New Developments and Applications in Ezperimental Design
IMS Lecture Notes — Monograph Series (1998) Volume 34

POLYNOMIAL REPRESENTATIONS FOR
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In response surface models the expected response is usually taken to be a low degree
polynomial in the design variables that are coded from the factor settings. We argue that
an overparameterized polynomial representation of the expected response offers great economy
and transparency. As an illustration, we exhibit a constructive path of design improvement
relative to the Kiefer design ordering, for polynomial regression up to degree three when the
experimental domain is a ball.

1. Introduction. We overview some of the recent work on design optimality for
response surface models and polynomial regression. However, our emphasis is not on scalar
optimality criteria. Any such criterion singles out one—or a few—designs as being optimal,
while saying little or nothing about all the other designs that are nonoptimal.

Rather, we concentrate on the Kiefer design ordering. We show that under this partial
ordering there is a constructive path of design improvement. Starting with an arbitrary
design, good or bad, we are lead to a small design class that turns out to be minimal
complete. This is carried out for first-, second-, and third-degree polynomial response
surface models when the experimental domain is a ball.

The Kiefer design ordering does not depend on how the polynomials are represented.
This opens the way to write the regression function in a form that is deemed most conve-
nient. We argue that the Kronecker product offers attractive symmetry, compact notation,
and great transparency. The present paper offers a short-cut access by just verifying the
results. The underlying theory for deriving these results is available in greater detail else-
where in the literature.

A brief review of the literature is as follows. Pukelsheim (1993, p. 354) introduced
the Kiefer ordering, thus extending Kiefer’s (1975, p. 336) notion of universal optimality
to general design settings. The Kiefer ordering combines two steps, increase in symmetry
is followed by the usual enlargement of the moment matrix of a design. Kiefer (1975)
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concentrated on block design settings whose natural companion is the permutation group;
Cheng (1995) derives results for general permutation-invariant design regions.

For response surface models on the ball, the symmetry originates with the orthogo-
nal group. Draper, Gaffke and Pukelsheim (1991), and Pukelsheim (1993, p. 394) use a
Kronecker product regression function for the second-degree model. These sources contain
many more references to work on second-degree response surface models.

A third-degree Kronecker representation was investigated by Draper and Pukelsheim
(1994). That paper concludes with some remarks on higher degree rotatability and its re-
lations with multilinear algebra. Design optimality under the standard criteria is discussed
in Draper, Heiligers and Pukelsheim (1996).

Beyond polynomial regression on the ball, an application of the Kronecker algebra to
the Scheffé mixture models on the simplex is proposed by Draper and Pukelsheim (1997).
In either instance, the overparameterization that is inherent in the Kronecker approach
creates no difficulties whatsoever.

The more widespread approach stems from the seminal paper of Box and Hunter
(1957) who chose a minimal set of linearly independent monomials. Their argument that
rotatability of the variance surface and rotatability of the moment matrix are equivalent is
somewhat brief, and is detailed in Draper, Gaffke and Pukelsheim (1991, p. 153; 1993). For
the Box-Hunter regression function, it makes a difference whether design admissibility—or
optimality—is referred to the set of all designs, or to the proper subset of rotatable designs,
see Karlin and Studden (1966, p. 356), or Galil and Kiefer (1979, p. 29). The reason is the
following.

For the Box-Hunter regression function, the orthogonal group on the experimental do-
main induces a group Q on the regression range containing matrices that are nonorthogo-
nal. Heiligers (1991, p. 118) points out that, in order that all matrices in Q are orthogonal,
the ‘biggest’ group of transformations on the experimental domain is the one generated by
all permutations and sign changes. Gaffke and Heiligers (1995, 1996) obtain many results
for the permutation-and-sign-change group, and discuss the relation to the corresponding
results for the full orthogonal group.

The present paper is organized as follows. Section 2 reviews Kronecker products of
vectors and matrices. In Section 3 this is used to compactly represent polynomial regression
functions, of up to degree three. In all cases the matrix group @ that is induced on the
regression range contains orthogonal matrices only.

Section 4 discusses the first step of the Kiefer ordering, symmetrization. It transpires
that rotatable moment matrices have a much simpler pattern than arbitrary moment ma-
trices. This aids in calculating generalized inverses, and the information surfaces. Section 5
studies the second step of the Kiefer ordering, to constructively enlarge a given rotatable
moment matrix relative to the usual Loewner matrix ordering.

Section 6 joins the two intermediate steps together, to obtain the Kiefer ordering. In
the first-degree model, there exists a Kiefer optimal design. In the second-degree model,
there is a one-parameter design family that is minimal complete. In the third-degree
model, the minimal complete class has two parameters. The Kiefer ordering is invariant to
a change of basis for the regression range whence our results, while conveniently derived
using Kronecker algebra, continue to hold true for the Box—Hunter regression function.
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2. Kronecker products. The idea underlying the use of Kronecker products is
familiar from elementary statistics. For a random vector Y in IR™, the variances and
covariances of its components are redundantly assembled into an n x n dispersion matrix

var(Y7) cov(Y,Ys) -+ cov(Y1,Yn)
cov(Y2, Y1) var(Yz) -+ cov(Ya,Y,)
b= | A
cov(Yy, Y1) cov(Yy,Ys) -+ var(Y,)

and not reduced to the distinct entries
(va,r(Yl), ..yvar(Yy),cov(Y1,Ys),. .., cov(Yn_1, Yn)).

The benefits are that D[Y] is visibly exhibited as a quadratic form, and the rules for a
transformation with a conformable matrix A become quite simple, D[AY] = A(D[Y])A’.
Similarly, the Kronecker product approach bases second-degree polynomial regression

in m variables t = (¢1,...,tm) on the matrix of all cross products,
t2 titg -+ titm
tat;  t3 -+ toty,
' = i : ,
tmt1 tmtz - t2

rather than reducing them to the Box-Hunter minimal set of monomials
(2, 82 tita, .. tm_1tm)-

The benefits are that distinct terms are repeated appropriately, according to the number
of times they can arise, that transformational rules with a conformable matrix R become
simple, (Rt)(Rt)' = R(tt')R’, and that the approach extends to third-degree polynomial
regression. However, the arrangement of triple products t;¢;t in a set of “layered” matrices
appears rather awkward. This is where Kronecker products prove useful, they achieve the
same goal with a more pleasing algebra.

For a k x m matrix A and an £ X n matrix B, their Kronecker product A® B is defined
to be the k£ x mn block matrix

a11B s almB
A®B= o
ale s akmB

The Kronecker product of a vector s € R™ and another vector ¢ € IR™ then simply is a
special case,
Slt
SRt = = (3itj)i=1,...,m; j=1,...n. € R™",

in lexicographic order

Smt
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A key property is the product rule (A® B)(s®t) = (As) ® (Bt). This has nice implications
for transposition, (A ® B)' = (A’) ® (B'), for Moore-Penrose inversion, (A ® B)* =
(A1) ® (B*), and—if possible—for regular inversion, (A® B)™! = (A~} ® (B~!). It
is of specific importance to us that the Kronecker product preserves orthogonality: If A
and B are individual orthogonal matrices, then their Kronecker product A ® B is also an
orthogonal matrix.

Thus while the matrix ¢’ assembles the cross products ¢;t; in an m x m array, the
Kronecker square ¢t ® ¢ arranges the same numbers as a long m? x 1 vector. The Kronecker
cube t®t®t is an even longer m3 x 1 vector, listing the triple products t;t;x in lexicographic
order. Yet the algebra is easy to handle. The transformation with a conformable matrix
R simply amounts to (Rt) ® (Rt) = (R® R)(t®t). This greatly facilitates our calculations
when we now apply Kronecker products to response surface models.

3. Polynomial regression. We consider multifactor experiments, for m determin-
istic input factors. For 1 = 1,...,m let ¢; € IR be the level of the factor . Together they
form the vector of experimental conditions, t = (t1,...,t,)" € R™, for which we assume
the experimental domain to be the ball of radius r > 0 in R™,

teT={teR™: ||| <r}.

The available levels often include zeroes for the standard operating conditions, and +1 for
a deviation of one—appropriately scaled—unit in either direction. Therefore the radius
r = y/m is of particular interest, covering the full factorial design on the cube {£1}™ as
well as fractions thereof. The cube {+1}™ has volume 2™. Hence the volume for radius
v/m grows exponentially and more than compensates for the shrinking volume of the unit
ball (which equals 7™/m! for even dimension 2m, and 2™*17™/(1-3-5-...- (2m + 1))
for odd dimension 2m + 1).

Dimension m 2 3 4 5 6 7 8 9 10
Vol. forr=1 3.142 4.189 4.935 5.264 5.168 4.725 4.059 3.299 2.550
Vol. for r = /m 6.283 21.77 78.96 294.3 1116.2 4287.7 16624.5 64924.6 255016.4

Response surface models apply to scalar responses Y;, assuming that observations
under identical or distinct experimental conditions ¢ are of equal (unknown) variance o2,
and uncorrelated. Moreover, these models assume that the expected response E[Y;] =
n(t,©) permits a fit with a low-degree polynomial in ¢. Making use of the Kronecker

product, the first-, second-, and third-degree models then are
ﬂ(t, e) =0p + tle{i}’
n(t,8) = bo + 'Oy + (¢ ® 1) 0ij,
n(t,©) = 6o +t'0py + (t®1) 0135y + (@ ® ) Oijuy-

The hierarchy from lower to higher degree models is less well reflected for the Box—Hunter
regression function for which the arrangement of entries varies from author to author, and
occasionally for the same author from one paper to another.
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The parameter vectors are, in turn,

fo
6 %o 0,
@:(90)7 0= 9{1«} ) 0= 0{1}
{i} 01ij) {i5}
? Oijky
The individual components have the usual interpretation, with 6y being the grand mean.
The m x 1 vector 0riy = (01,...,0m)" consists of the main effects 6;.
The m? x 1 vector (i3 = (011,012, ..,0mm)" consists of the pure quadratic effects

0;; and the two-way interactions 6;;, with the evident second-degree restrictions 6;; = 0;;
for all 4,5. The m3 x 1 vector f(ijx} comprises the pure cubic effects 6;;; and the two-
and three-way interactions 6;;; and 6;;x, with the evident third-degree restrictions 6;;; =
Gik]— = Oj,-k = ij,- = Okij = iji for all i,j, k.

Each of these models is of the form n(t,®) = f(t)'©. The regression functions ¢ — f(t)
conform to the parameter vectors © and are, in turn,

! 1 :
fo=(1). o= ). s0=| &,
t®t

IRt

As t varies over the experimental domain 7, the vectors f(t) span spaces of respective
dimensions m + 1, (m + 1)(m + 2)/2, and (m + 1)(m + 2)(m + 3)/6. These numbers
coincide with the distinct components in the parameter vectors ©. Thus the Kronecker
models are seen to be overparameterized, from degree two onwards.

An experimental design 7 on the domain 7 is a probability measure that has finite
support. Suppose the support points are ¢i,...,%,, and they have corresponding weights
w1, ..., wy, the experimenter is then directed to draw a proportion w; of all observations
under experimental conditions ¢;. For a linear model with regression function f(¢), the
statistical properties of a design 7 are captured by its moment matrix

=D w f(tj)f(tj)’=/Tf(t)f(t)’dT

<t

Because of overparameterization, any such moment matrix is rank deficient, and so is the
dispersion matrix of the least squares estimator for ©. While regular matrix inverses then
do not exist, generalized inverses work just as well.

The dependence of the expected response on the experimental conditions ¢ is described
by the model response surface ¢t — 7(t,®). The parameter vector © is generally not known.
When we replace the true parameter vector © by its least squares estimate @ we shift
interest to the estimated response surface t — n(t, @) = f(t) ©. When © is calculated
from observations drawn according to the experimental design 7, the statistical properties
of the estimated response surface are determined by the variance surface ¢t — v,(t) =
f()M(7)~f(t), or equivalently, by the information surface ¢ ~— 4,(t) = 1/v-(t). These
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quantities do not depend on the choice of the generalized inverse provided the vector
f(t) lies in the range of the matrix M (7); otherwise a continuity argument suggests setting
v,(t) = oo and i, () = 0, which makes good sense also statistically. The information surface
i, (t) ranges from zero to some finite maximum, and is thus easier to show graphically than
is the variance surface, which goes to infinity.

Let R be an m x m orthogonal matrix, transforming the experimental conditions ¢
into Rt. Many response surface applications concentrate on the distance from the standard
operating conditions which are usually coded to be the origin of the experimental domain.
In such circumstances, it becomes desirable to choose the design 7 in such a way that the
information surface (and hence the variance surface) is rotatable,

ir(t) = i-(Rt) for all R € Orth(m),

where Orth(m) is the group of orthogonal m x m matrices. Such designs are characterized
by an invariance property of their moment matrices.

4. Rotatable moment matrices. A linear transformation ¢ — Rt induces a linear
transformation of the regression function, f(Rt) = Qgrf(t). This is a consequence of the
key product rule of Kronecker products. In the third-degree model, this follows from

1 1 0 0 0 1

_ Rt 0 R 0 0 t
)= (rpye (Re) 0 0 R&R 0 tot
(Rt) ® (Rt) ® (Rt) 0 0 0 R®R®R tRt®1t

The induced transformation matrices Qg then are, for first-, second-, and third-degree,

1 0 0 0
1 0 0
1 0 0 R 0 0
Qr = , Q=10 R 0 , Qr=
0 R 0 0 ROR 0 0 R®R 0
0 0 0 RRRQR

Due to the Kronecker product properties, the mapping R — Qg preserves orthogonality:
If R is an orthogonal matrix, so is Qg. Hence the induced matrix groups

Q={Qr: R € Orth(m) }

are proper subgroups of the orthogonal groups Orth(k) on the spaces R*, with k& =
1+m,14+m+m2 1+ m+ m2+ m3, respectively. This is in sharp contrast to the Box—
Hunter regression function for which the induced matrix Qg need not be an orthogonal
matrix although R is.

The linear transformation f(t) — Qg f(t) induces a congruence transformation among
moment matrices, M — Qr M Q%. A design has a rotatable information surface if and
only if these congruence transformations leave its moment matrix invariant,

M=QrMQy for all R € Orth(m).
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Invariant moment matrices are called rotatable, and denoted by M. Rotatability of mo-
ment matrices is a rather stringent requirement. It can be shown that first-, second-, and
third-degree rotatable moment matrices depend on one, two, and three parameters and
have the form, in turn,

_ 1 0 - 1 0 ,U'2'U;n
M:(O ,LL2Im>, M= 0 /1'2Im 0 ’
P2Vm 0 poaFi
1 0 Hav, 0
w=| 9 Hnm 0 p2Gy,

H2Um 0 po2Fm 0
0 N22Gm 0 .u'222Sm

Here I, is the m x m identity matrix, and v,, is its column vectorized form; F,, G,
and S, are known integer matrices [Draper, Gaffke and Pukelsheim (1994, p. 145)].
The integer entries take care of the moment identities that are well-known to accompany
rotatability, pg4 = 3pa2, pao = 3p222, and pe = 15u295. Breaking the matrices down to
their entries is space filling, and confusing rather than enlightening. It is much preferable
to study them through their actions as linear mappings [see Draper and Pukelsheim (1994,
p. 149)]. For three factors the matrices are listed in Figure 1.

We are now ready for the symmetrization step of the Kiefer ordering. Given an
arbitrary design 7 on the experimental domain 7, we define

1
=— [ ||t|*d t)|*d t|® dr.
o R, e = s [, s = e [ e

With these values, the rotatable moment matrix M is more balanced than M(7).
coincides with the average over the transformed moment matrices Qr M (7) Q'; as R varies,
M = [ Qr M(7) Qr dR, where the integration is relative to the Haar probability measure
on the compact group Orth(m). Haar measure on the orthogonal group is not handled
easily. Our construction circumvents evaluation of the Haar integral, and replaces it by a
projection argument onto the subspace of invariant symmetric matrices [Pukelsheim (1993,
pp. 348, 403); Gaffke and Heiligers (1996, p. 1158)].

In terms of the geometry of the space of symmetric k& x k matrices, M is the midpoint
of the convex hull of the matrices QrM (7)Q’%, with R € Orth(m). The Carathéodory
Theorem secures the (abstract) existence of finitely many matrices R; € Orth(m), and of
corresponding weights ); > 0 summing to one, such that M = Y, A\; Qr, M (7)Q'%,. This
relation is known as matrix majorization (relative to the congruence action of the induced
group Q). It says that M is majorized by M(r), and is denoted by

M < M(7).

We stick to standard terminology, even though for us the emphasis is “reversed”: M is
superior over M (7) since it exhibits more symmetry.

Symmetry, in the design context often called balancedness, has always been a prime
attribute of good experimental designs. The other step of the Kiefer ordering concerns the
usual Loewner matrix ordering. In view of the symmetrization step it suffices to study the
Loewner ordering when restricted to rotatable moment matrices, a much simpler task.
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tit1  tity  tit3 tot1  taly tols tat1 t3tz tsts

tit1  t1to tits totq t2t2 tots i3t t3t2 tsts

tits 3 . . . 1 . . . 1
t1to . 1 . 1 . . . . .
tits . . 1 . . . 1
totq . 1 . 1 . . : . .
F3 = tyt, 1 . . . 3 . . . 1
tots . . . . . 1 . 1 .
taty . . 1 . . . 1 .
tsto . . . . . 1 . 1
i !

S3=|-3-3-- --.3.. .15- .-3 ... -.3 .3.

Fic. 1. The building blocks of a third-degree rotatable moment matriz for three
factors, m = 3. The counts reflect the moment identities puqg = 322, paz = 3u202, and
e = 15ug929. Dots indicate zeroes.
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5. Loewner enlargement. It is convenient to work with the uniform distribution
u,, on the sphere {t € R™ : ||t|| = p}, for radius p € [0,7]. We use the uniform distribution
u, on the boundary sphere of radius r, mixtures of u, and center points (ug), and mixtures
of u, and a uniform design u, on an inner “nucleus” sphere of radius p. We call these
distributions boundary nucleus designs, denoted by

Ta,p = (1 — @)u, + au,.

Strictly speaking, these “designs” do not have a finite support and hence violate the defi-
nition of a design as given in Section 3.

However, there exist properly defined designs that have the same moments as 7, ,, up
to respective orders 2, 4, and 6, and they can always be taken to replace 7, , in order to
meet our definitional requirements. Moment equality is achieved by two level full factorial
and fractional factorial designs and regular simplex designs for first-degree models, by
central composite designs for second-degree models, and by other appropriate point sets
for third-degree models (see Pukelsheim 1993, pp. 391, 402; Draper and Pukelsheim 1994,
p. 156).

The following three lemmas calculate the mixing weight o and the nucleus radius p so
that the moment matrix of 7, , improves upon a given, general rotatable moment matrix,
relative to the usual Loewner matrix ordering.

LEMMA 1. Let M be a rotatable first-degree moment matriz. Then M(r10) > M.
PROOF. Let uy be the parameter of M. From py = [ ||t||2d7/m it is clear that
2
U2 € [0, T—] .
m

The uniform distribution has pa(71,0) = 72/m. Thus the difference § = pa(710) — p2 is
nonnegative, 6 > 0, and we obtain

e 0 0
M(le())—M=<0 (SIm)ZO O

LEMMA 2. Let M be a second-degree rotatable moment matriz, with parameters piz
and pzs. Define a = mug/r2. Then a € [0,1], and M(74,0) > M.

PROOF. The range of us entails a € [0,1]. From psp = [ ||t||* dr/(m(m + 2)) we get

mpy iy
m+2" m+2]|’

p22 € [
where the lower bound is the Jensen inequality. We have pa(74,0) = ar?/m = ps, and
pi22(Ta,0) = ar?/(m(m + 2)) = r?uz/(m + 2). Thus the difference § = p22(7a,0) — p22 is
nonnegative, § > 0, and we obtain

{00 0
M(rao)-M=[0 0 0 |>o0. O
0 0 6F,
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LEMMA 3. Let M be a third-degree rotatable moment matriz, with parameters ua, o2,
and pazz. Define a =1 and p =0 when py = r%/m, and

_ mpg — p? 2 _ r2ug — (m + 2)pgg
Cor2—p?”’ r2/m — p2

when py < r2/m. Then a € [0,1] and p € [0,7), and M(14,) > M.

PROOF. The case pz = r2/m forces pize = r4/(m(m +2)), and pgoz = r5/(m(m + 2)
(m + 4)). These moments are attained by the uniform boundary design 71 0. Otherwise
the ranges of py and s entail p? € [0,mpus] C [0,72), and « € [0,1]. We easily verify
p2(Ta,p) = po and p22(Ta,p) = p22, and we obtain

2
2 p2; (r2pa — (m +2)pa2)

H222(Ta,p) = m+4  (m+2)(m+4)(r2/m—pg)

To compare this with pgg2, we introduce g(t) = (r2, ||t]|2)’. Then the 2x 2 matrix (r2—||t||%)
9(t)g(t)" is nonnegative definite, and so is its mean under 7,

21t g(t)g(t) d —/ ( ro dr

_ 6 — mru, mrtpy — m(m + 2)r2pgg
mrius — m(m+2)r2uge  m(m + 2)r2uge — m(m + 2)(m + 4) page

.  —a a—-0» sa
“\la-b b-c)’ W

Hence the Schur complement b — ¢ — (a — b)2/(r® — a) is nonnegative (Pukelsheim 1993,
p. 75). This gives ¢ < b — (a — b)?/(r® — a), that is, pa2a < p222(Ta,p). Thus the difference
0 = p222(Ta,p) — M222 is nonnegative, § > 0, and we obtain

M(Ta,p) — M = > 0. O

oo oo

0
0
0
0Sm

oo oo
oo oo

The argument to determine the upper bound of the moment pys, is just another
variant of the classical moment criterion [see Karlin and Studden (1966, p. 106)]. In the
final section we now turn to the Kiefer ordering proper.
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6. Kiefer design ordering. The Kiefer partial ordering is a two-stage ordering,
reflecting an increase in symmetry by matrix majorization and a subsequent enlargement
in the Loewner ordering. Under the Kiefer ordering, we call a moment matrix M more
informative than an alternative moment matrix A when M is greater than or equal to
some intermediate matrix F' under the Loewner ordering, and F' is majorized by A under
the group action that leaves the problem invariant,

M>A = M > F < A for some matrix F.

We call two moment matrices M and A Kiefer equivalent when M > A and A > M;
we call M Kiefer better than A when M > A without M and A being equivalent. We
say that two designs 7 and & are Kiefer equivalent when their moment matrices are Kiefer
equivalent, and that 7 is Kiefer better than £ when M (7) is Kiefer better than M (€).
For response surface models on the ball, the Kiefer ordering refers to the induced group
on the regression range, @ = { Qg : R € Orth(m) }, acting by congruence, M — QrMQ’%.
Two moment matrices M and A are Kiefer equivalent if and only if A = QrM Qs for some
rotation R € Orth(m) [Pukelsheim (1993, p. 356)]. In particular, if M and A are Kiefer
equivalent and M is rotatable, then the two matrices must be equal. Our main results are
the following three theorems, announcing minimal complete classes of moment matrices

under the Kiefer ordering.

THEOREM 1. In the first-degree model, the moment matriz M(71 ) of the uniform
boundary design is Kiefer better than any other moment matriz.

PROOF. Let 7 be an arbitrary design on the experimental domain 7, with a moment
matrix A other than M(r ). From Section 4 and Lemma 1 we have M(71) > M < A,
that is, M(71,0) > A.

If M(71) and A are Kiefer equivalent then they are equal, contradicting the assump-
tion that they are distinct. Hence M is Kiefer better than A. O

THEOREM 2. In the second-degree model, an essentially complete class of designs for

the Kiefer ordering is
C={7ap:a€(0,1]},

and the set of moment matrices M(C) = { M(7a,0) : @ € [0,1]} constitutes a minimal
complete class.

PRrROOF. Completeness of M(C) means that for any moment matrix A not in M(C)
there is a member in M (C) that is Kiefer better than A. From Section 4 and for the weight o
from Lemma 2 we have M (740) > M < A, that is, M (Ta,0) > A. Since the matrices in
M(C) are rotatable, Kiefer equivalence forces equality, contradicting the assumption that
A does not lie in M(C).

Minimal completeness of M (C) means that no proper subset of M(C) is complete. It
suffices to show that, for a fixed weight 3, the subclass M (C) \ { M(75,0) } is not complete.
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Indeed, the proof of Lemma 2 shows that M(74,0) > M (78,0) implies @ = 3. Under the
Kiefer ordering, no moment matrix with a # 3 is comparable with M (18,0)-

Essential completeness of C means that for every design £ not in C there is a design C
that is Kiefer better or Kiefer equivalent to £. This is implied by the minimal completeness
of the moment matrix set C. O

THEOREM 3. In the third-degree model, an essentially complete class of designs for
the Kiefer ordering is

C={Tap:a€l0,1],pe(0,r)},

and the set of moment matrices M(C) = { M(7a,) : @ € [0,1], p € [0,7) } constitutes a
manimal complete class.

PRrROOF. The arguments parallel those of the foregoing proof. a

Theorem 1 can be paraphrased by saying that M () is Kiefer optimal, or that the
minimal complete class degenerates to a one-point set. The fact that on the design level
we “only” have essential completeness rather than minimal completeness is a great source
of economy. It opens the way to conveniently choose from various designs sharing the same
moment matrix. We have already made use of this option for the introduction of boundary
nucleus designs 7, ,, when we did not insist on the finite support requirement.

Theorem 1 solves the design problem for a first-degree model, Theorems 2 and 3 reduce
it to a one- and two-parameter design class, respectively. The reduction in dimensionality
does not depend on the number m of factors considered, and is enormous when compared
to the dimensions of the spaces spanned by the regression vectors f(t) in Section 3.

We wish to stress that these results on improving an arbitrary initial design 7 relative
to the Kiefer ordering are constructive. First the rotatability parameters up = = [ [|¢]|* dr
etc. are calculated, and then Lemmas 1-3 give the weight and the radius of the improving
boundary nucleus design. This constructive path of improvement is not available within
the optimality theory for scalar optimality criteria, such as D-, A-, and E-optimality.

Another convincing aspect is that the Kiefer ordering does not depend on the basis that
is used to represent the regression function f(t). While the approach using the Kronecker
product has its merits, we could have used any other basis as well. In particular, Theorems
1-3 remain true for the Box—Hunter regression function f(¢) that consists of a minimal
set of monomials. We recall that information surfaces provide another important concept
that does not depend on the choice of coordinates for the regression function, see Draper,
Gaffke and Pukelsheim (1991, p. 158). B

To prove coordinate invariance of the Kiefer ordering, let f(t) = T f(t) be a change of
basis for the regression function f(¢). Often T will be nonsingular, with a regular inverse
T—!. However, in the Kronecker approach the vectors f(t) with ¢ € 7 span a proper
subspace £ C IR* only. Therefore we make the weaker assumption that 7" is a square or
rectangular matrix, chosen in such a way that T*T projects onto the subspace L.

A rotation of the experimental conditions, ¢ — Rt, entails f(Rt) = Tf(Rt) =

TQrf(t) = TQRTTTf(t) = éRf(t). Thus, in the new coordinates, the group Q of
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-mmaticed transformations has members Qr=TQ )rT", and the moment matrices take the
form M = [ f(t)f(t) dr = TMT'. We have T+MT+ = T+TMT'T*+ = M.

Let A = T AT’ be another moment matrix, to be compared to M. From
T*Qrf(t) = T*TQRTYT(t) = T*Tf(Rt) = Qr (1)
we get T+Q RZ@’RT“ = QrAQ'R. This justifies the equivalences
M>A < M>Y \QrAQn, = M2 NQr AQh, + M > A.

Therefore two moment matrices are Kiefer comparable in the new coordinate system if
and only if they are Kiefer comparable in the original coordinate system. The proof that
the Kiefer ordering does not depend on the coordinate system is complete.

The eigenvalues of M are in general distinct from those of TMT’. When the Kiefer
ordering is supplemented by a componentwise enlargement of eigenvalues, the results so
obtained will again become basis dependent. For examples see Pukelsheim (1993, p. 403),
Cheng (1995, p. 47), Draper, Heiligers and Pukelsheim (1996, p. 398). Even then we be-
lieve the Kronecker representation remains attractive, in that the ensuing moment matrices
attain a pattern particularly suitable for the study of their eigenvalues.

Preservation of eigenvalues and orthogonality occurs when TT' = I; is the d x d
identity matrix, in which case T is called a partial isometry. Then we have T+ = 7", and
M = TMT' has the same nonzero eigenvalues as T'T'M = TTTM = M. Furthermore the
regression vectors f(t) span the full space IR ¢, and the induced matrix Qg = TQRrT" is of
full rank d. In this setting, if Qg is an orthogonal matrix then so is @ R,

QrQrf(t) = TQRTTQr[(t) = TQRQrS(t) = f(t) = QrQr = Iu.

In general, orthogonality is not preserved. For instance, the group Q for the Kronecker ap-
proach contains only orthogonal matrices, while the group Q for the Box-Hunter approach
contains also nonorthogonal matrices.

"The key point to watch out for is that the Kiefer ordering in the original system refers
to the original group Q while, in a new coordinate system, it refers to the new group Q.

The dependence on the underlying group Q has repercussions for scalar optimality
criteria. If a criterion ¢ is Loewner isotonic, concave, and invariant, then it is isotonic
also under the Kiefer ordering, and an enlargement in the Kiefer ordering implies an
enlargement as measured by ¢. Loewner monotonicity and concavity are unambiguous
notions. However, invariance crucially depends on the underlying group Q.

In the present setting of response surface models, the Kronecker regression functions
come with a group Q that is a subgroup of the group of orthogonal matrices on the space
IR¥. Since all the matrix means ¢, are orthogonally invariant, they are Kiefer isotonic.
Here, the Kiefer improvement of Theorems 1-3 implies an improvement as measured by the
matrix means ¢,. In the Kronecker approach, the reduction by rotatability is supported
by a formal, compelling argument of the theory. B

For the Box—Hunter regression functions, the group Q is not a subgroup of the orthog-
onal group. The matrix means ¢, are no longer Kiefer isotonic (except for the determinant
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criterion). Theorems 1-3 remain true, but the transition to the criteria ¢, is no loug.:
available. In the Box—Hunter approach, the restriction to rotatability cuts out the nonro-
tatable competitors, and can be justified only by an informal, persuasive decision of the
investigator.
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