted centroid
designs effectively remove one degree of freedom, see
the “Characterization Lemma” 2. Given a first, poor
design we then construct a second, better design, in
the “Existence Lemma” 3. The complete class result
is stated in Theorem 4.

2 Four Factors

The four-ingredient second-degree model features all
possible moments of order four,
/ t3t;d7,
T

/t?t?d?, ponn = /t?tjtkd?,
T T

1111 = /titjtkttd?,
T

e = /t?di H31
T
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where the subscripts ¢,7,k,¢ = 1,...,4 are pairwise
distinct and where 7 is some exchangeable design on
the simplex 7. The associated K-moment matrix
M = M(7) is of the generic form

M=
paVa+p31 Var +p22 Vag + p211 Vorr + 11 Vit

with 0-1 matrices V; of order 16 x 16, indicating the
position of the moments p; in M. As usual, let e;
denote the i-th Euclidean unit vector in IR* with -
th component one and zeros elsewhere. For a concise
representation of V; we use the 16 x 1 Euclidean unit
vectors e;; = e; ® e; having a single one as the i-th
block’s j-th element, for ¢,j = 1,...,4,

!
Vi = E €€y,
i

/4
Vi, = Z (e,-,-egj + ei,-eﬁ,- + e;,—e},- + €j1‘€21~),
4]
'
Voo = Z (e“ L+ e,]e + e;; J,)
i,j
! / / !
V211 = Z (eiiejk + e_,'ke“ + eijek." +
1,7,k

! {4 !
+ejieiy + eije + ejiey;),

] 7 ]
+ejiey + eijey + €jiei),

!
1
Viim = E €ij€x-

ik

The sign 3" means that the summation is restricted
to pairwise distinct subscripts. The rank of M is at
most 10, implying M has at least six nullvectors.

The simplex restriction entails 1};M1;s =
J(A4t)*dT = 1. That is, the elements of M sum
to one, 4pq + 483y + 3620 + 14401, + 2411111 = 1.
Moreover, the lower order moments are functions of
the fourth order moments, i.e.,

M3 = pg + 3pai,

Ho1 = M31 + poz + 2pon,
i = panr +  painn;
p2 = p3 + 3pa
= pa + 6uz; + 2p92 + 6pon,
B = 2021 + 2pn

= 2uz1 + 2p22 + 10211 + 2p1111-

Now we consider two exchangeable designs n and
T possessing identical moments of order three. Then
the moments of order two are equal; too. For the
fourth order moment differences we get, with v =

1a(n) = pa(7) and 8 = p1111(n) — p1n(7),

na(n) —pa(7) = 7,
pa1(n) — pa1(7) = —37,
paa(n) — pa(?) = v+ 24, (4)
H211(n) — p211(T) = %‘5
m(n) — pun(7) = .

Of course, there is an infinity of ways to param-
eterize the two degrees of freedom in (4). We find
v and § a natural choice to work with. Using the
indicator matrices V;, the moment matrices of n and
7 differ by

A

M(n) — M(T)

+ 26 1)
Yy — §V31 g d 0 3 —— Va2 — §V211 +dVii1-

This decomposition has five terms although there
are only two degrees of freedom, 7 and §.

There are, however, simpler representations for A
involving just two matrices A and B, say. A conve-
nient choice is A = Vy — 3Va + 3V, ie,,

3-1-1-1 -1 1 00-1010-1001
1100 1-1 00 0000 0000
-1 010 0000 10-10 0000
-1 001 0000 0000 10 0-1
1100 1-1 00 0000 0000
1-1 0 0 -1 3-1-1 0-1 10 0-1 0 1
0000 0-110 01-10 0000
A—-l 0000 0-101 0000 01 0-1
~3(-1010 0000 10-10 0000O0]|
0000 0-1 10 01-10 00200
10-10 01-10-1-13-1 0 0-11
0000 0000 00-11 00 1-1
-1001 0000 0000 10 0-1
0000 0-1 01 0000 01 0-1
0000 0000 00-11 00 1-1
100-1 010-1 00 1-1-1-1-1 3
2 1 :
and B = §V22 = ‘3-V211 + Vi, ie.,
0000 0 2-1-1 0-1 2-1 0-1-1 2
0 2-1-1 2 0-1-1 -1-1-1 1 -1-1 1-1
0-1 2-1 -1-1-1 1 2-1 0-1 -1 1-1-1
0-1-1 2 -1-1 1-1 -1 1-1-1 "2-1-1 0
0 2-1-1 2 0-1-1 -1-1-1 1 -1-1 1-1
2 0-1-1 0000-10 2-1-10-1 2
-1-1-1 1 -1 0 2-1 -1 2 0-1 1-1-1-1
B= -1-1 1-1 -1 0-1 2 1-1-1-1 -1 2-1 0
~ 2| 0-1 2-1 -1-1-1 1 2-1 0-1 -1 1-1-1
-1-1-1 1 -1 0 2-1 -1 2 0-1 1-1-1-1
2-1 0-1 -1 2 0-1 000 0 -1-10 2
-1 1-1-1 1-1-1-1 -1-1 0 2 -1-1 2 0
0-1-1 2 -1-1 1-1 -1 1-1-1 2-1-10
-1-1 1-1 -1 0-1 2 1-1-1-1 -1 2-1 0
-1 l<l=1l 1-1-I-f <1-1 102 -1-1 2 O
2-1-1 0 -1 2-1 0 -1-1 2 0 00 0 O

The matrices A and B have the same rank six, both
possessing three non-zero eigenvalues (with respec-




tive multiplicities one, two, and three):

M4 = 5, n[B] = §,
XAl = %, NB] = 4,
M4 = 3, A[B] = -3

Moreover, the eigenspaces £; associated with the i-
th eigenvalue of A and of B coincide; upon setting
Uijke = (e“ — ej) ® (ek - eg) we have

& = span{l;s — 4E?=1 eii }s

&y = span{(u123s + u3a12) , (1324 + u2413)},

&3 = span{(ui212 — U3434) , (U1313 — U2424) ,
(w1414 — u2323) }-

In summary, the representation for A = M(n) —
M (7) takes the form

A =vA+6B, (5)
and has eigenvalues
Aa[A] = Z(y+79),

’\3 [A] %(7 - 6)7
M(A] = 0.

(6)

1l

The comparison of two exchangeable moment ma-
trices in the Loewner ordering is now reduced to
the comparison of individual moments. Let p3) =
(2, p11, 3, f21, 4111)" be the vector of moments up
to and including order three.

LEMMA 1. Let n and T be two ezchangeable
designs on the simplez 7. Then we have, with

v = pa(n) — pa(7) and § = pn111(n) — p11n1(7),
M(n) > M(7)
if and only if

wEy () = pe)(7), and - ;7 <§<H.

PROOF. For the direct part, assume that
A = M(n) — M(T) is nonnegative definite. Then
(14®14) A(14®14) = 0 forces A(14®14) = 0. This
implies equality of second order moments. Now we
get

(e1 ®14)'M(n)(e1 ® 14) = /Tt? dn = p2

= / t?d?= (61 ®14)1M(7)(61 ®14)
T

This yields A(e; ® 14) =0, that is, [(t @ t)tydn = Fig
J(t®t)t;dT. Hence the third order moments of 7 ord
and T are equal as well, giving p(3)(n) = p(s) (7). By
(6), nonnegative definiteness of A entails nonnega-
tivity of y+4, y—& and y+76, that is, -3y < < 7.
For the converse part, equality of third order mo-
ments implies the representation (5). According to
(6), the assumption on vy and § immediately implies
A'>0. o

By Lemma 1, comparability of exchangeable de-
signs n and T ensures that the difference A = M (n)—
M(7) liesin D= {yA+6B:v>0, -1 <6<~}
which is a two-dimensional subcone in the set of non-
negative definite 16 x 16 matrices. Thus, for any
fixed 7, the moment matrices of those exchangeable
designs 1 which improve upon 7 w.r.t. the Kiefer or-
dering are obtained by intersecting the set M of all the
moment matrices with the shifted cone M (7) + D; it
Figure 1 illustrates this geometry.

Of course, most of the designs 7 associated with
M N (M(T) + D) can be further improved upon by
a third exchangeable design ¢, which then is also a
further improvement on the starter design 7. We
are particularly interested here in describing those
exchangeable designs n which improve upon 7 and
which can not be further improved upon. These turn
out to be among the weighted centroid designs, in-
troduced next.

There are four elementary centroid designs: the
vertex points design 7, the edge midpoints design
72, the face centroids design 73, and the overall cen-
troid design 74,

we

me) = 5§ for1<i<4,
me(3(eite;)) = § for1<i<j<d,
m(t(eitej+er)) = 3 for1<i<j<k<d,
n(E) = 1
M
M(7)+D
M(T)

Fic. 1. Moment matrices of exchangeable designs which im-
prove upon T w.r.t. the Kiefer ordering. The gray area de-
scribes the “improvement area” M(7) + D. The thick line in
the east boundary of M (7)+7D is associated with the weighted F
centroid designs which improve upon 7. tc
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Figure 2 illustrates these designs. The moments of
order four of these designs are

pa(m) = 3, Ha(m) = 35,
Ha(m3) = 155, Ha(me) = 53,
psi(m) = 0, pa(m) = &,
pai(m) = 165, 131(m) = 55,
pai(m) = 0, pau(m) = O,
pa11(ms) = ﬁ, pa11(ne) = 'les’
pun(m) = 0, p(m) = 0,
pun(n) = 0, pr(m) = 555

we have [J31(T)j) = /.1.22(7’]]'), for all ] = 1,2,3,4.

For weights a;,as,a3,04 > 0 summing to one,
the design n = aym1 + aamns + asnz + aqny is called
a weighted centroid design.

€4
m

€2

€1

LEMMA 2. Let T be an exchangeable design on
the simplex 7. Then we have

p31(T) > po2(7),

with equality if and only if T is a weighted centroid
design.

Proor. The function

V(b ta,ta, ta) = Y titj(ti — t;)°

i<j

is nonnegative on the simplex 7, and integrates un-
der 7 to 12(u3; — p22). This proves pz; > poa. We
have [ d7 = 0 if and only if every support point
t = (t1,t2,t3,t4)" of T satisfies t;t;(t; — t;)* = 0. Be-
cause of exchangeability, 7 must then be a weighted
centroid design. 0

2

Fi1c. 2. Elementary centroid designs n1,12,73,74 in a three-dimensional space. The individial designs assign equal weights
to the associated support points, represented by the dots. The weights total 1 in each case.

SR = ]




Let 7 = a1m + @ans + @3m3 + a4my be a weighted
centroid design. When we calculate the difference
of line two and three in (4), the contribution of 5
vanishes due to p31(n) = p22(n). Suppressing the
dependence on 7 of the remaining moments, we get

2
31 — Moo = 5(’7 +6). (7)

From this, we determine 7 in terms of § and the
moments of 7, i.e., v = 3(ug1 — p22) — 6. The re-

strictions ——%7 < § < « provide initial bounds for
g,
1 3
—Z(I»"iﬂ — p22) <6 < Z(l‘:il ~ Ha2). (8)
In order to find a set of weights for n = aym +
Qa2 + a3n3 + 4”4 to improve upon 7, we refer to
(4) and equate fourth order moments,

— 1 ol - =
Ha + 7= zou+ z300 + 1503 + 55504,
~ 1l - L - -
M31 — 37 = ggl2 t 15303 + 35504,

1s _ 1 1
H211 — 55 = 33703 t+35524,

(9)

— 1 .
M+ 6 = gppay;

The solutions are, inserting v = 3(us1 — pa2) — 6,
(a1, a2,a3,04)" =

1 -3 3 -1 u4+%(u31 — p22) — 8
g4/ 0 24 -48 2 3(uar + paz) + 36
0 0 81 -81 pa — 46

0 0 0 64 s +4

In final terms we obtain

o1 = 4(pg — gz + 3pa1r — pann — 46),

oy = 48 (w31 + poo — 4pery + 21111 + 49), (10)
ay = 108 (3u211 — 31111 — 46),

g = 256 (p1111 + 9).

In addition to the initial bounds (8), the require-
ments «; > 0 in (10) enforce further bounds on 4.
Overall, we get the range dmin(7T) < dmax(7) where

_ . (3 3
Omax(T) = mln{Z(ﬂSI — p22), Z(M” — p1111)
1
—(pa — 3pa2 + 3p21y — llun)}y

4
and

X 1
Omin(T) = —min {Z(ltsl — p22), H1111,

1
Z(ll:n + po2 — 4pon + 2#1111)}~

The following lemma shows that §pmin(7) < 0 <
Omax (7). In particular, § = 0 is always a feasible
choice. The lemma says that, for every exchange-
able design 7, there indeed exists a weighted centroid
design n(d) improving upon 7.

LEMMA 3.  Let 7 be an exchangeable design
on the simplex T, with fourth order moments
M, 4315 422, H211, #1111-  Then we have dnin(T) <
0 < 6max(T), and for every § € [Omin(T), 6max(?)]
the weighted centroid design n(d) = ain; + agny +
ai3ng + aana, with weights from (10), satisfies

M(n(6)) > M(7),

with equality if and only if § =0 and 7 = n(0).

PROOF. The relation a3 + a3 + az + a4 =
4114 + 4831 + 36102 + 144011 + 241111 = 1 is the
simplex restriction formula. In order to show that
the weights a; are nonnegative, we start with the
special case § = 0.

Clearly, we have ay = 25611117 > 0. We also have
a3 = 324(pa11 — p1111) > 0, since the nonnegative
function 162¢;¢5(t3 — t4)? integrates to as. For as,
the inequality p3; > p92 from Lemma 2 yields

ag 2 96 (p22 — 241211 + p1111)

= 24 /(t1 —t2)%(ts — t4)2d7 > 0.
For o, we use the symmetric function

Y(t1, ta,ts,ts) = 5+t +1t5 + 15
— 2u3¢2 — 24242 — 2t343 — 2212 — 2242 — 21242
+ 3oty + titats + tataty + titats + tataty
+ ttaty + titot] + titity + totity + titat]
+ titatd + totats — dtytataty.

Because of homogeneity, 1 is nonnegative on the
simplex 7 if and only if it is nonnegative on the
quadrant [0,00)*. In the interior (0,00)*, the gra-
dient vanishes only along the equiangular line, t; =
ty = t3 = t4, where 7 attains the minimum value
zero. By continuity, ¥ stays nonnegative on all
boundaries. This ensures oy = [ d7 > 0.

Hence, in the special case when ¢ = 0, the weights
a; are nonnegative, and dmin(7) < 0 < Gmax(7).
Generally then, as long as § stays in the range
[6min(T) , Omax(T)], the weights a; remain nonneg-
ative. Therefore the weighted centroid design 7(d)
is well-defined. It fulfills j3)(n(d)) = pe) (7). We
verify equation (7), whence the bounds on the range
of § secure —1y < § < 4. Now Lemma 1 yields
M(n(8)) > M(7).

If equality holds then A = 0 in (5). Hence v =

6 = 0 and, from (7), u3; = poe. By Lemma 2, 7 is
a weighted centroid design. Denote the weights of 7
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by 1,82, B3, 84. That n(0) and T are identical now
follows from

(01,02,03,04)1

1 -3 3 -1
0 24 -48 24

Ba + 3(ua1 — p22)
Tuar + pa2)

=4 0 0 81 -s1 bl
0 0 0 64 H1111
= (ﬂlaﬂ?:ﬁ:ﬂrﬂ‘i)’ ¢ a

Our examples share a common characteristic: Let
€(t1,t2,t3,%4) be the one-point design with support
point ¢ = (ty,t2,%3,t4) € 7. By averaging over
all permutations we obtain the exchangeable design
€(ty, t2,t3, ta), assigning equal weight to the distinct
permutations of t. Because of exchangeability we
may assume the components of ¢ to be ordered, ¢; >
ta > t3 > t4. In Examples 1 and 2, ¢t depends on a
real support parameter r.

EXAMPLE 1. Lemma 3 is illustrated using the
one-parameter family of exchangeable designs 7, =
€3 —r3 —rmnr) for r € [0,1), assigning equal
weight 1/6 to each of the six permutations of (% -
r,% —r,7,7)". This family includes the edge mid-
points design, 7 = 0, and the overall centroid design,

r = 1. The improving design 7(0) from Lemma 3
has weights
ar(r) = kr(l-20)(1-4r)?,
ay(r) = (1—6r+12r?)(1 - dr)?,
03(7‘) = 2701(7‘),
a4(r) = 647%(1 - 2r)2.
EXAMPLE 1: 7 = z(% —r % —rrr)
JH\B.X
0.0001+ L\
1778
T 'l .
4
Smin

The bounds dmin and dmax for § are conveniently
expressed in terms of the preceding weights as

Omax(7r) = #al (r),

{ - a1 (r) forre[i—ﬁg,i],

(smin(Tr) =
—gka(r) forre[0,1-)

The edge midpoints design has as(0) = 1, and the
overall centroid design has a;;(%) =1, as one would
expect. With § = 0, the value of « is %al (r). O

EXAMPLE 2. Our second example is provided by
the designs 7. = €1 — 3r,r,r,7)’ for r € [0, %],
assigning weight 1/4 to the four permutations of
(1=-3r,r,r,7)’. This family includes the vertex points
design, r = 0, the overall centroid design, r = §, and
the face centroids design, r = % The weights of the
improving design 7(0) from Lemma 3 are

a(r) = (1-r)(1- 3r)(1 — 41.)2,
az(r) = 127r(1 = 3r)(1 — 4r)?,
az(r) = 811‘2(1_47.)2’

as(r) = 25673(1 — 3r).

With ¢ = 0, the value of 7 is g5a2(r). The bounds
Omax and dpmin are

bman(r) = { 16010 forr€lh )
max\Tr Z:%as(r) forr € [O, %],
bmin(Ty) = 151;_2012(7‘) forr € [%’ %],
min (77 siga(r) forr €0, 3].

The graphs of dmax(7r) and dmin(7+) are shown in
Figure 3. ]

EXAMPLE 2: 7, = €(1 — 3r,7,7,7)

Jmax

Fic. 3. Range [dmin(7r), max(7r)], for various designs 7. The range contains the moment parameter §. It thus reflects how
many weighted centroid designs 7(d) improve upon the given exchangeable design r.
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In both examples, each of the two terms of which
Smin is the minimum is needed, for some r. This
is not so for dmax. In Example 1, the three terms
of which 8max is the minimum are identical, so any
one of them suffices. In Example 2, the minimum in
the definition of dmax 15 determined by the second
and the third terms. In other examples, though,
the first term may become relevant. For instance,
this happens in the family of designs 7, supported
by the 12 permutations of (0.4 — r,0.3,0.3,7)", for
r € [0,0.4]. In general, each of the three terms of
which max is defined to be the minimum has a role
to play.

In conclusion, the complete class result for the
Kiefer ordering in the case of four ingredients takes
the following form. The class is formed by all con-
vex combinations of the vertex points design 7, the
edge midpoints design 7, the face centroids design
ns, and the overall centroid design n4. The theorem
refers to K-models and S-models alike.

THEOREM 4. In the four-ingredient second-
degree mizture model, the set of weighted centroid
designs

C = {aim + aona + asns + aumy
(a1, a2,a3,04)" € T}

is convez, and constitutes a minimal complete class
of designs for the Kiefer ordering.

ProoFr. Completeness follows as in Theorems 6.4
and 7.4 of Draper and Pukelsheim (1999). For mini-
mal completeness, the last paragraph in the proof of
Lemma 3 shows that any two weighted centroid de-
signs n and 7 satisfy M (n) > M () only if n=7. O

We append some remarks elucidating the various
roles played by the simplex 7. In its primal mean-
ing, as the experimental domain that underlies mix-
ture models, 7 is exchangeable. In its dual meaning,
as a set parameterizing the convex complete class C
of Theorem 4, 7 is, of course, not exchangeable: a;
belongs to the vertex design 71, o to the edge mid-
points designs 7o which is different, etc.

This helps in understanding the distinct geomet-
ric properties of the solutions of the system (10).
As & varies over its range [0min(T),0max(T)], let
a(d) = (a1,as,03,aq) denote the weight vector
that uniquely solves (10). Evidently we have

a(8) = a(0) + dd,

where d = 16(—1,12, —27,16)". This means that the
set of all such weight vectors forms a segment on
the line through «(0) in the direction given by d.
The design 7 enters in that it determines the base
point, a(0), and the length of the segment, dmax(7)+
Omin (7). The direction d, however, always stays the
same, because it has to be understood relative to
the fixed orientation of the parameter space 7. In
the geometry of these weight vectors, the range for 4
ensures that a(0) + dd stays in the parameter space
T, besides securing (8).

The geometry translates into the moment
space. For a given value of 8, let p(n(d)) =
(14 (1(8)) , a1 (n(0)) , 211 (0(8)), 111 (n(8)))" de-
note the fourth order moment vector of the weighted
centroid design 7(d) of Lemma 3. From (9) we
obtain the line segment

p(n(8)) = u(n(0)) + de,

where again the direction e = 3(-3,1,~-1,3)" does
not depend on 7. The present line segment as-
sembles those moment vectors 4 (n(8)) that improve
upon 7, in the Loewner ordering sense of having
M(n(8)) > M(7). In the geometry of these mo-
ment vectors, the bounds on § secure (4), and also
imply that 1(n(0)) + ée lies in the moment polytope
spanned by u(n;) for j =1,2,3,4.

The structure of the moment polytope, in the gen-
eral case of five or more ingredients, is discussed
in more detail in Draper, Heiligers and Pukelsheim
(1998).
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