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An overview of the design of statistical experiments is presented, with special
emphasis on response surface designs, block designs, neighbor designs. Appli-
cations are mentioned for industrial quality improvement, agricultural experi-
ments, biometry. An outlook towards design optimality concludes the survey.

Key words: Response surface designs, Mixtures experiment designs, Block de-
signs, Neighbor Designs, Designs for industrial quality improvement, Designs for
agricultural experiments and biometry, Design optimality, Design algorithms

0 Introduction

The topic of statistical design of experiments could well have an entire encyclopedia
devoted to it. In our relatively few pages, we discuss some important areas and con-
cepts, and provide references for further reading. These references will, in their turn,
lead the reader further into his/her selected areas, and thus enlarge the scope of what

we have provided here. We have divided our material into these sections:

1 Some Historical Comments on Experimental Design
2 Response Surface Designs

3 Mixtures Experiment Designs

4 Designs for Industrial Quality Improvement

5 Block Designs

6 Neighbor Designs

7 Designs for Agricultural Experiments and Biometry
8 Optimality of Designs

9 Design Algorithms
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1 Some Historical Comments on Experimental Design

Where and when methods of experimental design began is pure speculation. Perhaps
cave-dwellers noticed that certain berries made them ill and certain berries did not.
Did they conduct a simple experimental design to compare the two? Perhaps. In
long established cities, were different building materials or techniques compared to
see which would be longer lasting and most resistant to the elements? Perhaps. In
ancient agrarian economies, were the effects of various animal feed stocks compared?
Was an experiment performed to check the effects of fresh fruits on scurvy, suffered by
sailors who were at sea for long periods? All these sorts of experiments were perhaps
performed, but we know nothing of them.

One simple experiment to define the unit of a “foot” was recorded by Jacob Kobel
in his book Geometreiin 1556, published in Frankfurt am Main:

“Sixteen men, small and large, as they happen to come out of church, shall each
place a shoe one before the othel; .... Whence the total length shall be subdivided into
sixteen equal parts, using a compass .... Thus is obtained a measuring rod of sixteen
equal parts, made up from sixteen unequal shoes.”

An old woodcut showing this is reproduced on the dust jacket of Pukelsheim (1993).
We note in this statement: the implication of randomization in the words “as they
happen to come”; the assurance of a homogeneous population in the specification of
“men” rather than women or children; and the use of the average as the best estimate
of the population mean. This is of course an observational experiment; a natural
phenomenon is observed and recorded. Observational experiments have a long history,
particularly in astronomy. Stigler (1986, p. 27) writes of Leonhard Euler (1701-83)
analyzing observations “made in the years from 1582 through 1745”. Well before that
however, probably around 2000 BC, Stonehenge was built. One school of thought
believes that its construction was based on certain astronomical observations.

Nowadays we are more concerned with controlled experiments where, ahead of the
observations, we deliberately decide to treat different experimental units in different
ways, with the idea of seeing which of those ways is best for future work. Various writers
have received credit for putting forward early ideas of experimental design, including
Francis Bacon (1561-1626) who wrote Novum Organum, among other works; Gustav
Theodor Fechner (1801-87) who wrote the 1860 book Elemente der Psychophysik (see
Stigler 1986, p. 242); John Stuart Mill (1806-73) whose views were expressed in an
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1843 book System of Logic; and Charles Sanders Peirce (1839-1914) some of whose
work has been republished after his death, for example, Peirce (1957). Bacon’s ideas
of Nature being led experimentally to reveal her secrets, and Mill’s suggestion that the
mind provides the possibilities but that the experiment enables us to actually see the
phenomenon, are both early expressions of later presentations of the cycle: conjecture,
design, experiment, analysis, conjecture ..., see, for example, Box and Draper (1987,
P- 8). A later proponent was Sir Karl Popper (1902-94), known for his 1934 Vienna
Circle book Logik der Forschung, translated into English as the 1959 book The Logic
of Scientific Discovery. Popper presented science as a way of straining out the wrong
concepts by conducting experiments conceived from theoretical conjectures.

Major progress occurred in the 1920s and 1930s when Ronald Aylmer Fisher, later,
Sir Ronald Fisher (1890-1962) did pioneering work at Rothamstead Experimental Sta-
tion in Hertfordshire, England. Ably assisted by others, including Frank Yates (1902-
94), Fisher began to write about basic statistical principles that he introduced into crop
and animal experiments being performed at Rothamstead. He wrote two crucially im-
portant books (Fisher 1925, 1935) which passed through many editions and provided
both inspiration (for their important ideas) and frustration (for their sometimes tightly
condensed writing) to many followers. An important and valuable book of statistical
tables, needed especially before electronic computers became available was also later
produced (Fisher and Yates 1938).

Also in the 1930s began the pioneering mathematical work in experimental design
in India, led by P.C. Mahalanobis (1893-1972), and R.C. Bose (1901-87).

After World War 2, an explosion of work on experimental design took place, later
fueled by government funds in the “Sputnik” fear years of the 1960s. Among important
names of that period are G.E.P. Box (1919-), G. Elfving (1908-84), J.C. Kiefer (1924~
81), C.R. Rao (1920-), A. Wald (1902-50) and J. Wolfowitz (1910-81).

The rapid expansion also encouraged use of many mathematical tools such as ma-
trix algebra, combinatoric theory, optimization methods and convex analysis. The
burgeoning availability of faster and faster computing equipment played an enormous
role, and continues to do so.

One might think that the more complicated experimental design methods became,
the more difficult it would be to get answers. Fisher (1926) suggested that just the
opposite is true: “Nature ... will best respond to a logical and carefully thought out



4

questionnaire; indeed, if we ask her a single question, she will often refuse to answer
until some other topic has been discussed.” This is a heartening message to carry into

the modern complications associated with designing experiments!

2 Response Surface Designs

2.1 Response Surface Methodology

Response surface methodology consists of the totality of techniques that apply when nu-
merical data from a physical phenomenon are represented by a “best fit” mathematical
surface.

Suppose, for example, that we are studying the effect of changing the predictor
variables “temperature” (z,), “pressure” (z2) and “viscosity” (z3) on the response
“yield” (y) of a chemical process. Suppose, at least to practical approximation, that
Z1, €3 and z3 can be set without error, and that y is the result of a “true value” (m)

plus a measuring error (e), that is
y=nte

The error € is assumed to come from a specific error distribution, typically a normal
distribution with mean 0 and variance o2.

The true relationship n = f(z) between 1 and the vector z = (21,22, 23)" is usually
unknown. It is then standard practice to model (approximate) the true relationship
by fitting to the data some member from a function class g(z,B) depending on an
unknown parameter vector 3:

n = g(=,B). (1)

For example, a second-order model uses a quadratic polynomial of the form

9(2,8) = Bo+ P11+ P2z + Bszs + Pz + Basz: + Paszd + Prazy 2 + B1sz123+ Baszazs,
(2)
with 10 unknown real parameters fo, By, Ba, Bs, P11, B2z, Bss, Brz, Brs, Pas. KB;=0
for i < j is assumed in (2), a first-order model is specified that fits a planar surface.
The standard technique in these situations is to carry out an experiment, that is,
choose an ezperimental design consisting of units v = 1,...,7n of predictor settings
Zy = (Z1u, Tou, Z34)’, and observe the corresponding responses y,. The data are then
employed to estimate numerical values for the parameter vector B, often via the method

of least squares.
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Usually the simpler, planar model is a first choice. A variety of tests on the surface,
and on the unexplained portions of the response, called the residuals, can be made.
If the plane does not fit well, a second-order surface would be tried. One can also
attempt to fit higher order models (cubic, quartic, and so on); in general this would
not be sensible. It would be more sensible to attempt to find a transformation of the
observed response y (for example, the logarithmic transformation logy, or the inverse
transformation 1/y) and attempt to fit a first-order or second-order model to that.
Methods exist for finding a “best” transformation. If these methods fail, a nonlinear
model might be tried, that is, a model nonlinear in the parameters.

Readers without prior statistics knowledge should consult Box, Hunter and Hunter
(1978) for a general introduction into the statistical design of experiments, or Draper
and Smith (1981) for a general treatment of least squares regression methods. More
sophisticated readers could see Box and Draper (1987) who in Chapter 8 discuss meth-
ods of transformations, or Khuri and Cornell (1987) who in their Chapter 8 outline
nonlinear response surface models. Also see Bates and Watts (1988), and Seber and
Wild (1989).

2.2 Experimental Domain of the Predictor Variables

In general, there may be k real predictor variables z,, ..., z, also called ezperimental
conditions, or factors. Together they form the vector z = (z1,...,zx)". The ezperimen-
tal domain over which this vector z is allowed to vary during the experiment is denoted
by X, a subset of k-dimensional Euclidean space. A specific vector = (z4,...,zs)’
in X thus defines the settings for the k predictor variables under which the response
y is going to be observed. An ezperimental design then defines n runs, that is n sets
of experimental conditions z, = (Z1y,...,2k)’ for u =1,...,n, at which to observe a
total of n responses y1,...,¥Yn.

For ease of interpretation, the predictor variables z, are often coded or standardized
so that zj, = 0 means standard operating conditions, while z;, = +1 means a chosen
unit deviation from standard operating conditions, in either direction. Hence while
generally the predictor variables z;, may attain quite arbitrary real values, practical
situations often feature two-level designs, zj, € {£1}, or three-level designs, z;, €

{=1,0,1}, or designs that stay “close” to two-level designs or three-level designs.
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2.3 Full Factorial Designs

Suppose we have k factors to examine and two levels of each, coded to —1 and 1, have
been selected. We could then consider an experiment with n = 2* runs (each run
being a specific combination of settings such as —1,1,1,—1,...,—1 for the k factors).
The 2* experiments so generated form the full factorial design 2%, The 2* observations
are usually recomputed into estimates for the grand mean and 2% — 1 “effects”, this
word encompassing main effects, two-factor interactions, three-factor interactions, ...,
k-factor interactions.

For two factors, the full factorial design 2* consists of the four runs (zy,z;) =
(-1,-1), (1,-1), (-1,1), (1,1), and the points lie at the corners of a square in the
(z1,2,) space. For the 2* design with factors numbered 1 and 2, and observations
Y1, Y2, s, Y4 Tespectively, there exist estimates for two main effects (1) and (2), and a

two-factor interaction (12). Suppose we were to specify a model

Y = Bo+ P121 + Paza + Praziza + € (3)

for this situation, and fit the data by least squares. Then the estimates by, by, by, by3 of
the corresponding parameters fy, 8;, B2, 12 would be

bo = 1y, the average of the four observations,
b = (~ni+yva—ys+w)/d= %(1),
bs = (—y1—ya+ys+wi)/d=3(2),

bz = (1—ya—ys+ud)/d= %(12)-

The quantities by, b;, and b;; estimate half of the corresponding main effects and
interactions, as they are usually defined.

Comparing (3) with (2), we see that a two level factorial design permits us to
estimate only main effects and interactions but not pure quadratic parameters such as
B11 and B,;. Estimation of these is possible only if additional levels are included in the
design in one of the many permissible ways.

Other types of full factorial designs can be constructed. The 3° series, the mixed
2*3* series, and so on, are available. The two-level series is probably the place to start

a study of factorial designs, however.



2.4 Fractional Factorial Designs

Suppose we wish to investigate four factors but are restricted (by funds, or by available
raw material for the runs) to only eight runs, so that the full factorial design 2* which
needs 16 runs is out of the question. What can we do? A full 16 run design permits

us to fit a factorial model of type

y=Po + P21+ Paza + Pazs + Pazs
+ B1aZ123 + 132123 + 142124 + Pa3TaTs + P24TaT4 + PaaTaT4

+ P123Z12223 + P1242122T4 + P134%12324 + P234Z2T3T4

(4)

+ Pr1234%122T3T4 + €.

In most practical circumstances we would be surprised if all the terms of (4) were
needed. It would generally be thought that the coefficients with three or four subscripts
are not relevant, that is, their effects are small enough to neglect. Even if we drop these
five terms, however, 11 terms remain. It is clear, then, that a forced reduction to eight
runs will not enable us to estimate f,, all main effects (proportional to 3, A3, Bs, Bs),
and all two-factor interactions (proportional to B3, Bis, P14, Bas, B2, Baa).-

What is the best we can do, however? We can get estimates of 3y, all the 3;, and
sums of pairs of the §;; by choosing a half fraction of the 2* design, called a 2*~! design.
The appropriate choice for our stated objective is to divide the runs of the 2* design

into two halves, in the following way:

e Design (a) is that half fraction for which the runs have a product z;z;z3z4 = 1.
These are (—1,-1,-1,-1), (=1,~1,1,1), (=1,1,~1,1), (=1,1,1,-1), (1, -1, -1,
1), (1, -1,1, —1), (1, 1,-1, —1) and (1, 1,1,1).

e Design (b) consists of those runs which have the product z,z;z3z4 = —1, namely
(_1) 11 1) 1)1 (11 _1: 1) 1)1 (1’ 1: —1) 1)) (1) 1: 11 _1): (11 _1) _1) _1)1 (—1, 11 "11 —1))
(-1,-1,1,-1) and (-1,-1,-1,1).

Either half fraction could be used for the design to be performed.
Suppose we pick design (a). Then, it turns out, we can fit the following model with

eight coefficients, derived from (4) and from our assumptions and choices:

Yy=PBo +Piz1+ Bazs + Pszs + Pazs

(5)
+ (Br2 + Bas)z1z2 + (Bis + Bas)z123 + (Bra + Pas)z1z4 + €.
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The implication of (5) is that we can still estimate By, ;,3s, and B4 with our half
fraction designs (a) and (b). But because of z,z;z3z4 = 1 we have z,z; = z3z4 for
every run. Therefore 8;; and B34 are no longer separately estimable, only their sum
is, and similarly for the other pairings. We say that the estimates of 3;; and B34 are
confounded, or that they are aliases of each other.

If the other half fraction design (b) is used, a similar argument shows that now
z1Z3 = —z3z4 and 50 on, and the estimates obtained correspond to the coefficients in

the model

y=Po +Piz1+ Bazy + Pazs + Pazs
+ (B12 — Bss)z122 + (B1s — Pas)z12s + (Bra — Bas)zi1z4 + €.

(6)

An important feature of a fractional factorial design is how it projects into fewer
dimensions. Consider the eight run design (a) given above, and indicated by the black
dots in Figure 1. What happens if we decide, as a result of examining the response data,
that 24 is not effective in influencing the response? Then, in the other three variables,
we have a complete 2° design. One must imagine the two cubes in Figure 1 sliding
together and coalescing as we abandon z, as a variable. There then is a black dot at all
eight corners. Remarkably, this is true for any three zs after one z is abandoned. What
happens to the black dots if the design is collapsed in the z; (or z; or z3) direction?
For the z, direction collapse, the two cubes of Figure 1 are each compressed from left
to right to form two full factorial designs 22 in z, and z3, one at each level of z,. Thus

the projected design is the complete factorial design 2% in the variables 2, 3, and 4.
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Figure 1. A 2*7! design with z,z,232z4 = 1. The origin is at the center of the
four dimensional space, shown as two three-dimensional slices for z, = —1 and

E4=1.
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Fractional factorial designs are usually denoted by the notation 2;_’ , 8 27P fraction
of the complete factorial design 2*. The resolution R enables us to assess the degrees
of alias involvement; roman numerals are the customary notation. For example the
design of Figure 1 is a 2};' design, that is, of resolution four. This means that at
least one main effect (in fact all in this design) is aliased with at least one three-factor
interaction, or that at least one (all in this particular design) two-factor interaction is
aliased with another two-factor interaction. If they do not consume too many runs,
designs of resolution V' that alias main effects with four-factor interactions, or two-
factor interactions with three-factor interactions are more desirable than designs of
resolution /I or IV.

In the branch of combinatorial theory, the 2;" designs are described as orthogonal

arrays, and resolution then turns into the strength of the array, see Raghavarao (1971).

2.5 Central Composite Designs
Central composite designs, which are appropriate for fitting second-order models, have
a pleasing geometrical structure. First proposed by Box and Wilson (1951), these
designs have stood the test of time.

They consist of a combination of three point sets: (a) The two-level full fac-
torial design 2%, or a 2';{’ fractional factorial design of resolution R, with points
(£,%£1,...,£1). This set is called a cube, even when it literally is not. Usually
the resolution is V' or higher. (b) The second point set consists of 2k axial points
(£,0,...0),(0, £a,0,...,0),...,(0, ...,0,+a) where a is to be chosen. This set
is called a star. It can be regarded as a combination of k vary-one-factor-at-a-time
designs. (c) Finally a number nq of center points (0,0,...,0) is added. Typically
these would be at the most recent “best” conditions, or at some standard operating
conditions.

A great advantage of a central composite design is that it permits an initial study
made via a 2;"’ design (perhaps with center points), to be extended to a second-
order model exploration with only star points and perhaps more center points added.
Moreover, these designs enjoy excellent design properties over a wide range of design

criteria. Figure 2 shows a central composite design and its component pieces for k = 3.
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(d) Cube plus star plus center point(s) for

k=3, with polymer slasticity data

attached. 3

Figure 2. A composite design in three dimensions (k = 3). Taken from Box and
Draper (1987, p. 306).

2.6 Orthogonal Blocking and Rotatability
Two important desirable features of second-order response surface designs are orthogo-
nal blocking and rotatability. When the runs of the design must be split up into sections
(days, shifts, batches of raw material) that may affect the level of the response from
section to section, the model fitting can be safeguarded by dividing the design into
orthogonal blocks. This enables the model to be fitted without worrying about blocks,
and also permits the removal of a component for block variation from the subsequent
analysis of the surface fit.

For central composite designs, orthogonal blocking into two blocks (and often more,
depending on the values of k and p of the star portion 2’,'{’ ) can be achieved by suitable
choice of a and no. For example, if k = 4,p = 0, and no = 3s, where s is an integer

(typically 1, 2, or 3 in this context), we can make three orthogonal blocks as follows:

e Block (a): A 2§;' design with 22,2324 = 1 plus s center points.
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e Block (b): A 273" design with z,z;z324 = —1 plus s center points.
o Block (c): Eight axial points at distances +a, where a = 2, plus s center points.

There are many other choices.

Rotatability ensures that the response will be predicted with the same accuracy at
all points in the z-space that are equidistant from the origin. For rotatability of the
specific design given above, the condition is @ = 2, and so the design given is both
rotatable and orthogonally blocked. (This is not achievable in general however.)

For other facets, see Box and Hunter (1957), and Draper and Pukelsheim (1991,
1994). Near rotatability is discussed by Khuri (1988), and Draper and Pukelsheim
(1990). Intuitive reasoning and geometric elegance in higher-order models are difficult
to envision. This calls for a more formal discussion of rotatability properties as, for

example, in Draper, Gaffke and Pukelsheim (1991), and Draper and Pukelsheim (1994).

2.7 An Example

An example of a classic response surface study conducted by Box and Youle (1955)
can be found in Box and Draper (1987, p. 358). It is seen that the highest yield
of 60 is obtained on a plane. This sort of redundancy is most desirable, because it
permits many choices of setting time, concentration, and temperature so as to achieve

a maximum yield.

3 Mixtures Experiment Designs

3.1 Mixtures Experiments

Response surface experiments often involve miztures of ingredients. For example, fuels
can consist of a mixture of petroleum and various additives; fish patties may contain
several types of fish; a fruit juice drink may consist of a mixture of orange, pineapple,
and grapefruit juices; or a regional wine may be blended from several grape varieties.

This adds a restriction to the problem, often of type
P (7

where the predictor variables are proportions, 0 < z; < 1.
Suppose there are k = 3 ingredients. The second-order model (2) is not feasible

in this form, because although we have a three-dimensional z-space, the space of the
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experimental domain is only two-dimensional; see Figure 3. In the usual least squares
regression fit formulation the estimate is b = (X'X)~!X'y, where X is the model
matrix, y is the response vector, and b estimates the parameter vector 3 in the model
y = X + €. In the present case the matrix X'X is singular and its inverse does not
exist.

This difficulty can be overcome by either of two (essentially the same) methods:

e Method (a). Transform the k original z-coordinates to k — 1 new z-coordinates.

(This is regarded as somewhat tedious to do, especially for k > 4)

e Method (b). Use the restriction (7) to transform the model symmetrically into

canonical form.

Method (b) was pioneered by Scheffé (1958, 1963), and is now illustrated for k = 3.
Since z; = 1 — 23 — 23, we have 2} = z, — z,2; — 2,23, and similarly for 22 and z3.
Substituting these relations and B = Boz1 + Bozz + Pozs in (2), gathering like terms,

and renaming coefficients gives
h(z,a) = a12) + a;2; + a3z3 + 132123 + 132123 + Az3;Ts. (8)

This is the canonical form of the second-order model. For planar models no intercept
term is used, and (8) applies with a;; = a;3 = ays = 0.

While the usual response surface designs can be employed for mixtures experiments,
special designs linked to the canonical form were suggested by Scheffé. For these, and

for a comprehensive treatment of the mixtures area in general, see Cornell (1990).

3.2 Mixtures Experiments in Restricted Regions

In many mixtures experiments, exploration of the entire mixtures domain (for example,
for k = 3, this is the triangle in Figure 3) is not feasible. A common type of restriction
is that each ingredient has a lower bound, such as z; > a,z; > b, z3 > c in Figure 4(a).
Obviously this produces a restricted space of the same shape as the original mixtures
space, so that the design considerations can be translated to the smaller space exactly.
When upper and lower bounds are specified, a; > z; > a; and so on, the domain shape

is different from the original one, as shown in Figure 4(b).
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One simple way of choosing some experimental points is to select all or some of the
extreme vertices of the domain in an optimum way via some selected criterion. The
extreme vertices in our example are the black dots in Figure 4(b), the criterion used
might be any of those described in Section 8. Other points, centroids of the boundaries,

for example, can be added. For more details, consult Cornell (1990).

T3 Mixture space
A T+ T+ a3 =1,
(0‘ OI 1)
T2
X 0,1,0)
7~
> I
(1,0, 0)

Figure 3. A two-dimensional experimental mixtures space =, + z3 + z3 = 1
embedded in the three-dimensional (z;.z,, z3) space. Only the region for which

0 < z; <1is valid, as shown.

(1,0,0) (1,0,0)

(0,1,0) . (0,0,1) (0,1,0) ®) 0,0,1)

Figure 4. Restrictions in the k¥ = 3 mixtures space, pulled from Figure 3 and

shown in two dimensions.
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4 Designs for Industrial Quality Improvement

4.1 Evolutionary Operation

Response surface designs (including mixtures designs where appropriate) are of basic
importance for industrial ezperimentation. The practical choice of a design is guided
by many (and partly conflicting) goals, see the discussion in Chapter 15 of Box and
Draper (1987).

Designs for first-order models are often used as screening designs in situations where
many factors need to be examined but few are expected to be of consequence. This
has sparked much interest in the geometrical properties of design projections into fewer
dimensions. The two-level fractional factorial designs are especially useful in this re-
gard, because they project down to fractional and full factorial designs, perhaps with
replications, in the factors that are judged to be the effective ones.

Screening in this way is useful in laboratory or pilot plant work. It is impractical if
there is need to study, for example, a major chemical process which cannot be stopped
for experimental work but must go on producing salable product. This means that
the factors of interest cannot be varied at will; at most only small changes can be
made. If only small changes are made, however, it will be impossible to detect the
small differences in response that will occur in individual runs. The solution to this
is to take advantage of the fact that the standard deviation of a comparison ¥, — ¥,,

between two independent averages, each based on n observations, is 20/n!/2

, where o
is the standard deviation of a single run. By choosing a factorial pattern in only two or
three factors, and repeating this pattern as many times as necessary, small real effects
can be detected. Effective variables are followed up in the factor space to improved
response, ineffective variables are dropped and new candidates are tried in their place.
This leads to continuous improvement of product without loss of income and at a low
cost, typically trivial compared to the improvements received. This system is called

Evolutionary Operation, and is described by Box and Draper (1969).

4.2 Analysis of Variability
The work of Taguchi (1987), and the methods he suggested to Japanese industry have
created some new initiatives, mentioned here and in Sections 4.3 and 4.4. See also

Shoemaker, Tsui and Wu (1991), Nair (1992), Abt and Pukelsheim (1995), for example.

Although interest is usually in the mean yield of a process, the size of the process
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variability is often crucial. If the experiment performed provides for repeated obser-
vations on each setting of the factors that appears in the design, a linear model may
be fitted to the logarithm of the estimated per setting variance. Thus a properly de-
signed experiment may be analyzed dually, modeling the process mean and the process
variability.

The distributional assumptions underlying a linear model will no longer be fully
satisfied when applied to the log variances. However, they often hold true to some
degree of approximation, since the logarithm serves as a variance stabilizing transfor-
mation when the variance is proportioned to the mean. In a more general context,
transformations other than log, as proposed by Box and Cox (1964) may also be ap-
plied.

4.3 Signal Factors versus Control Factors

The dual analysis just described leads to a data dependent classification of the predictor
variables. The first class, called signal factors, consists of those factors that contribute
significantly to the process mean while being nonsignificant for process variability.
The engineer can then alter the signal factors to bring the process mean on target, or
maximize or minimize it, as appropriate, without affecting process variability.

The second class are the control factors. They are significant only for process vari-
ability, and hence will be set so as to stabilize the process and minimize its variability.
Control factors should be clearly designated as such, to prevent their accidental use by
process operators and supervisors.

The remaining factors are the nuisance factors, used to model the manufacturing
process without being significant for the process mean nor process variability. If no
other goal intervenes, the nuisance factors are set to minimize production costs. Case
studies are presented by Abt, Mayer and Pukelsheim (1995), and Weihs, Berres and
Grize (1995), for example.

4.4 Noise Factors

A designed experiment should also aim to incorporate noise factors and study their
effect on the product. For example, humidity, surrounding temperature or exposure
to daylight may be vital for a product to function properly in the user environment,

but would not generally occur as predictor variables for the production process. With
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noise factors included, the analysis of the experiment hopefully points to settings for
the predictor variables that would also perform well over the range of values that the
noise factors may attain.

As a result, an experiment that includes process factors (that is predictor variables
for the process under study) as well as noise factors leads to a product that is robust
not just against manufacturing imperfections, but also against random noise at the
user’s site, such as variations in temperature, humidity and physical treatment. For a

review of this topic see Grize (1995).

5 Block Designs

5.1 Balanced Incomplete Block Designs

Block designs are appropriate when the predictor variables do not vary continuously,
but attain only a finite number of levels each. For example, in agricultural experiments
a finite number of crop varieties (ireatments), i = 1,...,v, are planted within a finite
number of areas of similar fertility (blocks), j = 1,...,b. A block is called complete
when it features all treatments, otherwise it is called incomplete.

The allocation of treatments to blocks is called a block design. A block design
with incomplete blocks can be balanced (so that any two treatments concur in any
blocks the same number of times, ), or partially balanced (when a few different con-
currence numbers are admitted, Ay,..., )., each of them defining an associate class of
treatments).

Table 1 shows a balanced design in which 5 treatments occur in each of 5 blocks.
In fact, the design is derived from 5 x 5 Latin square.

A balanced incomplete block design (BIBD) is shown in Table 2, for 21 observations
on 7 treatments in 7 blocks. A BIBD is usually quoted with a list of pertinent quantities,
the number of varieties or treatments, v = 7, the number of blocks, b = 7, the treatment
replication number, r = 1, the block size, k = 3, and the concurrence number, A = 1,
besides the number of observations, n = 21. Of these 6 quantities, three are actually
sufficient to set all of them, since they satisfy the three identities n = rv = kb and
A=rk—1)/(v-1).

Table 3 shows a partially balanced incomplete block design in which treatments 1
and 4, 2 and 5, 3 and 6 concur twice each within a block. All other pairs occur together

just once. These groupings thus define the two associate classes of the design.
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1 2 3 45
3 4 51 2
51 2 3 4
2 3 451
4 51 2 3

Table 1. A 5 x 5 Latin square design, each column being a block. The numbers
1,...,5 indicate the five different treatments.

1 2
2 3
4 5

D W

4 5 6 7
5 6 7 1
7T 1 2 3

Table 2. A balanced incomplete block design for 7 treatments in 7 blocks of size

3, each column being a block. Any two treatments concur in exactly one block.

1 2 3 45
2 3 45 6
4 5 6 1 2

W = o

Table 3. A partially balanced incomplete block design for 6 treatments in 6
blocks of size 3, each column being a block. Pairs (1, 4), (2, 5), and (3, 6) are

first associates, A; = 2, while all other pairs are second associates, A, = 1.

5.2 Cyclic Designs

A particular subset of block designs can be generated by the method of cyclic substi-
tution, called cyclic designs. Two examples of this have already been given in Tables
2 and 3 where the initial block (1, 2, 4) is developed by adding one to each treatment
number and reducing modulo the number of treatments (7 in Table 2, 6 in Table 3)
whenever the number of treatments is exceeded. For more on these designs, see John

(1987).
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5.3 Two-Way Classification Models
The statistical model in which data from block design experiments are often analyzed
is
Yisk = Ti + Bj + €ijk, k=1,...,n, (9)

where n;; is the number of experimental observations taken with variety i in block j.
In the examples of subsection 5.1, all designs are binary, that is n;; = 1 or n;; = 0.

The model parameter 7; is the treatment effect of treatment i, the parameter f3;
is the block effect of block j. Although the total number of parameters is v + b, only
v + b — 1 linear functions of them are estimable.

A linear function Y°Y_, ¢y + Ef,!:l ¢c2;f; is called a contrast when the coefficient

sum vanishes, Yi_; c1; + E;=1 cy; = 0. There is a total of v — 1 treatment contrasts

(X¥_1618 =0 =c31 = --+ = c3), and a total of b — 1 block contrasts (E:'=1 c; =0=
€11 = +++ = cy,). These and the grand mean (c;; =1 = ¢3;) span the space of estimable
functions.

Two-way classification models are employed when it is thought necessary to incor-
porate block effects into the model, in addition to the treatment effects that are of
primary interest. Accordingly the parameters of interest are formed by the treatment
contrasts, while block contrasts are treated as nuisance parameters. The information
matriz for the treatment contrast is

-1
T1 81

C= -N N, (10)
Ty Sb
where N = ((ni;)) is the v X b incidence matriz that consists of the frequencies n;;,
and 7; = 2',":1 n;; is the replication number for treatment 4, while s; = 3°!_, n;; is the
size of block j. The matrix C is also known as the C-matriz of the design N, and is
the key quantity to study the statistical properties of a block design.
Multi-way classification models also come under the heading of models for the elim-

ination of multi-way heterogeneity. They are discussed, for example, in Cheng (1978),
Krafft (1978), Shah and Sinha (1989), Pukelsheim (1993).
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6 Neighbor Designs

6.1 Correlation in Time
When observations are taken over time, the assumption that the additive error terms
€ in (9) are independent (or at least uncorrelated) becomes questionable. A corre-
lation structure that takes into account the time sequential nature would seem more
appropriate. As a consequence, a design not only stipulates how often each treatment is
going to be observed, but also in which sequence the treatments ought to be arranged.
The more complicated the assumed correlation structure of the observed yield, the
more sophisticated is the rule concerning which treatment is allowed to appear as a
first-order, second-order or higher-order neighbor of any other treatment. For this
reason, designs of this sort often come under the heading of nearest neighbor designs.
As a rule of thumb, designs with a balanced neighbor structure prove to be better.
Due to the more sophisticated model assumptions, the results that are generally
available on nearest neighbor designs are more restrictive. An early paper on the
subject is Williams (1952). Many results apply only in some asymptotic sense that
varies with the precise nature of the assumptions. Exact results are difficult to come
by and are often obtained only under severe combinatorial restrictions (such as two or

three treatments, or blocksize two or three, etc.).

6.2 Spatial Correlation

The statistical model becomes yet more demanding when the response on different
plots is correlated in space. This can happen in a field experiment where the fertilizer
that is applied to one plot may be flushed more into the plots that are neighboring
in one direction, rather than those in another direction. The nearest neighbor pattern
must then also account for the spatial location of plots. See Martin (1986) for more
details and further references.

Another issue arises in mineral exploration, for example. Not only is spatial corre-
lation present but there is also no need for replication, as it makes sense to draw either
Jjust one, or else no observations at any one experimental site. (A similar restriction
occurs in medical experiments where the effect of a drug on any one patient is ob-
served once, or the patient is in a control group that does not receive this drug.) For a
textbook treatment of these and related problems see Cressie (1991). Examples where
such deviations from classical design assumptions occur in industrial experiments are

given by Grondona and Cressie (1991).
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7 Designs for Agricultural Experiments and Biometry

7.1 Historical Roots

Agricultural and biometrical experimentation have been going on for centuries. In
terms of fully recorded and continuing agricultural data, the best examples are probably
from the Rothamstead Agricultural Research Station in England. The first field trial
(Broadbalk) was started in 1843 and has continued to the present day, a span of more
than 150 years. Other experiments started soon after are also still going.

Formal statistical involvement at Rothamstead dates from the arrival of R.A. Fisher
in 1919, when a Statistics Department was formed. Factorial designs were developed
there in the 1920s and 1930s, largely by R.A. Fisher and his coworkers who included
F. Yates.

7.2 Agricultural Experiments

Agricultural ezperiments may be of several kinds. For example, they may involve the
testing of crops which are sown on a series of plots marked out on a large field, or per-
haps on several fields, sometimes widely separated. Alternatively, fertilizers or weed
killers might be tested rather than the crops themselves. Other possible treatments
studied might include pesticides, or methods for applying them, tillage methods, irri-
gation methods, biocontrol treatments, crop rotation schemes, and so on. The basic
objective is usually a comparison of treatments in order to determine which is the
best or, at least, which subset is better as a group. Such experiments usually take a
“season” which may be a year. For crops (such as raspberries) that fruit only in their

second year, more time would be needed to obtain a complete plant cycle.

7.3 Experiments in Biometry

Biometry is the statistical analysis of biological observations and phenomena. Biometry

ezperiments could involve animals (diets, diseases, cures for diseases), plants (plant

pathology, medical applications) or bacteria. For example, it might be desired to

compare several diets fed to pigs or cows, or to test possible cancer cures on mice.
The units of an experiment (the field plots, the fertilizer recipients, the cows, the

mice) have their own variation, the sort that would result if all units received the exact

same treatment. It is the knowledge (such as it may be) of this variation that affects
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the choice of replications, blocking, and randomization, in an attempt to minimize the
way unit variation affects differences between treatments.

The treatments applied may include a control (often, no treatment), may be quali-
tative (and perhaps different levels of a particular treatment, such as different dilutions
of a solution) or quantitative (separate wheat varieties, for example). The treatments
used may be specific (fized effects) or a sample of treatments from a population (ran-
dom effects). Treatments must usually be applied to a variety of different types of units
so that conclusions are valid over a variety of conditions, but they must also be applied
in a fashion that will enable differences between treatment effects to be well estimated.

To decide how many units should be allocated to test each treatment requires know-
ledge of the sizes of differences that need to be detectable between treatments. Many
more runs are needed to detect small differences and an experiment which provides
too few is useless. Conversely to use a large experiment when only large differences
need to be detected is wasteful. Sometimes some comparisons need to be made more

accurately than others.

7.4 Blocking and Randomization

In agriculture and biometry, blocking is a basic tool and various types of block designs
are in standard use (see Section 5). The experimenter attempts to group units which
are expected to have small unit-to-unit variation together in a block and to allocate
all the treatments to that block. For example, a litter of animals could form a block,
or a group of apple trees close to one another could. If the block size is too small to
accommodate all the treatments, incomplete block designs could be used. A basic rule
in all experimental design work is to block the design to take care of known variation
and then, when no further blocking is possible, to allocate the treatments randomly
within a block.

While blocking controls heterogeneities that are known, randomization helps to
guard against effects of unknown heterogeneity. So, for example, having chosen several
litters of animals for the blocks, one could allocate the diets to be tested randomly
within the litter. This randomization has important aspects for the analysis of such
experiments as it provides the randomization distribution which, while seldom used
itself, leads to the justification for applying tests related to assumptions that the errors

are normally distributed. See Bailey (1983, 1985) for more details on randomization.
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8 Optimality of Designs

8.1 Symmetry versus Optimality

The choice of an experimental design is made according to the properties desired by
the experimenter. One way of selecting a design is to concentrate on its symmetry
properties, such as balancedness in the case of block designs, or rotatability in the case
of response surface designs.

Another approach is to choose a design according to whether it maximizes or min-
imizes a specific design criterion, within a class of competing designs. Such criteria
often involve some function of the variance of the predicted value §j of 7 at any speci-
fied value of the predictor vector z, or some function of the variances of the estimates
of the parameter vector 3. It is also possible to modify such criteria by allowing for
the effect of bias introduced by fitting a model that is (perhaps only slightly) wrong.

Bandemer (1977) and Bandemer and Nather (1980) are encyclopedic volumes, with
extensive tabulations of many important design families. Pdzman (1986) emphasizes
the underlying optimality aspects that are common to the various criteria. Atkinson
and Donev (1992) is concerned with determinant optimal designs in practical circum-
stances. Pukelsheim (1993) treats design optimality for a general family of criteria

called information functions.

8.2 Optimal Design Problem
All optimality criteria relate in some way or other the performance of a design to the

model within which the data are evaluated. For a linear regression model we have
¥(z) = f(z)B+e, (11)

with uncorrelated and homoscedastic errors €. The pertinent quantity is the regression
function f that maps the ezperimental domain X , a subset of the m-dimensional Eu-
clidean space, into the k-dimensional Euclidean space. Thus the components of  in
(11) represent m predictor variables or factors, in a model where the parameter vector
B has k components.

A design that calls for n; replicates of the predictor vector z;fori=1,...,4 is

evaluated through the per observation moment matriz,

M= 3" 1) £, (12
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where n = 3, n; is the total number of observations. In the terminology of Section
2.2, a possible enumeration of the runs u = 1,...,7 is given by
Ti,eoy @1y, eeey, Tyy..., Ty, (13)
n; times ny times

The problem of finding an optimal design for n observations (rather, an optimal mo-
ment matrix in the set of moment matrices originating from such designs) leads to a
discrete optimization problem for which the solution may change from n to n + 1.

A smoother version of the problem, with stronger results, is obtained by consid-
ering (approzimate) designs ¢ (also called measure designs) which, by definition, are
probability distributions with finite support on the experimental domain X. The set
of all approximate designs on X is denoted by Z.

A design ¢ with £ support points z; has a moment matrix M given by

M =3 ¢(@)f(2) f(=:) = [, f(2) f(a) dt (14)

This matrix consists of the uncentered second-order moments of the regression func-
tion f that determines the model, under the design ¢ that defines the experiment.

The search for an optimal design concentrates on the determination of an optimal
moment matriz, within a class of competing moment matrices M. In general, the
optimum is sought in a subclass M of the class of all moment matrices M(Z) that
arises from the approximate designs in Z. The set M is called the set of competing
designs.

The final step to specify an instance of the design problem is to single out a criterion
function 9, which maps the nonnegative definite moment matrices into the real numbers
in such a way as is in accordance with the underlying statistical model. Given a
criterion function 9, and given a set M of competing moment matrices, the optimal

design problem then reads:
Maximize (M) subjectto M € M.

A moment matrix M € M that attains the optimum is called v-optimal in M. If M
is the moment matrix of ¢, then the design ¢ itself is called 1-optimal within the set

of those designs that have a moment matrix lying in M.
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8.3 Optimality Criteria

The optimality criteria 9 that are of statistical interest mostly concentrate on a pa-
rameter system of interest K'3, defined by a known k x s coefficient matrix K of full
column rank s. Accordingly the k x k moment matrix M is reduced to Cx(M), the
s X s information matriz for K'B, and the criterion factorizes, ¥(M) = ¢(Cx(M)).
The design problem thus takes the form:

Maximize ¢(Cx(M)) subjectto M € M. (15)

The information matriz mapping Cx is studied in detail in Chapter 3 of Pukelsheim
(1993).

It remains to select a criterion ¢ all of which aim in some way or other to make the
information matrix C = Cx(M) “large”. This captures the idea that an experiment is
designed so as to achieve maximum information on the underlying unknown parame-
ters. Alternatively these criteria can be interpreted so as to minimize the variances of
the least squares estimates of the parameter system of interest, K'G.

The most prominent criterion is the determinant criterion, ¢(C) = (det C)'/*, min-
imizing the volume of the joint confidence ellipsoid for K’3. Other criteria are the
average-variance criterion $(C) = (1 trace C~!)~?, minimizing the sum of the vari-
ances of the estimates for K83, or the smallest-eigenvalue criterion, ¢(C) = Amia(C),
minimizing the largest principal axis of the confidence ellipsoid.

For the purpose of Bayes designs, and designs that simultaneously perform well in
a number of alternative models, it is useful to admit more general criteria that form
a class closed under averaging and composition. This is achieved with information

Junctions as discussed in Chapter 5 of Pukelsheim (1993).

8.4 Kiefer—Wolfowitz Equivalence Theorem

The type of results that characterize the solutions to the optimal design problem
through necessary and sufficient conditions for design optimality are generally called
Equivalence Theorem. This follows the lead of Kiefer and Wolfowitz (1960) who pre-
sented the first such result for the important case of determinant optimality, for the
full parameter vector 3, in the maximal set M (=) of all moment matrices. Their result

states that a candidate matrix M is determinant optimal for 8 in M(Z) if and only if

flz)Mf(z) <k for all z € X. (16)
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Although this is a statement on moment matrices it implies important information
about ezperimental designs that attain the optimal moment matrix, in that equality
holds whenever z is a support point of an optimal design, and that the weights of the
optimal design are bounded by 1/k.

Equivalence theorems that pertain to the general optimal design problem are com-
plicated by the fact that the optimality criterion may fail to be differentiable, and
that optimal moment matrices need not be nonsingular. Results of a varying degree
of sophistication are available in Bandemer (1977), Pdzman (1986), and Pukelsheim
(1993).

Let M be a moment matrix that maximizes a criterion of the form ¢ o Ck, where
K'B determines an s-dimensional system of parameters of interest. Then there exists

a design ¢ with no more than
%a(a +1) + s(rank M — s) (17)

support points that achieves the given moment matrix M. This theoretical bound on
the size of the optimal support grows quadratically in s. For many practical settings

the bound can be further improved.

8.5 Efficient Design Apportionment
In general the weights w; of an optimal design need not be rational. Hence if a design
is implemented for sample size n, the fair shares nw; need not be integers. Numerical
rounding of the fair shares easily violates the goal of allocating a total of n observations,
for the reason that the quantities nw; when numerically rounded no longer sum to n.
Instead an efficient design apportionment is described in Chapter 12 of Pukelsheim
(1993). The fair shares nw; are replaced by pseudoquotas vw;, for some arbitrary
positive multiplier » > 0. The pseudoquotas vw; are rounded up to the next integer,
[vw;]. Finally the multiplier v is adjusted so that the replication frequencies [vw;]

sum up to the prescribed sample size n,

é[vw;] =n. (18)

For more results on the properties and practical implementation of this efficient round-

ing procedure see Chapter 12 in Pukelsheim (1993).
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9 Design Algorithms
9.1 Computer Packages
Many of the current statistical computer packages include an option to select or specify
practical designs, for various models. They are mostly accompanied by the appropriate
module to evaluate the experimental data and analyze the model. Nachtsheim (1987)
reviews a wide variety or commercial programs and research software. Noticeable codes
to calculate optimal designs, in the exact and/or the approximate theory, include ACED
of Welch (1984), Gosset of Hardin and Sloane (1992), or OptDes of Wilhelm (1994).
The numerical challenge of the optimal design problem stems from the fact that
they usually have a flat optimum. Small perturbations of the support points or the
weights do not change the objective function in any great manner. This is reassuring
from a practical point of view, in that the experimenter can adjust the design a little
bit without giving away too much in terms of most optimality criteria. However, it
renders standard numerical procedures inefficient as they proceed to the optimum very

slowly only.

9.2 Gradient Algorithms

The majority of algorithms are based on the techniques from differentiable optimiza-
tion. The general idea is to use directional derivatives to find a direction of improve-
ment, and then employ a line search to determine an optimal step length. For the
design problem special tasks are to delete “superfluous” support points, and add new
ones.

Specific algorithms are given in Fedorov (1972), Silvey, Titterington and Torsney
(1978), or Wu and Wynn (1978). An overview over existing methods and a unifying
approach to them is presented in Gaffke and Mathar (1992). See also the discussion
paper by Cook and Fedorov (1994).

Use of directional derivatives runs into difficulties for nondifferentiable criteria (such
as the smallest-eigenvalue criterion Anin(C)), or when convergence occurs against a
moment matrix that is singular as may easily be the case when interest concentrates

on parameter subsets K'3.
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9.3 Subgradient Algorithms

Recent advances in nondifferentiable, nonconvez optimization may be used to overcome
some of the specific difficulties of optimal design algorithms. Wilhelm (1994) uses a
bundle trust methods to develop the OptDes algorithm. The idea is to carry along a
“bundle” of subgradients from previous iteration points, and to construct a polyhedral
approximation to the objective function in a local “trust” region.

Besides giving up the overly restrictive assumption of differentiability, bundle trust
methods also relax the requirement that the objective function must be concave (or
convex). Indeed, as a function of the support points when weights are fixed, the
objective function 9 = ¢ o Cx of the design problem generally fails to be concave or
convex.

The solution is to generalize the subgradient concept for convex functions to also
cover sufficiently smooth nonconvex functions, the required property being Lipschitz
continuity. The task then is one of calculating, in each iteration step, one generalized
subgradient. Generalized subgradients for the design problem are given in Wilhelm
(1995).
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