Advisory Board Chair and Editor-in-Chief: Jagdish N. SRIVASTAVA, Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA; Executive Editor: Shelley ZACKS, Department of Mathematical Sciences, Binghamton University, Binghamton, NY 13902-6000, USA; Editor, Statistical Discussion Forum: N. SINGPURWALLA, Department of Operations Research, George Washington University, Washington, DC 20052, USA; Book Review Editor: S.D. PEDDADA, Department of Mathematics, Statistics Division, University of Virginia, Charlottesville, VA 22903, USA; Editorial Assistant: Usha SRIVASTAVA; Founder and Past Editor-in-Chief: J.N. SRIVASTAVA (1976-84 and 1991-94); Past Joint Chief Editor: Pranab K. SEN and Shelley ZACKS (1981-83); Past Editors-in-Chief: Madan L. PURI (1984-88), Shanti S. GUPTA (1989-91).

Aims and Scope: This is a broad based journal covering all branches of statistics, with special encouragement to workers in the field of statistical planning and related combinatorial mathematics and probability theory. We look upon Planning and Inference as the two twin branches of statistics, the former being concerned with how to collect data (or information) appropriately, and the latter with how to analyze or summarise the information after it has been collected. The data may be collected in one or more attempts, or one or more variables, and may be subject to relatively simple or more complex stochastic processes. Thus, the major areas, such as experimental design (single- or multi-stage or sequential), sampling, certain branches of information theory, multivariate analysis, decision theory, distribution free methods, data analysis, probabilistic modelling, reliability, etc. are all included. A large variety of statistical problems, particularly those in statistical planning, necessarily involve combinatorial or discrete mathematics. One main feature of this journal is that it particularly encourages papers in all branches of combinatorial mathematics which have some bearing on statistical problems. The journal encourages papers on the application of Statistics to scientific problems. It welcomes research papers, survey articles, book reviews, and material for the Statistical Discussion Forum.

Millenia Tower. Singapore 039192. Tel: (+65) 434-3727. Fax: (+65) 337-2230. E-mail: asiainfo@elsevier.com.sg Publications Expediting paid at Jamaica. NY 11431. USA POSTMASTERS: Send address changes to the Journal of Statistical Planning and Inference, Publications Expediting, Inc., 200 Meacham Avenue, Elmont, NY 11003. Airfreight and mailing in the USA by US\$ 2430.00 (USS price valid in North, Central and South America only), including air speed delivery. Periodicals postage in February, April, June, August, October and November, by Elsevier Science BV. Annual subscription price in the USA Box 211, 1000 AE Amsterdam, The Netherlands, Tel: (+31) 20-485-3757, Fax: (+31) 20-485-3432, E-mail: nlinfo-Box 945, New York, NY 10159-0945, USA. Tel: (+1) 212-633-3730. [Toll Free number for North American Customers: except to the following countries where air delivery via SAL is ensured: Argentina, Australia, Brazil, Canada, Hong Kong Subscriptions are accepted on a prepaid basis only and are entered on a calendar year basis. Issues are sent by surface mail US mailing notice – the Journal of Statistical Planning and Inference (ISSN 0378-3758) is published monthly, semimonthly 5033. Fax: (+81) 3-5561-5047. E-mail: info@elsevier.co.jp **Singapore**. Elsevier Science, No. 1 Temasek Avenue, #17-01 1-888-4ES-INFO (437-4636)], Fax: (+1) 212-633-3680. E-mail: usinfo-f@elsevier.com Amsterdam, Elsevier Science, P.O. contact the Customer Support Department at the Regional Sales Office nearest to you: New York, Elsevier Science, P.O. within six months of our publication (mailing) date. For orders, claims, product enquiries (no manuscript enquiries) please Thailand. USA. For all other countries airmail rates are available upon request. Claims for missing issues must be made India, Israel, Japan, Malaysia, Mexico, New Zealand, Pakistan, PR China, Singapore, South Africa, South Korea, Publication information: JOURNAL OF STATISTICAL PLANNING AND INFERENCE (ISSN 0378-3758), For 1998 @clsevier.nl Tokyo, Elsevier Science, 9-15, Higashi-Azabu 1-chome, Minato-ku, Tokyo 106, Japan. Tel: (+81) 3-5561-64-72 are scheduled for publication. Subscription prices are available upon request from the publisher

or endorsement of the quality or value of such product or of the claims made of it by its manufacturer. material is expected to conform to ethical (medical) standards, inclusion in this publication does not constitute a guarantee or operation of any methods, products, instructions or ideas contained in the material herein. Although all advertising any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or part of an article. Contact the publisher at the address indicated. Except as outlined above, no part of this publication may of the publisher is required for all other derivative works, including compilations and translations. Electronic Storage recording or otherwise, without prior written permission of the publisher. No responsibility is assumed by the Publisher for Permission of the publisher is required to store electronically any material contained in this journal, including any article within their institutions. Permission of the publisher is required for resale or distribution outside the institution. Permission Works Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation copyright clearance centre exists, please contact it for information on required permissions and payments. Derivative Rapid Clearance Service (CLARCS). 90 Tottenham Court Road, London W1P 0LP, U.K. In other countries where a local available for educational institutions that wish to make photocopies for non-profit educational classroom use. In the USA copying, copying for advertising or promotional purposes, resale, and all forms of document delivery. Special rates are MA 01923. USA. In the UK, users may clear permissions and make payment through the Copyright Licensing Agency users may clear permissions and make payment through the Copyright Clearance Center, 222 Rosewood Drive, Danvers are protected by the copyright of Elsevier Science B.V., and the following terms and conditions apply to their use: Copyright (*) 1998. Elsevier Science B.V. All rights reserved. This journal and the individual contributions contained in it Permission of the publisher and payment of a fee is required for all other photocopying, including multiple or systematic Photocopying Single photocopies of single articles may be made for personal use as allowed by national copyright laws.

The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper)

Journal of Statistical Planning and Inference 71 (1998) 303-311

> journal of statistical planning and inference

Mixture models based on homogeneous polynomials

Norman R. Draper a, *, Friedrich Pukelsheim b, 1

Department of Statistics, University of Wisconsin-Madison, Madison WI 53706-1685, USA
 Department of Statistics, University of Washington, Seattle WA 98195-4322, USA

Received 27 May 1997; received in revised form 5 January 1998; accepted 6 January 1998

Abstract

Models for mixtures of ingredients are typically fitted by Scheffe's canonical model forms. An alternative representation is discussed which offers attractive symmetries, compact notation and homogeneous model functions. It is based on the Kronecker algebra of vectors and matrices, used successfully in previous response surface work. These alternative polynomials are contrasted with those of Scheffe, and ideas of synergism and model reduction are connected together in both algebras. Scheffe's 'special cubic' is shown to be sensible in both algebras. © 1998 Elsevier Science B.V. All rights reserved.

AMS classification: 62K15; 62J05

Keywords: Designs for mixtures; First-order models; Kronecker product; Mixture amount models; Scheffé canonical polynomial; Second-order models; Synergism; Third-order models

1. Introduction

Many practical problems are associated with the investigation of mixture ingredients x_1, x_2, \dots, x_q of q factors, with $x_i \ge 0$ and further restricted by

$$\sum x_i = 1 \tag{1.1}$$

or by some linear restriction which reduces to Eq. (1.1).

The definitive text Cornell (1990) lists numerous examples and provides a thorough discussion of both theory and practice. Early seminal work was done by Scheffe (1958,1963) in which he suggested (1958) (p. 347) and analyzed the following canonical model forms of orders (degrees) one, two and three for the expected response η :

$$=\sum_{\substack{1\leq i\leq a\\1\leq i\leq n}} \beta_i x_i,\tag{1.2}$$

^{*} Corresponding author. E-mail: draper@stat.wisc.edu.

¹ On leave from the Institut für Mathematik, Universität Augsburg, D-86135 Augsburg, Germany.

$$\eta = \sum_{1 \le i \le q} \beta_i x_i + \sum_{1 \le i < j \le q} \beta_{ij} x_i x_j + \sum_{1 \le i < j \le q} \gamma_{ij} x_i x_j (x_i - x_j)
+ \sum_{1 \le i < j < k \le q} \beta_{ijk} x_i x_j x_k.$$
(1.4)

As stated by Cornell (1990) (p. 26) there is 'an infinite number of regression functions' derivable by resubstituting Eq. (1.1) in various ways. Scheffé (1958) (p. 346) remarks that Eqs. (1.2)–(1.4) constitute 'an appropriate form of polynomial regression'. We shall refer to Eqs. (1.1)–(1.4) as the *S-models*, or *S-polynomials*.

In the present paper, we propose an alternative representation of mixture models which appears to have certain advantages to be described. It offers attractive symmetries and an economical, compact notation. Our versions, to appear in Eqs. (2.3)–(2.5), are based on the Kronecker algebra of vectors and matrices, and give rise to homogeneous model functions. We shall refer to the corresponding expressions as the *K-models*, or *K-polynomials*.

A similar approach to non-mixture response surface models was used successfully in Draper et al. (1991), Draper and Pukelsheim (1994) and Draper et al. (1996); see also Ch. 15 in Pukelsheim (1993).

An outline of the present paper is as follows. In Section 2 we introduce the K-models; their expected response η is homogeneous in the ingredients x_i . By way of example, Section 3 illustrates the inhomogeneity of the S-models. Section 4 initiates the discussion of reducing the order of K-models through testable hypotheses, which is then carried through for reducing second order to first (Section 5), and third order to second (Section 6). In Section 7 we compare the second-order coefficients in a K-model with those in a S-model and in Section 8 we do the same for third order.

The transition from S-models to K-models has consequences for the design choice for mixture experiments, and for the analysis of data. These aspects will be addressed in subsequent work.

2. K-polynomials for mixtures models

The mixture ingredients, x_i , can conveniently be written as a $q \times 1$ vector $x = (x_1, x_2, ..., x_q)'$. The Kronecker square $x \otimes x$ consists of a $q^2 \times 1$ vector of the q^2 cross products $x_i x_j$, in lexicographic order with subscripts 11, 12, ..., 1q; 21, 22, ..., 2q; ...; q1, q2, ..., qq,

$$x \otimes x = (x_1^2, x_1 x_2, \dots, x_1 x_q; x_2 x_1, x_2^2, \dots, x_2 x_q; \dots; x_q x_1, x_q x_2, \dots, x_q^2)'.$$
 (2.1)

In Eq. (2.1) individual mixed second-order terms appear twice, for example, we have x_1x_2 and x_2x_1 . Although this may at first appear disadvantageous, the symmetry attained

more than compensates for the duplications, as will become apparent. The very same point is familiar from treating dispersion matrices as matrices, and *not* as arrays of a minimal number of functionally independent terms.

Similarly, the Kronecker cube $x \otimes x \otimes x$ is a $q^3 \times 1$ vector of all terms of the form $x_i x_j x_k$ in lexicographic order, and repeats third-order terms either six or three times depending on the number of different subscripts, ijk or iij. It has the form

$$x \otimes x \otimes x = (x_1 x_1 x_1, x_1 x_1 x_2, x_1 x_1 x_3, \dots, x_1 x_1 x_q, x_1 x_2 x_1, x_1 x_2 x_2, x_1 x_2 x_3, \dots, x_1 x_2 x_q;$$

$$\dots; x_q x_q x_1, x_q x_q x_2, x_q x_q x_3, \dots, x_q x_q x_q)'$$
(2.2)

for $q \geqslant 3$ factors. For q = 2, no products with three distinct subscripts occur, of course The K-models that we propose to replace Eqs. (1.2)-(1.4) are the following:

$$\eta = x'\theta = \sum_{1 \leqslant i \leqslant q} \theta_i x_i, \tag{2.3}$$

$$\eta = (x \otimes x)'\theta = \sum_{1 \leq i,j \leq q} \theta_{ij} x_i x_j, \tag{2.4}$$

$$\eta = (x \otimes x \otimes x)'\theta = \sum_{1 \leq i,j,k \leq q} \theta_{ijk} x_i x_j x_k. \tag{2.5}$$

Since the regressors $x_i x_j$ and $x_j x_i$ are identical, we assume $\theta_{ij} = \theta_{ji}$. For the same reason, θ_{ijk} is assumed to be the same for all permutations of the subscripts i, j, k.

The first order K-model (2.3) and the first-order S-model (1.2) are of the same homogeneous form in the x_i 's, of course. The second-order K-model from Eq. (2.4) is

$$\eta = \sum_{1 \le i \le q} \theta_{ii} x_i^2 + 2 \sum_{1 \le i < j \le q} \theta_{ij} x_i x_j, \tag{2.6}$$

and is fully homogeneous in second-order terms; the x_i terms of the S-model (1.3) are replaced by x_i^2 terms and, assuming that $\theta_{ij} = \theta_{ji}$, the multiplicity of mixed terms $x_i x_j$ for $i \neq j$ has been doubled. The third-order K-model is homogeneous of order three, and will be discussed in Section 6. Extension to higher-order models is evident.

The homogeneous representation of K-models should *not* be mistaken to mean that we 'lose' linear terms in Eq. (2.4), nor linear and quadratic terms in Eq. (2.5). The second-order S-model (1.3) and K-model (2.4) both feature $\binom{q+1}{2}$ parameters for the response function; for third order Eqs. (1.4) and (2.5) both involve $\binom{q+2}{3}$ parameters. We may sketch the essential argument by rewriting Eq. (1.1) in succinct notation as $l'_q x = 1$, where $l_q = (1, 1, \dots, 1)'$ is the unity vector in \mathbb{R}^q . Then the first-order part of the response surface (1.3) can be blended into the second-order part to produce a homogeneous second-order function of form (2.4) by noting that

$$x'\beta \cdot 1 = x'\beta \cdot x'I_q = (x'\beta) \otimes (x'I_q) = (x \otimes x)'(\beta \otimes I_q), \tag{2.7}$$

Sections 7 and 8 elaborate the equivalences of the K-models with the corresponding blending both the first- and second-order parts of Eq. (1.4) into the third-order part. fashion, Eq. (1.4) can be converted into the homogeneous third-order form (2.5) by Draper et al. (1991) (p. 140) or Eq. (1) in Pukelsheim (1993) (p. 392). In similar where the last equation uses a key property of Kronecker products, see Eq. (5.4) in

our discussion of the K-models on the total amount A is illustrated by the following example, after which we continue the model. This is not true of the S-models. The possible effects of model dependence all model terms are affected by the same multiple A^a where d is the degree or order of component sum in Eq. (1.1) is $A \neq 1$, the homogeneity of the K-models ensures that An immediate advantage of model homogeneity is apparent. In problems where the

3. An example of inhomogeneity for the S-models

respective weightings $\alpha/2$, $1 - \alpha$, $\alpha/2$, with $\alpha \in [0, 1]$. total amount. Suppose we consider the three point design (A,0), $(\frac{1}{2}A,\frac{1}{2}A)$, (0,A), with We consider the simplest case of two components, $x_1 + x_2 = A$, where A is the

The second-order S-model involves the terms x_1, x_2, x_1x_2 , and gives rise to the mo-

$$M = \frac{1 - \alpha}{16} \begin{pmatrix} 4A^2 \frac{1+\alpha}{1-\alpha} & 4A^2 & 2A^3 \\ 4A^2 & 4A^2 \frac{1+\alpha}{1-\alpha} & 2A^3 \\ 2A^3 & 2A^3 & A^4 \end{pmatrix}. \tag{3.1}$$

The trace of the inverse is found to be

trace
$$M^{-1} = \frac{4}{A^2 \alpha} \left(1 + \frac{4}{A^2 (1 - \alpha)} \right)$$
. (3.2)

which requires maximization of Eq. (2.8), the solution for α depends on the amount If we optimize the design weights with respect to the average-variance criterion

$$\alpha(A) = 1 + \frac{4}{A^2} - \frac{2}{A}\sqrt{1 + \frac{4}{A^2}}.$$
(3.3)

Including the limiting values 0 and ∞ for A, the weight α ranges from $\frac{1}{2}$ to 1:

$$A$$
 0 1/8 1/4 1/2 1 2 4 8 ∞ $\alpha(A)$ 0.5 0.5005 0.502 0.508 0.528 0.586 0.691 0.805 1

in the S-model has the effect that the linear portion dominates, and the central weight line 11 of Table 2 of Galil and Kiefer (1977) (p. 451). For $A = \infty$ the inhomogeneity For A = 0, the distribution of the weights is $\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{4}$. For A = 1 we reproduce the entry in

4. Conditions for reducing the order of K-models

a more parsimonious lower order model might be adequate. the current model is suitable for representing the data, but also to determine whether A standard procedure of polynomial model building is not only to check whether

attained simply by setting certain coefficients to zero, and so appropriate hypotheses clude the terms of lower-order models. Thus reduction of the order of an S-model is are easy to formulate. A great advantage of the S-model hierarchy is that higher-order models visibly in-

will be seen to permit a pleasing interpretation. necessary for reduction of a K-model to one of a lower order. The resulting hypotheses This is not so obvious for K-models. Thus, we now investigate what conditions are

5. Reduction of second order to first order

order terms throughout. order model function (2.3) from the second-order model function (2.4). We multiply Eq. (2.3) by $x_1 + x_2 + \cdots + x_q$, which is equal to one by Eq. (1.1), to achieve second We will work with the excess function $Exc_{21}(x)$ obtained by subtracting the first

$$\operatorname{Exc}_{21}(x) = \sum_{1 \leq i,j \leq q} \theta_{ij} x_i x_j - \sum_{1 \leq i \leq q} \theta_i x_i \left(\sum_{1 \leq j \leq q} x_j \right)$$

$$= \sum_{1 \leq i,j \leq q} (\theta_{ij} - \theta_i) x_i x_j$$

$$= \sum_{1 \leq i \leq q} (\theta_{ii} - \theta_i) x_i^2 + \sum_{1 \leq i < j \leq q} (2\theta_{ij} - \theta_i - \theta_j) x_i x_j, \tag{5.1}$$

using the fact that $\theta_{ij} = \theta_{ji}$. It follows that the excess will vanish identically on the region (1.1) if and only if

$$\theta_{ij} = \frac{1}{2}(\theta_i + \theta_j) \quad \forall i, j. \tag{5.2}$$

Hence, the appropriate hypothesis that a second order K-model reduces to a first-order

$$\theta_{ij} = \frac{1}{2}(\theta_{ii} + \theta_{jj}) \quad \forall i \neq j. \tag{5.3}$$

second-order parameters via $\theta_i = \theta_{ii}$. If the hypothesis (5.3) is true, then the first-order parameters are obtained from the

relative to the first-order K-model. With this terminology we see that the fulfillment of $\theta_i - \theta_j$ the coefficient of binary synergism of x_i, x_j for the second-order K-model Eq. (5.3) is equivalent to the vanishing of all coefficients of binary synergism In the spirit of Scheffe's (1958) (pp. 347–348) synergism discussion, we call $2\theta_{ij}$ –

order K-model relative to the second-order K-model. With this terminology we see

 $\theta_{ijk} - \frac{1}{3}(\theta_{ij} + \theta_{ik} + \theta_{jk})$ the coefficient of ternary synergism of x_i, x_j, x_k for the third-

Again in the spirit of Scheffe's (1958) (pp. 347-348) synergism discussion, we call

that the fulfillment of Eq. (6.2) is equivalent to the vanishing of all coefficients of

ternary synergism

6. Reduction of third order to second order

In similar fashion, the excess of a third-order K-model over a second-order K-model is

$$\operatorname{Exc}_{32}(x) = \sum_{1 \leq i,j,k \leq q} \theta_{ijk} x_i x_j x_k - \sum_{1 \leq i,j \leq q} \theta_{ij} x_i x_j \left(\sum_{1 \leq k \leq q} x_k \right)$$

$$= \sum_{1 \leq i,j,k \leq q} (\theta_{ijk} - \theta_{ij}) x_i x_j x_k$$

$$= \sum_{1 \leq i \leq q} (\theta_{iii} - \theta_{ii}) x_i^3 + \sum_{1 \leq i \neq j \leq q} (3\theta_{iij} - 2\theta_{ij} - \theta_{ii}) x_i^2 x_j$$

$$+ \sum_{1 \leq i < j < k \leq q} \{6\theta_{ijk} - 2(\theta_{ij} + \theta_{ik} + \theta_{jk})\} x_i x_j x_k,$$

$$(6.1)$$

using the fact that $\theta_{iij} = \theta_{jii} = \theta_{jii}$, and that $\theta_{ijk} = \theta_{ikj} = \theta_{jik} = \theta_{jki} = \theta_{kij} = \theta_{kji}$. It follows that the excess will vanish identically on the region (1.1) if and only if

$$\theta_{ijk} = \frac{1}{3}(\theta_{ij} + \theta_{ik} + \theta_{jk}) \quad \forall i, j, k. \tag{6.2}$$

This condition specializes to $\theta_{iii} = \theta_{ii}$ when i = j = k, and so to

$$2\theta_{ij} = 3\theta_{iij} - \theta_{iii}, \tag{6.3}$$

when $i = k \neq j$. By solving Eq. (6.3) for θ_{ij} and substituting into Eq. (6.2), we obtain the appropriate hypothesis that a third-order K-model reduces to a second-order K-model as

$$\theta_{ijk} = \frac{1}{12} \left\{ (3\theta_{iij} - \theta_{iii}) + (3\theta_{ijj} - \theta_{jjj}) + (3\theta_{jjk} - \theta_{jjj}) + (3\theta_{jkk} - \theta_{kkk}) + (3\theta_{iik} - \theta_{kkk}) + (3\theta_{iik} - \theta_{iii}) \right\} \quad \forall i, j, k.$$
(6.4)

When all three subscripts are equal, Eq. (6.4) is an identity. There are $\binom{q}{2}$ conditions when two subscripts are equal, in which case Eq. (6.4) simplifies to

$$3\theta_{iij} - \theta_{iii} = 3\theta_{ijj} - \theta_{jjj} \quad \forall i \neq j. \tag{6}$$

There are $\binom{q}{3}$ conditions in Eq. (6.4) with three distinct subscripts. When Eq. (6.5) holds they simplify to

$$\theta_{ijk} = \frac{1}{6} \{ (3\theta_{iij} - \theta_{iii}) + (3\theta_{jjk} - \theta_{jjj}) + (3\theta_{ikk} - \theta_{kkk}) \} \quad \forall i \neq j \neq k \neq i.$$
 (6.6)

If the hypothesis (6.4) is true, then the second-order parameters are obtained from the third-order parameters via Eqs. (6.3) and (6.5) as

$$\theta_{ij} = \frac{1}{2}(3\theta_{iij} - \theta_{iii}) = \frac{1}{2}(3\theta_{ijj} - \theta_{jjj}) = \theta_{ji}.$$
(6.7)

7. Connections between second-order coefficients in S-models and K-models

In order to determine the relationships between the coefficients of the second-order models (1.3) and (2.4), we must convert the first term in Eq. (1.3) to be homogeneous of second order, by multiplying by $x_1 + x_2 + \cdots + x_q$:

$$\sum_{1 \leqslant i \leqslant q} \beta_i x_i = \sum_{1 \leqslant i \leqslant q} \beta_i x_i^2 + \sum_{1 \leqslant i < j \leqslant q} (\beta_i + \beta_j) x_i x_j. \tag{7.1}$$

Thus, the difference between Eqs. (2.4) and (1.3) is seen to be

$$\sum_{1 \leqslant i,j \leqslant q} \theta_{ij} x_i x_j - \sum_{1 \leqslant i \leqslant q} \beta_i x_i - \sum_{1 \leqslant i < j \leqslant q} \beta_{ij} x_i x_j$$

$$= \sum_{1 \le i \le q} (\theta_{ii} - \beta_i) x_i^2 + \sum_{1 \le i < j \le q} (2\theta_{ij} - \beta_i - \beta_j - \beta_{ij}) x_i x_j.$$
 (7.2)

This difference vanishes for all x from Eq. (1.1) if and only if

$$\beta_i = \theta_{ii}$$
 and $\beta_{ij} = 2\theta_{ij} - \theta_{ii} - \theta_{jj}$. (7.3)

This connects to Eq. (5.3), in that a reduction to a first-order model takes place if and only if all the β_{ij} vanish.

8. Connections between third-order coefficients in S-models and K-models

In order to determine the relationships between the coefficients of the third-order models (1.4) and (2.5), we first convert the first two terms in Eq. (1.4) to be homogeneous of third order, by multiplying by $x_1 + x_2 + \cdots + x_q$ as needed to raise to third order:

$$\sum_{1\leqslant i\leqslant q}\beta_ix_i=\sum_{1\leqslant i\leqslant q}\beta_ix_i^3+\sum_{1\leqslant i< j\leqslant q}(2\beta_i+\beta_j)x_i^2x_j+\sum_{1\leqslant i< j\leqslant q}(\beta_i+2\beta_j)x_ix_j^2$$

$$+ \sum_{1 \le i < j < k \le q} 2(\beta_i + \beta_j + \beta_k) x_i x_j x_k,$$
 (8.1)

$$\sum_{1 \leqslant i < j \leqslant q} \beta_{ij} x_i x_j = \sum_{1 \leqslant i < j \leqslant q} \beta_{ij} x_i^2 x_j + \sum_{1 \leqslant i < j \leqslant q} \beta_{ij} x_i x_j^2 + \sum_{1 \leqslant i < j \leqslant k} (\beta_{ij} + \beta_{ik} + \beta_{jk}) x_i x_j x_k.$$

Thus, the difference between Eqs. (2.5) and (1.4) is seen to be

hus, the difference between Eqs. (2.5) and (1.4) is seen to be
$$\sum_{1 \leq i,j,k \leq q} \theta_{ijk} x_i x_j x_k - \sum_{1 \leq i \leq q} \beta_i x_i - \sum_{1 \leq i < j \leq q} \beta_{ij} x_i x_j$$

$$- \sum_{1 \leq i < j \leq q} \gamma_{ij} x_i x_j (x_i - x_j) - \sum_{1 \leq i < j < k \leq q} \beta_{ijk} x_i x_j x_k$$

$$= \sum_{1 \leq i \leq q} (\theta_{iii} - \beta_i) x_i^3 + \sum_{1 \leq i < j \leq q} (3\theta_{iij} - 2\beta_i - \beta_j - \beta_{ij} - \gamma_{ij}) x_i^2 x_j$$

$$+ \sum_{1 \leq i < j \leq q} (3\theta_{ijj} - \beta_i - 2\beta_j - \beta_{ij} + \gamma_{ij}) x_i x_j^2$$

$$+ \sum_{1 \leq i < j < k \leq q} (6\theta_{ijk} - 2\beta_i - 2\beta_j - 2\beta_k - \beta_{ij} - \beta_{ik} - \beta_{jk} - \beta_{ijk}) x_i x_j x_k.$$

This difference vanishes for all x if and only if

$$\beta_{ij} = \theta_{iii},
\beta_{ij} = \frac{3}{2}(\theta_{iij} - \theta_{iii} + \theta_{ijj} - \theta_{jjj}),
\gamma_{ij} = \frac{1}{2}((3\theta_{iij} - \theta_{iii}) - (3\theta_{ijj} - \theta_{jjj})),
\beta_{ijk} = 6\theta_{ijk} + \frac{3}{2}(\theta_{iij} + \theta_{ijj} + \theta_{iik} + \theta_{ikk} + \theta_{jjk} + \theta_{jkk}) - (\theta_{iii} + \theta_{jjj} + \theta_{kkk}).$$
(8.:

the last equation of Eq. (8.3) to particular subset of them, namely Eq. (6.5). When Eq. (6.5) is satisfied we can reduce the cubic is 'special' in the sense that it satisfies not all the conditions (6.4) but a special cubic model. In the K-model this requires Eq. (6.5) to be true. We see that Scheffé (1958) (p. 352) refers to the reduced model when all γ_{ij} are zero as the

$$\beta_{ijk} = 6\theta_{ijk} + (3\theta_{iij} - \theta_{iii}) + (3\theta_{jjk} - \theta_{jjj}) + (3\theta_{ikk} - \theta_{kkk}).$$
(8.4)

Note that Eq. (6.3) implies Eq. (6.5) and hence that all γ_{ij} in Eq. (8.3) are zero; the reverse implication is not true, however

Acknowledgements

grateful for partial support from the Volkswagen-Stiftung Humboldt-Stiftung through a Max-Planck-Award for cooperative research. F.P. also is We would like to gratefully acknowledge partial support from the Alexander-von-

N.R. Draper, F. Pukelsheim/Journal of Statistical Planning and Inference 71 (1998) 303-311 311

References

Cornell, J.A., 1990. Experiments with Mixtures, 2nd ed. Wiley, New York

Draper, N.R., Pukelsheim, F., 1994. On third order rotatability. Metrika 41, 137-161

Draper, N.R., Heiligers, B., Pukelsheim, F., 1996. On optimal third order rotatable designs. Ann. Institute Statist. Math. 48, 395-402.

Draper, N.R., Gaffke, N., Pukelsheim, F., 1991. First and second order rotatability of experimental designs,

Galil, Z., Kiefer, J., 1977. Comparison of simplex designs for quadratic mixture models. Technometrics 19, 445-453. Also in: J.C. Kiefer Collected Papers III, Springer, New York, pp. 417-425 moment matrices, and information surfaces. Metrika 38, 129-161.

Pukelsheim, F., 1993. Optimal Design of Experiments. Wiley, New York

Scheffé, H., 1958. Experiments with mixtures. J. Roy. Statist. Soc. B 20, 344-360

Scheffé, H., 1963. The simplex centroid design for experiments with mixtures. J. Roy. Statist. Soc. B 25,