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1 Introduction

Planned experiments are an important tool for statisticians and engineers to improve
product quality. General aspects, and applications in the chemical and pharmaceutical
industries are presented in the companion papers Abt and Pukelsheim (1995) and
Weihs, Berres and Grize (1995). In the present paper we report on a fairly large

experiment that we carried out to improve an already established production line.

We have set out the material so as to serve as an example for similar situations.
On the other hand we supply sufficient detail so that an interested reader can repeat

our analysis, or carry out a different one.

2 The Product

A pressure governor is a technical device to take some fluid or gas as input, at varying
pressure, and output the same substance, at constant pressure. It consists of a bottom
part, the pot, a top part, the cap, and an in-between rubber membrane. The incoming
and outgoing fluid circulates through the lower chamber, consisting of the pot and
sealed off by the membrane. The upper chamber in the cap contains the mechanical

parts to equalize pressure variation.

The vital quality characteristic of a pressure governor is burst pressure. It is mea-

sured by increasing the pressure in the lower chamber until the membrane fails. This
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destructive test is carried out on a few items per batch. If the results are satisfactory

then the batch is shipped to the customer.

Pressure governor production is a complex process, with many input factors, in-
volving quite a few departments of the company. The manufacturing process is well
understood from the engineering point of view, and a voluminous documentation was
available. However, increasing experience with the process did not result in improved

quality. Rather, burst pressure seemed to decrease over time, if only slightly so.

The in-house quality assurance group had already carried out many one-factor-
at-a-time experiments, within the single departments that contributed to the manu-
facturing process. From this experience it became evident that the process needed to
be investigated as a whole, and it was decided to run a larger experiment across all

departments involved.

The goal was two-fold, to find settings for the production factors that would lead

to a high burst pressure, while at the same time guaranteeing a low process variability.

3 The Factors

In order to find out which production factors to include in the experiment, extensive
interviews and discussions with the personnel from all departments were necessary.
Naturally, each department favored the factors that they contribute to the process.
On the other hand local expertise may become a hindrance for a global viewpoint, in
particular when a project involves many different groups like in the present case. The
final agreement was to investigate 22 factors that were considered to be of potential

significance to the manufacturing process. They split up into five major groups.

The first group consisted of factors affecting the surface finish of pot and cap,
chroming type, chrome layer thickness, finish roughness, brightness additive, galva-

nization process.

The next two factor groups are concerned with the mechanicals of fitting the cap
on the pot. In the final production step, the membrane is laid on the pot, and the
cap is laid on the membrane. Then the larger pot rim is bent around the smaller cap
rim. The second group, the cap factors, are metal thickness, rim angle, and number
of grooves on the side of the cap rim where the membrane goes. The third group had
five pot factors: pot type, rim shape, number of grooves on the side of the rim that

faces the membrane, height and soldering time of the in- and output valves.

The fourth group is concerned with the rubber membrane: supplier, hardness,
thickness, and sliding additive. The membranes are cut from large rubber sheets of
which the top and bottom sides have a different texture. The factor roughness described

whether the rough side of the membrane faced the cap or the pot.
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The fifth group of factors was associated with the final assembly, to bend the
larger pot rim over the smaller cap rim, with the membrane in-between: amount of

pressure, pressure speed, press type, and dampening coefficient.

Once the 22 factors had been singled out, we decided on the distinct levels with
which they would appear in the experiment. It so happened that half of them were
run at two levels, and the other half at three levels. For the quantitative factors the
levels are interpreted as low and high, or low, middle, and high. In Table 1, they are
coded as —, 4, or —,0,+. For the qualitative factors different levels are just different
names, such as one supplier versus another supplier. For easy perception, however, we

use the same codings —, +, or —, 0, +.

Most factors were proper production factors. That is, process engineers were
eligible to change these factors at their discretion. However, some factors do not
qualify as production factors, but rather appear as noise factors, such as pot type, or
rubber supplier. Different pot types are manufactured to the client’s order. In the case
of rubber suppliers, business relations were equally excellent and there was no reason

to forego any one of them.

In terms of the experiment, the goal was to optimize the level settings for the
production factors, across the whole range of levels for the noise factors. However,
as engineers wanted to be able to recognize potential differences between various pot
types, rubber suppliers, or so on, we decided to model the problem without discrim-
inating between production factors and noise factors. In this way we also obtained

estimates for the effects of the different levels of the noise factors.

4 The Model

A particular experimental design receives its merits only against the intended statis-
tical analysis. It is therefore imperative to outline the statistical model that is to be

employed, or at least to delineate the class of models that might be entertained.

As it was generally agreed that out of the 22 factors some would be more impor-
tant than others, our predominant task was to screen the factors according to their

significance for the production process. For this reason we decided to use a main-effects

model, with linear effects for the two-level factors ¢,...,%11, and linear and quadratic
effects for the three-level factors t12,...,t22. That is, our model was of the form
y==080+1t101 + -+ taab022 + t§2912,12 + -t t§2922,22 + e. (1)

This model leaves 35 coefficients to be estimated, the constant 6y, the 22 first-degree
effects 61,..., 6022, the 11 second-degree effects 612 12,...,022 22, and the variance o? of

the random error term e.
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Inclusion of all interaction effects 6; ; for the interactions t;t; of the factors ¢;
and ¢; would have led to an excessive increase in the number of model parameters.
Inclusion of only some interactions in the model might have been an option, but we

felt we did not have sufficient information to do so.

5 The Design

Model (1) has 34 unknown parameters for the mean, whence we needed at least this
many different runs in the experiment. To satisfy this need we chose for the experimen-
tal design the orthogonal array OA (36,2'' x 3'%,2), as shown in Table 1. The design
is due to Taguchi (1960), and also given on page 415 of Logothetis and Wynn (1989).
It consists of 36 rows, called runs, and is able to support 11 factors at two levels and
12 factors at three levels. The design is of strength 2, that is, in any two out of the
23 columns all possible pairs occur equally often. The statistical meaning is that the
design is of resolution class III. This means that just main effects are unbiasedly es-
timable, while already two-factor interactions are not estimable, but confounded with

some main effects.

Each row of the design determines a way of setting the levels of the 22 factors
t1,...,t22. Two-level factors are coded by — or +: low or high. For three-level factors
the levels are indicated by —, 0, or +: low, medium, or high. These levels correspond to
actual settings that the process operators could implement within the available region
of operability, at no extra cost. For the quantitative three-level factors, the levels
corresponded to equi-spaced settings. It so happened that run 25 was almost identical
to the standard operating conditions that were in use at the time when our cooperation

began.

The presentation in Table 1 emphasizes the combinatorial structure of the design.
For the practical implementation, a time sequence was chosen that made the level
changes from one run to the next technically easy. The ensuing ordering is indicated
by the superscript numbers in the first column. In other words, there is a severe lack
of randomization in the way the experiment was carried out, in terms of runs as well

as in terms of replications.

6 The Data

The number of items tested within each run was set at 10. One reason was that during
the interview stage we failed to obtain unanimous information on the process variabil-
ity. Secondly, we resorted to the fact that the pressure governors are produced in high
numbers, and that an individual device is relatively cheap. Thirdly the destructive

test arrangement consisted of a rack that was able to test 10 items simultaneously.
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Table 1: Orthogonal array OA(36,2'1 x 312 2). The runs r = 1,..., 36 determine the factor levels
low (=), medium (0), or high (+). The plan supports 11 factors ¢;,...,%;1 at two levels, and 12
factors t13,...,%23 at three levels (of which ¢33 was not used). Strength 2 means that in any two
columns all possible pairs occur equally often.
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With 10 replications for each of the runs r = ,...,36, we obtained a total of
n = 360 observed responses y, ;, in units of the scale marks on the measuring device.

For the purpose of communication we refer to them in bar. The data are given in

Table 2.

A convenient way of a first, informal analysis of the data is to draw boxplots for
each experimental run, see Figure 1. We did not find sufficient evidence to identify any

one of the observed responses as an outlier and exclude it from further analysis.

The boxplots visibly show that the mean location and the spread of the 10 repli-
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Run Yrad Yr,2 Yr,3 Yra Yr,5 Yre Yr,7 Yr,8 Yr,9 Yrio Yr

125 124 152 146 132 122 122 154 144 146 114 135.
224 151 136 128 116 133 123 134 133 121 131

822 142 144 147 150 130 134 141 152 132 147
4% 131122131 133 131 139 130 130 124 133 130.

525 134 132 132 131 140 136 144 136 134 132 135.

623 134 130 108 122 123 132 130 122 112 105 121.

713195 205 202 192 200 220 204 202 195 202 201.

814 174 153 176 134 190 164 184 162 180 176 169.

915 162 169 186 194 192 175 164 210 152 202
101 174 166 184 184 176 170 156 171 181 205
11?° 91112121 90 131 111 150 118 106 101 113
1221 202 216 233 244 206 216 196 164 212 208 209.
1818 180 174 164 184 180 166 182 170 172 170
1417 172172 182 172 172 182 176 172 178 174
156 137123 130 134 116 132 130 125 131 144
16'% 146 124 134 150 142 114 148 112 162 161
17" 142 111 136 140 155 140 142 124 110 142 134,
1810 127 144 152 130 125 155 142 154 141 143 141,
19% 182174 164 184 182 174 171 182 175 172 176.
20° 142 137 142 138 158 122 150 146 143 135 141.
21% 182 156 152 172 162 170 170 122 160 162 160.
221 172 176 178 182 182 176 172 182 193 170
292 185204 170 201 170 200 195 208 174 190 189.
24% 111112120 122 114 114 114 125 134 121 118.
2534 148 142 111 132 131 133 146 132 145 121 134.
2635 185 203 191 207 194 205 213 214 204 181 199.
2736 142 132 126 132 140 132 140 138 134 132 134.
287 154 132 105 130 142 148 134 136 134 127 134,
29% 166 150 172 174 182 172 184 176 182 174 173.
80° 142 122 116 138 151 148 156 145 122 121 136.
8128 164 162 154 140 166 158 162 172 168 152
8229 122121 114 128 122 115 121 121 120 121
8939 152 143 142 152 147 148 132 147 142 144
8433 151 174 152 149 160 156 154 132 185 162
8532 166 182 178 180 154 185 182 172 174 158 173.1
8631 178 182 160 162 174 181 174 177 176 161 172.5 +

Table 2: Burst pressure data. The responses y, ; are observed per run r = 1,..., 36, each with 10
replications. The actual time sequence in the experiment is indicated by the superscript numbers in
the first column. Also given are the average ¥, and the sample standard deviation s,, within run r.
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cations varied considerably from run to run. Run 7 was fairly good, both in terms
of average response as well as small spread. Run 11 featured the smallest average
response, run 12 the largest one together with the largest spread. Run 25, standard
operating conditions, was not among the best runs. Nor was it among the worst runs,
of course. Run %2 had the smallest spread, similar to runs 4, 5, and 14, but neither

achieved an acceptable process average.

From this preliminary data analysis, one could settle with the factor settings
of run 7. The observed average burst pressure of 202 bar, with a sample standard

deviation of 8 bar, is a clear improvement over the standard operating conditions of
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Run Boxplots, of 10 Observations per Run
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Fig. 1: Per run boxplots. For each run, the left whisker starts with the smallest response and ends at
the first quartile. The box in the middle is subdivided by the median observation. The right whisker
starts at the third quartile and ends with the maximum. The vertical line is the overall average of
154 bar.

run 25, with an average of 134 + 12 bar. However, this would base our inference on
just 10 observations, and disregard the remaining 350 values. Fitting to the full data
set a model such as (1) exploits all 360 observed responses, to obtain a much more

complete picture of the response surface.
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normal quantiles .

run-wise standardized data

9 1 1 2

Fig. 2: Normal plot of standardized burst pressure data. Heteroscedasticity across runs calls for a
standardization of the observations y, ;. The 360 new values %, ; = (y,; — ¥r)/sr are ordered and
plotted against the (k — 0.5)/360 standard normal quantiles. The high correlation of 0.9973 conforms
with a normality assumption.

7 Data Transformations

A routine analysis of model (1) requires that the observations are normally distributed.
If this applies to the numbers y; 1,...,¥36,10 that we observed, it will not be true for
such transformations as /yy,; or (yr, ;)? that might have been reported just as well.
Or the other way round, if |/y,; or (yr.;)* happen to be normally distributed, then

Yyr,; cannot possibly also be normal.

Accordingly we ran our data through a loose test whether the normality assump-
tion on y, ; is justified. Within eachrunr = 1,..., 36, we calculated the mean response

and the sample standard deviation,

1 10 1 10
yr = E Z Yrgs 83‘ - § Z(yr,j - yr>2'
=1 =1

The standardized versions z,; = (yr; — ¥,)/sr, for 7 = 1,...,10, should then be

approximately standard normal variates. Because they share the terms v, and s, in
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Fig. 3: Functional separation scatter plot. Proportionality of the standard deviation to a power of the
mean, of the form o = au? with 8 # 0, entails a nonzero correlation between the sample quantities
log  and log sy, for r = 1,...,36. The scatter plot provides no evidence for a nonzero correlation.

common, y1,...,Tr10 are dependent random variables, but we did not follow up this

lack of independence.

The normal plot in Figure 2 provides a graphical way of testing whether we see
independent replications from a standard normal distribution. The plot shows the 360
pairs (z,y), where z is the kth largest of the 360 values z, ;, and y is the (kK —0.5)/360
quantile of a standard normal distribution. If the numbers z, ; originate from a normal
distribution, then they will be close to their corresponding quantiles, and the plot will
show a fairly straight line. Indeed, in our case we obtained a correlation coefficient
of 0.9973. Hence there is no indication that normality fails for the data set under

discussion.

Another reason to contemplate a transformation of the data is functional separa-
tion, of the standard deviation ¢ from the mean p. In many technical problems it is
conceivable that the standard deviation grows proportionally to the mean or a power

of the mean, of the form ¢ = au®. Application of the logarithm turns this into a
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straight line relation, logo = loga + $log . For each run r, the observed quantities
would thus follow the model log s, = loga + S logy,. The corresponding scatter plot,
in Figure 3, does not suggest a nonzero correlation between log s, and logy,. With
B =0, there is no need to transform the data. For more details the reader is referred
to pages 285-286 in Box and Draper (1987), or pages 258-259 in Logothetis and Wynn
(1989).

A third approach to improve the distributional assumptions uses a Box—Cox power
transformation y?, for some exponent p # 0 (and logy for p = 0). This class of
transformations goes back to Box and Cox (1964), as described on pages 289-290 of
Box and Draper (1987), or pages 255-256 of Logothetis and Wynn (1989). For our
data the 95% confidence interval for p ran from 0.32 up to 1.14, thus including the

value p = 1. This again indicated that the data did not call for a transformation.

8 Location Analysis

In order to estimate the parameters g, ..., 822 22 in model (1) we took recourse to the
analysis of variance. Coding the levels —, 0,4+ into the numbers —1,0,+1, we thus
obtained the least squares estimates @ and @-7,- for the parameters in model (1). The
interpretation of the estimated values is complicated by the fact that the estimators
are correlated. For interpreting the results, it is helpful to reparameterize model (1) in

such a way that the estimators for the linear and quadratic terms become uncorrelated.

This type of parameter transformation corresponds to a decomposition of the sum
of squares. To see this, consider any fixed three-level factor. Let fiy, /2,3 be the
average of all observations when the level is low, medium, or high. With the grand

average (I, we then have

3 ~~ ~~ —~~ —~~ —~
~ (A3 —f1)* | (1 — 202 + fi3)?
> (e — i) = + :
2 6

=1
The first term on the right hand side gives the sum of squares associated with the linear
effect, comparing the responses at the two extreme levels of the factor. The second
term evaluates the quadratic effect, averaging the responses at the low and high level,

relative to the one in-between.
The new parameters are defined by
9 22 .
Ao _90+3;12917,, Ni=V360; fori=1,...,11,

0;; fori=12,...,22,
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With the new parameters, model (1) turns into the location model,

= A +it)\ + +it A +it A2 + +it A
Yy = Ao \/511 \/51111 \/51212 \/52222

1 1
%(?ﬁfz —2)\ig 12+ F %(3@2 — 2) A2z 22.

Based on the t-ratios, most of the estimated linear effects Xz and the estimated qua-

(2)
_+_

dratic effects :\\,-72- turned out to be significantly distinct from zero. In other words,
all parameters except a few ought to be included in model (2). However, we felt that
the large number of significant effects was due to a considerable bias in the variance

estimate, in that the true variance was severely underestimated.

As an alternative analysis we studied a normal plot of the parameter estimates :\\i
and Xw Assuming that the effects vanish, the estimates :\\i and Xz-,,- have a standard
normal distribution. Therefore the normal plot of the estimated effects should result
in a straight line. For positive effects, the estimates will deviate towards large values

and thus disclose themselves for identification, see Figure 4.

The normal plot drastically reduced the number of significant effects, and left us
with )\5 = 20.79, /\15 15 = 16.41, and )\13 = 15.69. Since these values are positive,
maximization of the burst pressure in model (2) calls for the high level of factors ¢5
and t13. For the three-level factor ¢15, either level high or low seems best in model (2).

We chose the high level since the associated linear effect Xls = 6.94 was positive.

The normal plot also affords a rough idea of the standard error of the least squares
estimates, as the number by which the abscissa has to be scaled so that the fitted line
has slope unity. Figure 4 yields a value of about 7, hence the graphical impression that
the estimates 5\\5, :\\13 and 5\\15715 are shifted in the direction of positive location effects
is complemented by the numerical statement that the values 20.79, 16.41, and 15.69
are bigger than the upper 20 point.

9 Dispersion Analysis

The goal of the dispersion analysis is to find out which factors have a significant
influence on the variability of the manufacturing process. To this end we fitted a

main-effects model to the logarithm of the sample standard deviations,

1 1 1 1
—log s, = do + %tl(sl + ot %tn(sn + ﬁtlﬂsw + -t ﬁtzzfszz
3)
1 1 (
+ %(315%2 —2)d12,12 + - + %(313%2 — 2)d22,22.

The multiplication of log s, by —1 in (3) is negligible, but seemed to aid communication.

In model (2), the aim was to mazimize burst pressure. In the present model (3), we
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Fig. 4: Normal plot of estimated location effects. Under the null hypothesis of zero effects in the
location model (2), the 33 scaled estimates A; and A;; result in a straight line when ordered and
plotted against the (k — 0.5)/33 standard normal quantiles. The plot suggests that As, Ais5,15,A13

deviate from the null hypothesis.

study —log s, = log(1/s,). Hence again the goal is one of mazimizing the precision

1/s,, rather than to minimize the process standard deviation s,.
For the dispersion model (3), 36 observations were available, one for each run.
With 34 parameters for the mean, this leaves only 2 degrees of freedom for estimating

the error variance. We found this insufficient to rely on the classical analysis of variance
table. Again we resorted to a normal plot, see Figure 5.

The significant dispersion effects appeared to be 3\6 = 0.38, 3\10 = 0.30, and perhaps
also 3\18 = 0.225. Since these are positive, the high levels for factors tg, t19, and ¢;3 are
the appropriate choices to lead to a small standard deviation.

Furthermore Figure 5 suggests that the least squares estimates of the parameters

in model (3) have a standard error in the vicinity of 0.125. With this estimate, b6 and

S10 are clearly beyond the 20 point. However, we decided that no harm is done to also

include 4,3 as a dispersion effect.
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normal quantiles
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Fig. 5: Normal plot of estimated dispersion effects. Assuming a dispersion model (3) with vanishing
effects, the 33 estimates §; and 6;; will give a straight line when ordered and plotted against the

(k — 0.5)/33 standard normal quantiles. The shift of 36,510, 518 to the right from the straight line
indicates positive effects.

10 Factor Classification

Merging the results from the location analysis and from the dispersion analysis, we
concluded that ¢5, t13, and t15 are signal factors, while ¢g, t19, and ¢35 are control

factors. All other factors were treated as nuisance factors.

A synthesis of the location analysis and the dispersion analysis is graphically
shown in the location—dispersion diagram of Figure 6. The (empty) top right rectangle
features the effects that are significant in either analyses. The bottom right, and the
top left rectangles contain the effects that are significant in the location analysis and in
the dispersion analysis, respectively. The nonsignificant effects appear in the bottom

left rectangle.

The location dispersion diagram is a convenient tool to communicate to the en-
gineers the factor classification that flows from the two analyses. In Figure 6, the

dashed lines have been drawn through the bounding nonsignificant effects, so that the
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Fig. 6: Location—dispersion diagram. The diagram shows the 33 pairs of absolute values of estimated
effects in the location model (2) and the dispersion model (3), (|A;], |6;]) and (JAii|, |65,5]). Significant
estimates for location effects stand out to the right; significant dispersion effects are at the top.

significant effects stand out as clearly as possible. The diagram is a reduced adaption
of the location—dispersion plot presented in Nair and Pregibon (1986).

We concluded that setting the factors ts, ts, t10, t13, t15, t1s on the high level
would maximize burst pressure. At the same time these settings would maximize the

precision of the process, that is, minimize process variability.

For the purpose of prediction, we set all other factors to the level for which burst
pressure is maximized. While the other factors are nonsignificant in the normal plot
analysis, most of them appear to be significant in the analysis of variance evaluation
of model (2). In any case, we had to tell the operators what levels to choose, and we
decided that the levels might just as well be chosen to optimize burst pressure. The

confidence interval for the mean burst pressure under this setting ranged from 198 to
212 bar.
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11 Confirmation Experiment

The series of investigation terminated with an implementation of the recommended
settings for the factor levels. The observed data 181, 230, 185, 229, 196, 210, 215, 193,
202, and 223 averaged to 206.4 bar, and thus conformed well with the model prediction.
However, the observed standard deviation of 17.8 bar was much higher than the model
suggested. In any case, relative to the standard operating conditions of run 25, the

improvement was spectacular.

Of course, from the practical point of view it is totally irrelevant whether the
statistical model is “correct”, and whether any theoretical assumptions are satisfied
or not. The important success for the engineers who were responsible for setting up
the production process, and for the operators who were responsible for running it,
was the improvement that was actually achieved. The confirmation experiment well

documented that improvement, and also set a formal end to the cooperation.

12 Discussion

There are alternative analyses that one may contemplate, and we carried out some
of them. For instance, we could not find any significant effect associated with the
sequencing in which the runs were realized. Also the experiment was carried out in
sections, over a time span of 9 weeks. We did not find that weeks led to any significant

block effect.

The major problem with the present data was that they called for a weighted
least squares analysis, since the per run variability in Figure 1 is evidently seen to be
nonconstant. However, this more advanced analysis did not lead to qualitatively dif-
ferent conclusions. Therefore we decided to prefer the simpler method, at the expense
of theoretical justifications, but with the aadvantage to make the communication with

the engineers easier.

Evidently the experiment was a major enterprise within the company. Generally
it is a bad strategy to run just one very large experiment, as it invariably tends to
leave many questions open and to be exhaustive only in terms of the stamina of all
concerned. It is much better to run a number of small experiments, which then lead

to a continuous, consecutive improvement of the process.

The optimal factor settings were distinct from the settings in run 7 that was
best among the %6 runs. Hence a “pick-the-winner” rule appears to be a rather naive
strategy. Moreover, with smaller experiments and fewer runs, the pick-the-winner rule

may miss the optimal settings even more severely.

Nevertheless it is remarkable that the total number of possible combinations of

the 11 two-level and 11 three-level factors exceeds 360 million. Only a tiny fraction,



16 Markus Abt et al.

36 combinations, were observed in the experiment. Clearly, these 36 runs must be
designed with care in order to give rise to a data set that carries information of any

conclusive value.
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