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Improving manufacturing quality

through planned experiments:

statistical methodology

Markus Abt and Friedrich Pukelsheim, Augsburg

Summary. Planned experimentation is a powerful tool to improve quality of industrial manufacturing
processes, in an environment placing prime concern on top quality. The goals are to manufacture
products that function best possible, to achieve a minimum variability of the production process,
and to secure product robustness against noise in the customer’s environment. Statistically planned
experiments are a tool to achieve these goals. They consist of a few experimental runs to obtain
data on the product characteristics. Each run corresponds to a planned choice of levels of production
factors and noise factors. Depending on the experimental data, the production factors are classified
into signal factors that in the first place affect the process mean, control factors that predominantly
determine process variability, and nuisance factors that can be used for cost reduction. Noise factors
are an additional category, they mirror the customer’s environment. Any such cycle of manufacturing
improvement should terminate with a confirmation experiment.
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1 Introduction

Quality improvement of manufacturing processes by planned experiments has a long

history. Box and Draper (1969) describe this approach under the heading of evolu-

tionary operation; Daniel (1976) is another established source. Box and Draper (1987)

and Taguchi (1987) are more recent references. In this paper we review the features

that make this approach so successful. The two companion papers Weihs, Berres and

Grize (1994), and Abt, Mayer and Pukelsheim (1995) illustrate how the method works

in practice.

In Sect. 2 we argue that Quality Engineering is part of a more embracing concept,

total quality management. Section 3 on Planned Experiments makes a point that

great progress can be made with such well-known statistical methods as the analysis of

variance. The design objectives (Sect. 4) for improving manufacturing quality serve a

dual purpose, to bring the process mean on target, and to minimize process variability.

The analysis of the experimental data leads to a factor classification (Sect. 5). Ac-

cording to the statistical analysis of the experimental data, the production factors that
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are under supervision of the process engineers are classified into signal factors, control

factors, and nuisance factors. A planned experiment can also involve a fourth category,

noise factors, that influence product performance in the customer’s environment. A

confirmation experiment (Sect. 6) terminates the proposed cycle of quality improve-

ment, to make sure whether the statistician’s recommendations satisfy the needs of the

process engineers.

The subject has received renewed attention through the work of Taguchi (1987),

although many of the issues raised can be identified in the publications of Box (1985),

or Deming (1986). A bibliography of books, special journal issues, symposia, articles

and case studies of recent years is included in Pukelsheim (1988, 1991). Textbook

treatments are Logothetis and Wynn (1989), John (1990), Grove and Davis (1992).

Specific aspects are discussed in Pukelsheim (1986), León, Shoemaker and Kacker

(1987), Box (1988), Ghosh (1990), Vining and Myers (1990), Welch, Yu, Kang and

Sacks (1990), Shoemaker, Tsui and Wu (1991), Eibl, Keß and Pukelsheim (1992),

Hamada and Wu (1992), Nair (1992). Banks (1993) offers a current discussion of the

subject.

2 Quality engineering

Statistical tools to improve manufacturing quality may be subsumed under the broader

heading of quality engineering. On a management level, product quality has to rank

top. Producing at low costs, meeting the production plan, or improving worker pro-

ductivity are issues of lower importance.

Quality engineering is obsessed with data. In order to pin down the strong and

weak points of the production process, data are an absolute necessity. Without data,

commitment evaporates into verbal eloquence, discussions degenerate into departmen-

tal fights, and instructions fail to be operational.

The classical methods of quality assurance emphasize acceptance sampling and

sampling schemes, and process control and control charts. This is a passive approach,

preventing the worst by weeding out bad products. In contrast, quality engineering is

a continuous activity, to build quality into the product from the very beginning.

Quality engineering embraces the whole life time of a product, starting as early as

in the design stage (off-line), and continuing on into the manufacturing stage (on-line).

It extends through the time the product has to function in the customer’s environment,

and it terminates only when the product is scrapped. Thus quality engineering goes

far beyond the use of planned experiments.

Improvement by experiment and analysis, prediction and confirmation is just one

aspect of quality engineering. The statistical methods that we describe below are easy
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to use, yet sophisticated enough to pick up typical process behavior. They accomo-

date the standard engineering situation that many factors enter into a manufacturing

process. By viewing these factors in their entirety, a vast improvement is achieved

compared to näıve experiments that vary just one factor at a time.

In a nutshell our message is two-fold: Planned experiments form a valuable

methodology, easy to use, yet strong in content. On the other hand, they are just

one tool in the strategic kit called quality engineering.

3 Planned experiments

Planned experimentation is one of the most established ways of scientific analysis.

Draper and Pukelsheim (1996) provide a state of the art survey of the design of exper-

iments, including the statistical prerequisites, and covering applications in industry,

agriculture, and biometry.

Planned experiments for quality improvement of manufacturing processes often

come under the heading of response surface methodology. They consist of the totality

of statistical techniques that apply when numerical data from an industrial process is

represented by a “best fit” mathematical surface.

Suppose, for example, that we are studying the effect of changing the production

factors temperature (t1), pressure (t2), and viscosity (t3) on the yield (y) of a chemical

process. Ideally the production factors determine a true response η(t1, t2, t3). Practi-

cally, this true value is distorted by an additive measuring error (e). Hence the model

assumption for the observed yield is

y = η(t1, t2, t3) + e. (1)

The error e is assumed to come from a specific error distribution, typically a normal

distribution with mean 0 and variance σ2 > 0.

The true response function η(t) of the production conditions t = (t1, t2, t3)
′ is

usually unknown, a prime denoting transposition. Hence the statistician or engineer

attempts to model (approximate) the true relationship by some member from a function

class g(t, θ) depending on an unknown parameter vector θ:

η(t) = g(t, θ). (2)

When the graduating function g depends linearly on θ, that is g(t, θ) = f(t)′θ, we

obtain the usual linear statistical model:

y = f(t)′θ + e. (3)
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The essential ingredient to completely specify a model of type (3) is the regression

function f .

For example, a three-factor second-degree model approximates the unknown true

response surface using a quadratic polynomial in three variables,

y = θ0 + t1θ1 + t2θ2 + t3θ3 + t2
1
θ1,1 + t1t2θ1,2 + t1t3θ1,3

+ t2
2
θ2,2 + t2t3θ2,3 + t2

3
θ3,3 + e.

(4)

The regression function f(t1, t2, t3) consists of the powers 1, t1, t2, t3, t
2

1
, t1t2, t1t3, t

2

2
,

t2t3, t
2

3
. Accordingly the vector θ consists of the 10 unknown real parameters θ0, θ1, θ2,

θ3, θ1,1, θ1,2, θ1,3, θ2,2, θ2,3, θ3,3. If θi,j = 0 for i ≤ j is assumed in (4), a first-degree

model is specified that fits a planar surface of the 3 factors t1, t2, t3.

The standard technique in these situations is to conjecture a model, often based on

prior experience, to choose an experimental design, to run the experiment and obtain

the data, and to analyse the data and check whether the statistical model fits the

experimental evidence reasonably well.

An experimental design consists of runs u = 1, . . . , n, where run u is determined

by a vector tu of production factor settings. It is assumed, at least to practical ap-

proximation, that the production factors can be set without error. For each run u, a

yield yu is observed. The data t1, . . . , tn and y1, . . . , yn are then used to fit a model of

type (3), by estimating numerical values θ̂ for the parameter vector θ, often with the

method of least squares. The result is the estimated response surface

ŷ = f(t)′θ̂, (5)

and the corresponding fitted values ŷu = f(tu)′θ̂. Even if the model assumption (3) is

justified, the fits ŷu are affected by the random errors eu. Of course, model (3) itself

may be inappropriate, and then the estimated response surface ŷ provides a more or

less biased view of the true response surface that underlies the production process.

Usually the simpler, first-degree model is an appropriate choice to start with.

A variety of tests on the estimated response surface ŷ can be made. Most of these

diagnostic procedures rely on the unexplained portions of the observed yield, yu − ŷu,

called the residuals. If the planar model does not fit well, a second-degree surface

would be tried.

More details can be found in the survey paper of Draper and Pukelsheim (1996)

that was mentioned above. Textbook treatments that offer a general introduction into

the statistical design of experiments are Box, Hunter and Hunter (1978), Draper and

Smith (1981), Box and Draper (1987), or Khuri and Cornell (1987).
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The practical choice of an experimental design is guided by many (and partly

conflicting) goals, see the discussion in Box and Draper (1987, Chapter 15). One way

of selecting a design is to concentrate on its symmetry properties, of which rotatability

is the most important one for the case of response surface designs.

Another approach is to choose a design according to whether it maximizes or

minimizes a specific criterion function, within a class of competing designs. Bandemer

(1977) and Bandemer and Näther (1980) are encyclopedic volumes, with extensive

tabulations of many important design families. Pukelsheim (1993) presents a general

optimality theory of experimental designs in linear models. The results on optimal,

theoretical designs can then be used to identify efficient, practical designs.

4 Design objectives

The long-standing approach that has stood the test of time is to model the process

yield, y, through a linear statistical model (3). This aims at the mean process output.

The production factors that prove to be significant are then used to bring the mean

process yield on target, maximize it, or minimize it, as desired. This goal is achieved

using the statistical methods that are provided by the classical analysis of variance,

and response surface methodology, see e.g. the textbooks of Box and Draper (1987),

Daniel (1976), Khuri and Cornell (1987), Logothetis and Wynn (1989).

However, Taguchi (1987) draws attention to a dual application of the same sta-

tistical methods, to also model process variability. Other than in the agricultural and

biometrical sciences, in industrial experimentation it is often feasible to obtain inde-

pendent replications of each run. Let nu be the replication number, that is the number

of observed yields given the production factor settings tu. We denote the correspond-

ing observed process yields by yu,j, for j = 1, . . . , nu. That is y1,1, . . . , y1,n1
are the n1

observations under experimental conditions t1, etc.

The estimated variance under experimental conditions tu then is

s2

u =
1

nu − 1

nu∑

j=1

(yu,j − yu)2, (6)

with average yield yu =
∑nu

j=1
yu,j/nu. Ideally the quantities s2

u have a scaled χ2

distribution. Hence the logarithm is applied as a variance stabilizing transformation,

zu = log s2

u for u = 1, . . . , `, (7)

provided there are ` different sets of settings t1, . . . , t` for the production factors.

Taguchi (1987) fits a linear model to z1, . . . , z`, in order to study how process variability

depends on the production factors.
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Thus the experimental data are evaluated through a dual analysis, in the sense

of Vining and Myers (1990). For the process mean, a location model is built to fit

the observed yields y1,1, . . . , y`,n`
. For the process variability, the same statistical

methodology leads to a dispersion model for the log sample variances z1, . . . , z`. These

dual analyses have proved extremely successful in practice.

In theory, the distributional assumptions underlying a linear model can be fully

satisfied either for the random variables y1,1, . . . , y`,n`
, or else for the random variables

z1, . . . , z`. However, linear statistical models have transpired to be useful also when the

underlying assumptions are satisfied only to some degree of approximation. Applying

the logarithm to the sample variances as in (7) does indeed serve as a normalizing

transformation. In a more general context, this is the guiding principal for the Box–

Cox power transformations of the data when building a linear model, as proposed

by Box and Cox (1964). Other transformations can also be contemplated, as León,

Shoemaker and Kacker (1987).

5 Factor classification

As a result of dually analyzing process mean and process variability, the production

factors are classified into three categories. The first category are the signal factors,

consisting of those factors that are significant in the model for the process mean and

nonsignificant in the model for the process variability. Hence the signal factors may

be used to bring the process mean on target, maximize it, or minimize it, as desired,

without having a statistically recognizable effect on process variability.

The second category, control factors, comprises those production factors that are

significant in the process variability model. The model is used to predict settings for

the control factors that minimize the production variance. In other words, the process

is “kept under control” not just by monitoring control charts, but actively identifying

the set of control factors among the set of all production factors, and by implementing

the optimum levels for the control factors so as to minimize process variability.

Control factors should be clearly designated as such, so that they are not acciden-

tally changed by process operators. Also, when the process variability is observed to

increase, it is a good policy to first check whether the control factors have moved away

from their optimum levels.

The classification in signal factors and control factors is data-dependent. It can

thus not be excluded that occasionally the observed data lead to empty or otherwise

unreasonable categories. According to our experiences it would seem that the classifi-

cation goes through successfully in most practical cases.

The remaining production factors, that appear neither among the signal factors

nor among the control factors, are called nuisance factors. They are nonsignificant for
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the process mean, nor for the process variability. If no other goal intervenes, nuisance

factors are set to minimize production costs.

In addition to production factors, a planned experiment may also incorporate

noise factors and study their effect on the product. Noise factors are factors in the

user environment that are vital for the product to function properly. For example,

humidity, surrounding temperature, or exposure to daylight would not generally occur

as genuine production factors for a manufacturing process. But they may well appear

as noise factors once the product is installed at the user’s site.

With noise factors included, the analysis of the experimental data hopefully points

to settings for the production factors that perform well over the range of values that

the noise factors may attain. As a result, an experiment including process factors as

well as noise factors leads to a manufacturing process for a product that is robust once

the buyer starts to use it.

In other words, planned noise involves a source of variation that in a way is

artificial from the viewpoint of the proper manufacturing process. However, from the

point of view of product quality, this variability is deliberately introduced in order

to mimic environmental noise. In this way the experiment anticipates variability of

the product performance, in a laboratory setting, long before use of the product has

actually started.

6 Confirmation experiment

The confirmation experiment is the formal end of a cycle of statistical quality im-

provement as described above. It implements the predicted optimum levels for the

production factors, and “proves” them to be superior to the old settings. The confir-

mation experiment reassures all those involved in the project that their efforts were

well invested and start paying back.
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