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Abstract

Models for mixtures of ingredients are typically fitted by Scheffé’s canonical model forms.
An alternative representation is discussed which offers attractive symmetries, compact notation
and homogeneous model functions. It is based on the Kronecker algebra of vectors and matrices,
used successfully in previous response surface work. These alternative polynomials are contrasted
with those of Scheffé, and ideas of synergism and model reduction are connected together in both
algebras. Scheffé’s ‘special cubic’ is shown to be sensible in both algebras. (© 1998 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Many practical problems are associated with the investigation of mixture ingredients
X1,X2,...,X%q of g factors, with x; >0 and further restricted by

=1 (1.1)

or by some linear restriction which reduces to Eq. (1.1).

The definitive text Cornell (1990) lists numerous examples and provides a thor-
ough discussion of both theory and practice. Early seminal work was done by Scheffé
(1958,1963) in which he suggested (1958) (p. 347) and analyzed the following canon-
ical model forms of orders (degrees) one, two and three for the expected response #:

n=Y_ B (12)

1<i<gq
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n= M Bixi + M Bijxix;, (1.3)

I<ixg I<i<j<gq
= MU Pixi + M Bijxix; + MU VijXixi(Xi — x;)
I<i<g 1<i<j<q 1<i<j<q
+ M BijiXixix. (1.4)
I<i<j<k<gqg

As stated by Cornell (1990) (p. 26) there is ‘an infinite number of regression functions’
derivable by resubstituting Eq. (1.1) in various ways. Scheffé (1958) (p. 346) remarks
that Egs. (1.2)—(1.4) constitute ‘an appropriate form of polynomial regression’. We
shall refer to Egs. (1.1)—(1.4) as the S-models, or S-polynomials.

In the present paper, we propose an alternative representation of mixture models
which appears to have certain advantages to be described. It offers attractive symmetries
and an economical, compact notation. Our versions, to appear in Egs. (2.3)—(2.5), are
based on the Kronecker algebra of vectors and matrices, and give rise to homogeneous
model functions. We shall refer to the corresponding expressions as the K-models, or
K-polynomials.

A similar approach to non-mixture response surface models was used successfully
in Draper et al. (1991), Draper and Pukelsheim (1994) and Draper et al. (1996); see
also Ch. 15 in Pukelsheim (1993).

An outline of the present paper is as follows. In Section 2 we introduce the
K-models; their expected response 7 is homogeneous in the ingredients x;. By way
of example, Section 3 illustrates the inhomogeneity of the S-models. Section 4 initiates
the discussion of reducing the order of K-models through testable hypotheses, which
is then carried through for reducing second order to first (Section 5), and third order
to second (Section 6). In Section 7 we compare the second-order coefficients in a
K-model with those in a S-model and in Section 8 we do the same for third order.

The transition from S-models to K-models has consequences for the design choice
for mixture experiments, and for the analysis of data. These aspects will be addressed
in subsequent work.

2. K-polynomials for mixtures models

The mixture ingredients, x;, can conveniently be written as a ¢ x 1 vector x = (x|,
x2,...,%;)". The Kronecker square x®x consists of a g> x 1 vector of the ¢* cross
products x;x;, in lexicographic order with subscripts 11,12,...,1q; 21,22,...,2q;...;q1,
q2,...,4q,

—ife ; 2 i . 2y
X ®x = (x],X1%2,...,X1%g; X2X15X35 .oy X2Xg3 0005 aeermx?:;x@v ; (2.1)

In Eq. (2.1) individual mixed second-order terms appear twice, for example, we have
x1x2 and xox;. Although this may at first appear disadvantageous, the symmetry attained
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more than compensates for the duplications, as will become apparent. The very same
point is familiar from treating dispersion matrices as matrices, and not as arrays of a
minimal number of functionally independent terms.

Similarly, the Kronecker cube x®x®x is a g°> x 1 vector of all terms of the form
x;xx, in lexicographic order, and repeats third-order terms either six or three times
depending on the number of different subscripts, ijk or iij. It has the form

XQx®x = (X1X1X1,X1X1X2, X1 X1X3, - . . , X1X1Xq5 X1X2X1,X1X2X2,X1X2X3, ..., X1X2Xg;
/
cees XgXgX1,XqXgX2,XgXgX3, -+, XgXgXg) 2.2)

for g>3 factors. For ¢ =2, no products with three distinct subscripts occur, of course.
The K-models that we propose to replace Egs. (1.2)—(1.4) are the following:

n=x'8= MU 0x;, (2.3)
1<i<q
n=@®xy0= Y Oyxx, (24)
1<i,j<q
N=(xQx®x)0= MU Ojuxixjx. (2:5)
1<i,jk<q

Since the regressors x;x; and x;x; are identical, we assume 0;; = 0;;. For the same reason,
0, is assumed to be the same for all permutations of the subscripts 7, j, k.

The first order K-model (2.3) and the first-order S-model (1.2) are of the same
homogeneous form in the x;’s, of course. The second-order K-model from Eq. (2.4) is

L= M m:xw.fw MU 0,jxix;, (2.6)

1<i<gq I<i<j<gq

and is fully homogeneous in second-order terms; the x; terms of the S-model (1.3) are
replaced by x? terms and, assuming that 6;; = 6;, the multiplicity of mixed terms x;x;
for i#j has been doubled. The third-order K-model is homogeneous of order three,
and will be discussed in Section 6. Extension to higher-order models is evident.

The homogeneous representation of K-models should not be mistaken to mean that
we ‘lose’ linear terms in Eq. (2.4), nor linear and quadratic terms in Eq. (2.5). The
second-order S-model (1.3) and K-model (2.4) both feature Aaw_v parameters for the
response function; for third order Egs. (1.4) and (2.5) both involve Aawwv parameters.
We may sketch the essential argument by rewriting Eq. (1.1) in succinct notation as
Ipx=1, where I;=(1L,1,..., 1) is the unity vector in R?. Then the first-order part
of the response surface (1.3) can be blended into the second-order part to produce a
homogeneous second-order function of form (2.4) by noting that

XB-1=x'B- Xl =('P @) =(x@x) (1) (2.7)
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where the last equation uses a key property of Kronecker products, see Eq. (5.4) in
Draper et al. (1991) (p. 140) or Eq. (1) in Pukelsheim (1993) (p. 392). In similar
fashion, Eq. (1.4) can be converted into the homogeneous third-order form (2.5) by
blending both the first- and second-order parts of Eq. (1.4) into the third-order part.
Sections 7 and 8 elaborate the equivalences of the K-models with the corresponding
S-models.

An immediate advantage of model homogeneity is apparent. In problems where the
component sum in Eq. (1.1) is 4# 1, the homogeneity of the K-models ensures that
all model terms are affected by the same multiple 4% where d is the degree or order of
the model. This is not true of the S-models. The possible effects of model dependence
on the total amount 4 is illustrated by the following example, after which we continue
our discussion of the K-models.

3. An example of inhomogeneity for the S-models

We consider the simplest case of two components, x; + x, =4, where A is the
total amount. Suppose we consider the three point design A\roy@\r FAVAP\C, with
respective weightings «/2, 1 — o, 2/2, with « € [0,1].

The second-order S-model involves the terms x;,x,,x;x,, and gives rise to the mo-
ment matrix

44215 44? 243

l—a

1 —
M=—2| 4 aglz o | (3.1)
24° 243 4
The trace of the inverse is found to be
4 4
traceM '= — (1 + —— ). .
race i G YTy (3.2)

If we optimize the design weights with respect to the average-variance criterion
which requires maximization of Eq. (2.8), the solution for o depends on the amount
\Av

4 2 -
A)=14+— — —1/1+ —.
au(4)=1+ yrimly + 7 (3.3)
Including the limiting values 0 and co for 4, the weight o ranges from w to 1:

A 0 1/8 1/4 1/2 1 2 4 8 oo
a(4) 05 05005 0502 0508 0528 058 0691 0805 1

For 4 =0, the distribution of the weights is }, 1, . For 4 =1 we reproduce the entry in
line 11 of Table 2 of Galil and Kiefer (1977) (p. 451). For 4 = cc the inhomogeneity
in the S-model has the effect that the linear portion dominates, and the central weight
is zero.
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4. Conditions for reducing the order of K-models

A standard procedure of polynomial model building is not only to check whether
the current model is suitable for representing the data, but also to determine whether
a more parsimonious lower order model might be adequate.

A great advantage of the S-model hierarchy is that higher-order models visibly in-
clude the terms of lower-order models. Thus reduction of the order of an S-model is
attained simply by setting certain coefficients to zero, and so appropriate hypotheses
are easy to formulate.

This is not so obvious for K-models. Thus, we now investigate what conditions are
necessary for reduction of a K-model to one of a lower order. The resulting hypotheses
will be seen to permit a pleasing interpretation.

5. Reduction of second order to first order

We will work with the excess function Exc,;(x) obtained by subtracting the first-
order model function (2.3) from the second-order model function (2.4). We multiply
Eq. (2.3) by x; +x2 + - - - +Xx,, which is equal to one by Eq. (1.1), to achieve second-
order terms throughout.

WXONHAHVH MU QQRT«\.I M %_,kh. M Xj
1<ij<q 1<i<q I<j<q
= MU (05 — 0:)xix;
1<ij<q
’ = > (Bi—0)F+ ). (205 — 06— 6)xi, (5.1)
1<i<yqg 1<i<j<gq

using the fact that 0;; = 0;;. It follows that the excess will vanish identically on the
region (1.1) if and only if

6y=3(0,+6) Vi (52)

Hence, the appropriate hypothesis that a second order K-model reduces to a first-order
K-model is

0= 3(6u + 6;) Vi) (5:3)

If the hypothesis (5.3) is true, then the first-order parameters are obtained from the
second-order parameters via 0; = 0;;.

In the spirit of Scheffé’s (1958) (pp. 347-348) synergism discussion, we call 26;; —
0; — 6; the coefficient of binary synergism of x;,x; for the second-order K-model
relative to the first-order K-model. With this terminology we see that the fulfillment of
Eq. (5.3) is equivalent to the vanishing of all coefficients of binary synergism.
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6. Reduction of third order to second order

In similar fashion, the excess of a third-order K-model over a second-order K-
model is

Excs(x) = M Oijxixix, — MU 0,jxix; MU Xk

1<ijik<q 1<ij<q 1<k<q
= M Oy — 6;)xix;xy
1<ijk<q
= > =05+ Y (36 — 20, — Ou)xly
1<i<q 1<iAj<q
+ MU {66k — 20y + O + O ) }xixjx, (6.1)
I<i<j<k<g

Cwmbm the fact that %_.Q = %Qm = Gjii, and that %Q\m = 9@. = Ujix = @F = %\a\ = m»\.,. It follows
that the excess will vanish identically on the region (1.1) if and only if

O = 5(0 + O + G) Vi, j.k. (6.2)

This condition specializes to 6;; =6; when i=j =k, and so to
20, =30;; — Ou;, (6.3)
when i =k # j. By solving Eq. (6.3) for 6;; and substituting into Eq. (6.2), we obtain

the appropriate hypothesis that a third-order K-model reduces to a second-order K-
model as

Ok = 15 {(30ii; — 0ii) + (3645 — 6) + B — ) + 3 — Ouar)
+(30ik — Ouc) + 30k — 0i)} Vi, j, k. (6.4)

When all three subscripts are equal, Eq. (6.4) is an identity. There are AWV conditions

when two subscripts are equal, in which case Eq. (6.4) simplifies to
w%:.\. — Ui = wm@.\ — Ujjj <~w~m.\ Amwv

There are va conditions in Eq. (6.4) with three distinct subscripts. When Eq. (6.5)

holds they simplify to
O = ${(30 — 0iir) + 30k — ) + (3O — Owa)} Vi j £k #1. (6.6)

If .Hrm hypothesis (6.4) is true, then the second-order parameters are obtained from the
third-order parameters via Egs. (6.3) and (6.5) as

0ij = 3(36i; — Our) = 330y — G;5) = 6. (6.7)
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Again in the spirit of Scheffé¢’s (1958) (pp. 347-348) synergism discussion, we call
Oiji — WS: + Ou + O ) the coefficient of ternary synergism of x;,x;,x for the third-
order K-model relative to the second-order K-model. With this terminology we see
that the fulfillment of Eq. (6.2) is equivalent to the vanishing of all coefficients of
ternary synergism.

7. Connections between second-order coefficients in S-models and K-models

In order to determine the relationships between the coefficients of the second-order
models (1.3) and (2.4), we must convert the first term in Eq. (1.3) to be homogeneous
of second order, by multiplying by x; +x + -+ +xg:

S pxi= Y B+ Y (Bt B (7.1)

1<i<gq 1<i<gqg 1<i<j<gq

Thus, the difference between Egs. (2.4) and (1.3) is seen to be

MU Ojxix; — MU Bixi — MU Bijxix;

1<i,j<gq 1<i<q 1<i<j<gq
i
=3 B+ D (205 Bi— B~ Bipxiy. (72)
1<i<gq 1<i<j<q

This difference vanishes for all x from Eq. (1.1) if and only if
mm = m:. and %Q = N%c = %:. = %t Aﬂwv

This connects to Eq. (5.3), in that a reduction to a first-order model takes place if and
only if all the f;; vanish.

8. Connections between third-order coefficients in S-models and K-models

In order to determine the relationships between the coefficients of the third-order
models (1.4) and (2.5), we first convert the first two terms in Eq. (1.4) to be homo-
geneous of third order, by multiplying by x; +x; +---+Xx4 as needed to raise to third
order:

Yo Bxi= ) Bixl+ > @B+ Bxin + > B+ 28w

1<i<q 1<i<q 1<i<j<q Isi<jsq

¥ 2

1<i<j<k<gq

2(Bi + Bj + Br)xixjx, (8.1)
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D Byxin= D Byxixy+ > Byxix?

I1<i<j<gq I<i<j<gq I<i<j<gq
= M (By + B + Bix )XiX X
I<i<j<k<g

Thus, the difference between Egs. (2.5) and (1.4) is seen to be

M Osjixixxy — M Bixi — M Bijxix;

1<i,j,k<q 1<i<q I1<i<j<q
- M ViXixi(Xi — X;) — M Bijiexixxy
I<i<j<gq I<i<j<k<g
- 3
= MU (O — Pi)x; + M (30 — 2B; — B — By — yy)xix;
1<iggq 1<i<j<q
+ MU (36 — Bi — 2B, — By + u\c,vﬁkw
I<i<j<gq
s MU (60 — 2 — 2B — 2By — Bij — B — Bjx — Bijk)xixixs.
I<i<j<k<gqg
(8.2)
This difference vanishes for all x if and only if
mm ”m&.?
Bij =305 — O + 05 — 6;),
(8.3)

15 = 3((30i; — 0) — (3045 — 6;;))),
Bijk =604k + 301 + 63 + O + Oupsc + Ok + O ) — (Oiii + 65 + O
mo.wnmm Commv (p. 352) refers to the reduced model when all yi; are zero as the
special cubic model. In the K-model this requires Eq. (6.5) to be true. We see that
the cubic is ‘special’ in the sense that it satisfies not all the conditions (6.4) but a

particular subset of them, namely Eq. (6.5). When Eq. (6.5) is satisfied we can reduce
the last equation of Eq. (8.3) to

Bijk = 684k + (36i; — i) + 30 — 6) + (30 — Ouar ). (84)

Note Ewﬁ Eq. (6.3) implies Eq. (6.5) and hence that all i in Eq. (8.3) are zero; the
reverse implication is not true, however.
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