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ROUNDING PROBABILITIES: UNBIASED MULTIPLIERS
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Abstract: When rounding a finite set of probabilities to integral multiples of 1/n, multiplier methods

guarantee that the rounded probabilities again sum to one. For those multiplier methods that are sta-

tionary, we discuss the expected discrepancy and calculate unbiased multipliers, under the assumption of

uniformly distributed probabilities.

1. Introduction

Usual, standard rounding is unfit to round a finite set of weights or probabilities to integral

multiples of 1/n, where n is a given accuracy or common denominator. Specifically, if

weights are rounded to percentages, n = 100, then standard rounding yields numbers that

often fail to add to 100 percent. Real data abound with examples suffering from this

deficiency [1–3, 6–8, 10–14].

For instance, in the 1992 IMS membership survey [9] the authors evidently apply

standard rounding to multiples of a tenth of a percent. They report 56 tables of three

to eight categories, of which 34 round to 100.0 percent, 12 round to 99.9 percent, and 10

round to 100.1 percent.

Standard rounding yields weights summing to one with a probability that vanishes

as the number of categories becomes large [12]. To be precise, standard rounding uses

the rounding function r1/2(x) that rounds x ≥ 0 to the nearest xxxeven integer; hence frac-

tional parts are rounded down when they are smaller than 1/2, and rounded up when

they are larger than 1/2. Assume there are c categories, and let (W1, . . . ,Wc) be a set of

random weights that is uniformly distributed in the probability simplex of RI c. Diaconis–

Freedman [6] show that then limn→∞ P
(∑

i≤c r1/2(nWi)/n = 1
)

= O(1/
√

c). The rea-

son for this deficiency is that there is nothing built into standard rounding to preserve a

linear side condition such as summing to one.
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However, there are plenty of rounding methods that do preserve the side condition of

adding up to one. They have been proposed and investigated by politicians and political

scientists, in the study of apportionment problems for electoral bodies. Balinski–Young,

in their authoritative monograph [3], prove that among all rounding procedures only quo-

tient methods are free from irritating paradoxes. For the purpose of our investigations we

prefer to speak of multiplier methods rather than quotient methods.

A fundamental tool are rounding rules, they are reviewed in Section 2. Special empha-

sis is put on q-stationary rules. Given the stationarity parameter q ∈ [0, 1], the q-stationary

rule uses the rounding function rq(x) that rounds to the nearest integer below x when the

fractional part of x is smaller than q, and to the nearest integer above x when the fractional

part is larger than q. This includes the classical rounding functions of always rounding up

(q = 0), always rounding down (q = 1), and rounding up or down in the usual, standard

way (q = 1/2).

Every rounding rule induces a corresponding multiplier method of rounding, as de-

scribed in Section 3. A multiplier method may lead to two or more, equally legitimate

roundings. Theorem 1 counts how many roundings a multiplier method contains.

In Section 4 we propose a two-step algorithm to calculate the roundings of a multiplier

method. The first step is called the multiplier step and gets close to a result, but may

leave a nonzero discrepancy. The discrepancy step then consists of a few iterations, to

augment some of the rounded weights if there is a negative discrepancy, or to reduce some

of them if the discrepancy is positive. An Emacs Lisp implementation of the algorithm is

available [7].

Section 5 investigates the discrepancy moments for uniformly distributed weights.

For a finite accuracy n, Theorem 2 secures the existence of a multiplier ν̃n for which the

expected discrepancy vanishes. However, ν̃n is hard to calculate.

For more detailed results, in Section 6, we restrict attention to q-stationary multiplier

methods. Theorems 3 and 4 provide asymptotic formulas for the expectation and variance

of the discrepancy, when the accuracy n tends to infinity. It follows that the expected

discrepancy vanishes asymptotically when the multiplier is taken to be

νn = n + c
(
q − 1

2

)
. (1)

In particular, the recommended multiplier for the method of Adams (q = 0) is νn = n−c/2

[13, 14], while for the method of Jefferson (q = 1) it is νn = n+c/2. The method of Webster

(q = 1/2) has multiplier νn = n, as suggested by the Rule of Three.

Usual, standard rounding is just the same as the multiplier step with νn = n for the

method of Webster. The reason for its frequent failure to add to one is that it misses out

on the discrepancy step of the algorithm. Our result on the discrepancy moments provide a
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first explanation for the observed discrepancies in the examples that are mentioned above.

The exact, finite discrepancy distribution is given by Happacher [10].

2. Rounding rules

The definition of a rounding rule R is based on a signpost sequence s(k) ∈ [k, k + 1], for

k = 0, 1, . . . [3]. The signposts are assumed to be strictly increasing, in order to avoid

three-way ties. When x = s(k) coincides with a signpost, there is a two-way tie and R(x)

is defined to be the two-element set {k, k + 1}. When x ≥ 0 lies between two signposts,

x ∈
(
s(k − 1), s(k)

)
, the set R(x) = {k} is a singleton. With starting value s(−1) = −1,

we define for all k = 0, 1, . . . and for all x ≥ 0

R(x) =

{ {k, k + 1} for x = s(k),

{k} for x ∈
(
s(k − 1), s(k)

)
.

Alternatively, the signpost sequence and the rounding rule fulfill the basic relation

k ∈ R(x) ⇐⇒ s(k − 1) ≤ x ≤ s(k). (2)

We concentrate on q-stationary rounding rules, for some fixed value q ∈ [0, 1]. They

are defined through the signpost sequence

sq(k) = k + q for k = 0, 1, . . . (3)

This rule appears implicitly in [6] with a view towards equivariance, and in [11] with a

view towards linearity. Our terminology is inspired by Balinski–Rachev [2].

The p-mean rounding rules play a greater historical role [3]. With p ∈ (−∞,∞) fixed,

the defining signpost sequence is

s̃p(k) =

(
kp + (k + 1)p

2

)1/p

for k = 0, 1, . . . (4)

These are of the order k + 1/2 + O(1/k) as k → ∞. Hence their asymptotic behavior is

the same as with p = 1, which in turn is the same as (3) with q = 1/2. Furthermore, the

two extreme p-mean roundings are s̃−∞(k) = k = s0(k), and s̃∞(k) = k+1 = s1(k). They

coincide with the extreme members from (3).

Hence the stationary rounding rules (3) appear to form a richer family than the

p-mean rounding rules (4). Both contain the classical rounding rules of rounding up

(q = 0, p = −∞), standard rounding (q = 1/2, p = 1), and rounding down (q = 1, p = ∞).

The fact that a rounding rule R is set-valued is computationally unpleasant. Therefore

we also introduce rounding functions r that are compatible with R, by demanding r(x) ∈
R(x) for all x ≥ 0. Hence r is an increasing, piecewise constant function. It jumps at s(k)
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where it takes one of the two values, k or k +1. Evidently a rounding rule R admits many

rounding functions r that are compatible with it.

Standard rounding, q = 1/2, is usually carried out with the rounding function r1/2(x)

that maps x ≥ 0 to the closest integer when the fractional part of x is distinct from 1/2

(and the closest integer is thus unique), and to the closest even integer otherwise [15, page

175; 4, Section 2.1.1.2]. For rounding down, q = 1, a convenient rounding function is

the floor function or integer part bxc = max{k | k ≤ x}. For rounding up, q = 0, the

counterpart is the ceiling function dxe = min{k | k ≥ x}.

3. Multiplier methods

Any rounding rule R induces a multiplier method of rounding. The multiplier methods

that come with the classical rounding rules of rounding up, standard rounding, or rounding

down are historically associated with the names of Adams, Webster, and Jefferson [3].

Multiplier methods introduce a new continuous variable, the multiplier ν ≥ 0. This

additional degree of freedom is used to fit the side condition that rounded weights sum to

one. It is convenient to assemble the weights into a vector w = (w1, . . . , wc). Without loss

of generality we assume wi > 0 for all i = 1, . . . , c. For a given integer n ≥ 1, the goal is to

round wi to a rational number of the form ni/n, that is, to find appropriate numerators ni.

The condition
∑

i≤c ni/n = 1 turns into
∑

i≤c ni = n.

Rounding rules do not resolve two-way ties, nor do multiplier methods. Hence a set

of possible numerators is proposed [3]. Given a rounding rule R, the set of roundings for

a weight vector w and an accuracy n is defined by

MR(w, n) =
{

(n1, . . . , nc)
∣∣∣ ∃ν ≥ 0 ∀i ≤ c : ni ∈ R(νwi) and

∑
i≤c

ni = n
}

.

In the rare, special case when s(0) = 0 and 0 ≤ n < c, we define ni = 1 or ni = 0

according as wi is among the n largest weights or not. In general we adopt the convention

0/wi < 0/wj for wi > wj .

There is an alternative characterization in the form of a Max–Min inequality. It uses

the signposts s(k) that determine the rounding rule R, and follows from the basic relation

(2). A set of integers (n1, . . . , nc) with
∑

i≤c ni = n belongs to MR(w, n) if and only if

maxi≤c
s(ni − 1)

wi
≤ mini≤c

s(ni)

wi
. (5)

In particular, the set MR(w, n) is always nonempty.

What happens when we start with some member (n1, . . . , nc) in MR(w, n) and vary

the precision n? It is easy to step up to a member of MR(w, n + 1), or to step down to
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a member of MR(w, n − 1). Let J and K be the set of those subscripts that attain the

minimum and maximum in (5), respectively,

J =
{

j ≤ c
∣∣∣

s(nj)

wj
= mini≤c

s(ni)

wi

}
, K =

{
k ≤ c

∣∣∣
s(nk − 1)

wk
= maxi≤c

s(ni − 1)

wi

}
.

Proposition 3.3 in [3] or Theorem 12.5b in [13] say that J consists of the augmentation

candidates and K of the reduction candidates:

j ∈ J ⇐⇒ (n1, . . . , nj−1, nj + 1, nj+1, . . . , nc) ∈ MR(w, n + 1),

k ∈ K ⇐⇒ (n1, . . . , nk−1, nk − 1, nk+1, . . . , nc) ∈ MR(w, n − 1).
(6)

Moreover, we can enumerate how many roundings appear in the set MR(w, n).

Theorem 1. Let (n1, . . . , nc) be a member of MR(w, n). Then the set MR(w, n) is

a singleton if and only if strict inequality holds in (5). Otherwise equality holds in (5) and

there are
(
a+b

a

)
roundings in MR(w, n), where a is the number of augmentation candidates

in J and b is the number of reduction candidates in K.

Proof. In the first part we show that MR(w, n) contains at least two members if and

only if equality holds in (5), compare the proof of Theorem 12.7 in [13]. For the direct part,

we choose two distinct members (n1, . . . , nc) 6= (ñ1, . . . , ñc) in MR(w, n), with respective

multipliers ν and ν̃. If ν < ν̃ then ni ≤ ñi. Now
∑

i≤c ni = n =
∑

i≤c ñi forces ni = ñi for

all i = 1, . . . , c. This contradicts our choice that the two members are distinct. The same

argument applies to ν > ν̃. Hence we get ν = ν̃. Another multiplier ˜̃ν for (n1, . . . , nc) also

satisfies ˜̃ν = ν̃. Therefore ˜̃ν = ν, and the multiplier for (n1, . . . , nc) is unique. This entails

equality in (5).

For the converse part, we assume equality in (5), and fix a member (n1, . . . , nc) in

MR(w, n). Now all j ∈ J and k ∈ K satisfy

s(ni − 1)

wi
≤ s(nk − 1)

wk
=

s(nj)

wj
≤ s(ni)

wi
for all i = 1, . . . , c.

We cannot have j = k, since s(nj − 1) = s(nj) contradicts the strict monotonicity of the

signpost sequence. With j 6= k, we transfer mass from the kth to the jth entry, by setting

ñj = nj + 1, ñk = nk − 1, ñi = ni for all i 6= j, k. The new set (ñ1, . . . , ñc) satisfies

s(ñi − 1)

wi
≤ s(ñj − 1)

wj
=

s(ñk)

wk
≤ s(ñi)

wi
for all i = 1, . . . , c.

Therefore it is a second member in MR(w, n), besides (n1, . . . , nc).

In the second part of the proof we assume equality in (5). We have just seen that

then there is a unique multiplier ν. For a given member (n1, . . . , nc) in MR(w, n) we have

R(νwj) = {nj , nj +1} and R(νwk) = {nk−1, nk} for all j ∈ J and k ∈ K. Also, R(νwi) is

a singleton for i /∈ J ∪K. In other words, for a + b subscripts j and k the rounding rule R

produces a two-way tie when applied to νwj and νwk. Of these ties, a ties are resolved by

the lower option (whence the remaining b ties are resolved by the upper option). There

are
(
a+b

a

)
ways to do this.
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4. Rounding algorithm

We can now be more precise about our proposed implementation of a multiplier method.

The algorithm is initialized by choosing a rounding function r that is compatible with the

rounding rule R. For a given accuracy n it then makes a choice of a multiplier ν that is

thought to work reasonably well irrespective of the weight vector w = (w1, . . . , wc).

• The first, multiplier step rounds the weights wi to ni/n with ni = r(νwi).

• The second, discrepancy step evaluates the discrepancy

d =
(∑

i≤c
ni

)
− n.

While d 6= 0 it loops to augment or reduce n1, . . . , nc according to (6), and terminates

when d = 0.

Upon termination the set MR(w, n) may be enumerated using Theorem 1.

For standard rounding with multiplier ν = n, the results of [6, 12] say that the

algorithm does not terminate with the first step, with probability one as c → ∞. This

statement should not be construed as evidence against the first step. Instead it emphasizes

the need to continue on into the second step.

5. Random weights

The choice of the multiplier ν depends on the distribution of the weight vectors w to which

the algorithm is applied. In the sequel we assume that the weight vector (W1, . . . ,Wc)

follows the uniform distribution on the probability simplex of RI c. The number of cate-

gories, c, remains fixed. Let R be a rounding rule with associated signposts s(k).

The event that for a multiplier ν > 0 a component hits a signpost,
⋃

i≤c

⋃
k≥0{νWi =

s(k)}, has probability zero. Hence, almost surely, R(νWi) is a singleton and any two

rounding functions r and r̃ that are compatible with R satisfy R(νWi) = {r(νWi)} =

{r̃(νWi)}, for every multiplier ν > 0. Therefore we are free to choose any rounding

function r that is compatible with R.

Given a multiplier ν > 0 we define the total

Tc(ν) =
∑

i≤c
r(νWi).

This is an integer-valued random variable. By choice of ν we would like to bring it close

to n, in order to achieve a small discrepancy Tc(ν) − n. Indeed, there is a unique multi-

plier ν̃n that makes the expected total equal to n.
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Theorem 2. For ν > 0 we introduce k = max{i ≥ −1 | s(i) ≤ ν}. Then we have

E[Tc(ν)] = c
∑k

j=0

(
1 − s(j)

ν

)c−1

. (7)

In particular, for n ≥ c there exists a unique multiplier ν̃n > 0 satisfying E[Tc(ν̃n)] = n.

Proof. Define the integer-valued random variable N1 = r(νW1). By exchangeability

we get E[Tc(ν)] = cE[N1]. For j = 0, 1, . . . we have {N1 > j} = {W1 > s(j)
ν }. This

entails P(N1 > j) = (1 − s(j)
ν )c−1 for j ≤ k, and P(N1 > j) = 0 for j > k. Now

E[Tc(ν)] = c
∑∞

j=0 P(N1 > j) yields (7). The function f(ν) = E[Tc(ν)] is continuous

on (0,∞), and strictly increases to infinity. The right limit for ν ↓ 0 equals zero or c

according as s(0) is positive or zero. Hence for n ≥ c the equation f(ν) = n has a unique

solution ν̃n > 0.

6. Discrepancy moments for stationary methods

From now on we restrict attention to a q-stationary rounding function rq, with signpost

sequence (3). The basic relation (2) almost surely yields νWi−q < rq(νWi) < νWi +1−q,

and ν − cq < Tc(ν) < ν + c(1 − q). With νn = n + c(q − 1/2) from (1), we almost surely

obtain the symmetric support bounds

n − c

2
< Tc(νn) < n +

c

2
.

For c = 2 categories and an accuracy n ≥ 2, the multiplier n + 2q − 1 is positive and the

integer-valued random variable T2(n+2q− 1) lies strictly between n− 1 and n+1. Hence

it degenerates to a constant, T2(n + 2q − 1) = n almost surely. In particular, we have

ν̃n = n + 2q − 1 in Theorem 2. In other words, the discrepancy vanishes almost surely

when a q-stationary rounding rule with multiplier n + 2q − 1 is applied to two categories.

For standard rounding this is already pointed out in [12].

For three or more categories, more can be said about the expected total in Theorem 2.

With q ∈ [0, 1] and ν > 0, we introduce ε = ν − q − bν − qc ∈ [0, 1]. Reversing the order

of summation in (7), we obtain

E[Tc(ν)] =
c

νc−1

∑bν−qc

j=0
(j + ε)c−1. (8)

Elementary calculus indicates how to expand the summa potentatis:

c
∑k

j=0
(j + ε)c−1 ≈ c

∫ k+1/2

−1/2

(x + ε)c−1 dx ≈
(

k +
1

2
+ ε

)c

=

(
ν − q +

1

2

)c

.

Geometrically, the addition of 1/2 serves as a continuity correction. Numerically, a poly-

nomial in k + 1/2 + ε approximates the sum much better than a polynomial in k + ε, in

that the exponents drop off in steps of two [5]. This enables us to evaluate the asymptotic

behavior of (8).
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Theorem 3. For q ∈ [0, 1] and ν > q, set ε = ν − q − bν − qc. Then we have

E[Tc(ν)] =
(ν − q + 1/2)c

νc−1

{
1 − 1

12

(
c

2

)
1

(ν − q + 1/2)2
+

7

240

(
c

4

)
1

(ν − q + 1/2)4

− 31

1344

(
c

6

)
1

(ν − q + 1/2)6
+

127

3840

(
c

8

)
1

(ν − q + 1/2)8
∓ . . .

}
+

πc(ε)

νc−1

= ν − c(q − 1/2) + ρc(ν),

with a polynomial πc in ε of degree c in the first representation, and a remainder term

ρc(ν) = O(1/ν) as ν → ∞ in the second representation. If c is even, the sum in the first

representation stops at the term with binomial coefficient
(

c
c−2

)
.

Proof. Section 2 of [5] carries over to the shifted summands j + ε that appear in (8)

when the summation starts at j = 0 rather than j = 1. Now formula (2.11) in [5] provides

the first representation. The second follows from the binomial expansion of (ν−q+1/2)c.

In the second representation, the remainder terms are:

ρ2(ν) =
q(q − 1) − ε(ε − 1)

ν
,

ρ3(ν) = 3
1/6 + q(q − 1)

ν
− q(q − 1

2 )(q − 1) + ε(ε − 1
2 )(ε − 1)

ν2
,

ρ4(ν) = 6
1/6 + q(q − 1)

ν
− 4q(q − 1

2 )(q − 1)

ν2
+

q2(q − 1)2 − ε2(ε − 1)2

ν3
,

ρc(ν) =

(
c

2

)
1/6 + q(q − 1)

ν
+ O

(
1

ν2

)
for all c ≥ 3.

For two categories, the multiplier ν̃n = n + 2q − 1 yields ρ2(n + 2q − 1) = 0, as we

know from the remarks following Theorem 2. For three or more categories, Theorem 3 has

a companion result for the variance. In general, the variance equals c/12 plus a remainder

term bounded of order 1/ν. For the classical methods of Adams, Webster, and Jefferson,

the order surprisingly improves to 1/ν2.

Theorem 4. For c ≥ 3 categories, q ∈ [0, 1] and ν > 2q we have

V[Tc(ν)] =
c

12
+

2

3

(
c

2

)
q(q − 1

2 )(q − 1)

ν
+ O

(
1

ν2

)
as ν → ∞.

Proof. Straightforward, though lengthy calculations establish the result [10].

Finally we return to the discrepancy Tc(ν) − n. The expectation is E[Tc(ν) − n] =

ν− (n+ c(q−1/2))+O(1/ν), by Theorem 3. Hence νn = n+ c(q−1/2) from (1) generates
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a discrepancy with an expectation that vanishes asymptotically, E[Tc(νn) − n] = O(1/n).

For three and four categories, the remainder terms for the classical methods are as follows:

q = 0, p = −∞ q = 1/2, p = 1 q = 1, p = ∞
Adams Webster Jefferson

E[T3(n − 3
2 ) − n] = 1

2n−3 E[T3(n) − n] = − 1
4n E[T3(n + 3

2 ) − n] = 1
2n+3

E[T4(n − 2) − n] = 1
n−2 E[T4(n) − n] = − 1

2n E[T4(n + 2) − n] = 1
n+2

These results conform with the empirical examples that we have looked at. For in-

stance, the average discrepancy of the IMS survey data [9] is −2/56, with c ranging between

three and eight. This is in line with the slightly negative expected discrepancy that comes

with the Webster method. The discrepancy step of the algorithm of Section 4 passes

through an expected number of loops that is given by E[|Tc(νn)−n|]. Since the integrand

is integer-valued, the expectation is bounded from above by E[(Tc(νn) − n)2]. The latter

approximately equals c/12, by Theorem 4. This conforms with the empirical number of

loops in the IMS example, 22/56 = 0.4.
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