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 Experimental Designs for Model Discrimination

 FRIEDRICH PUKELSHEIM and JAMES L. ROSENBERGER*

 We present designs that perform well for several objectives simultaneously. Three different approaches are discussed: to augment a

 given design in an optimal way, to evaluate a mixture of the various criteria, and to optimize one objective subject to achieving a
 prescribed efficiency level for the others. Our sample designs are for the situation of discriminating between a second- and third-
 degree polynomial fit, under the D-criterion and geometric mixtures of D-criteria.

 KEY WORDS: Augmentation designs; D-optimality; Designs with guaranteed efficiencies; General equivalence theorem; Mixture
 designs.

 1. INTRODUCTION

 Many results on optimal experimental designs are derived
 under the assumption that the statistical model is known at

 the design stage. But more often than not, this is not the
 case. Indeed, the experimenter's goal often is to implement
 a design that is efficient for two or more models that might
 fit the experiment, to discriminate between them and then

 select the best one. For an early exposition of the issue, see
 the seminal paper by Stigler (1971) or the discussion paper
 by Atkinson and Cox (1974). Practical settings where the
 problem arises may be found, for example, in Hunter and

 Reiner (1965) and in Cook and Nachtsheim (1982). The
 task of weighing and averaging different criteria is also con-

 genial with the Bayesian approach, as discussed by Lauter
 (1974, 1976).

 In this article we review several solutions to the problem

 that have been proposed in the literature. The examples we
 list all may be derived from a single equivalence theorem in
 the spirit of Kiefer and Wolfowitz (1960), thus pulling to-
 gether seemingly divergent approaches. All rely on maxi-
 mizing some sort of information; that is, minimizing a func-

 tion of the variance-covariance matrix of the least-squares
 estimator. Thus these solutions are complementary to the
 approach taken by Box and Draper (1959), whose designs
 optimized a mixture of variance and squared bias.

 As a specific example with multiple objectives, we consider

 the discrimination between a second-degree and a third-de-
 gree polynomial model. Suppose that the experimental runs
 are determined by a single variable x E [-1, 1 ]. The exper-
 imenter hopes that a second-degree polynomial model, des-
 ignated (A), adequately describes the expected observations

 E(Yx) =00 + OIx + 02x2. (A)

 Yet it is desirable to guard against a third-degree model,
 designated (B):

 E(Yx) = 6o + 01X + 02X2 + 03X3. (B)

 This calls for a test, in a third-degree model, of whether or

 not the parameter 03 of the cubic term vanishes. If there is
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 significant evidence that 03 is not 0, then the third-degree

 Model (B) is entertained, with parameter vector @(B) = (00,
 01, 02, 03)'. Otherwise, the second-degree Model (A) is used,
 with parameter vector O(A) = (00, 01, 02)'.

 This setting gives rise to the following design problem.
 Find experimental designs that efficiently serve all three ob-

 jectives simultaneously: (1) to discriminate between Models
 (A) and (B) and, depending on the decision, (2) to make
 inferences in Model (B) or (3) in Model (A).

 We review three approaches to the problem that have been
 proposed in the literature. For the resulting designs we quote

 the moment matrix M as the basic quantity that enters into
 the objective criteria. We also quote M-', the standardized
 dispersion matrix of the least squares estimate, because it
 more easily permits one to study the practical implications

 of exactly what is given up, in terms of variance, by preferring
 one design over another. As a numerical measure of good-
 ness, we compare the designs through their efficiencies for

 each of the objective 1-3, as listed in Table 1.
 The efficiencies are defined as follows. Denoting by (* the

 D-optimal design for the k-dimensional parameter vector 0,
 any other design t has D-efficiency

 D ( ()[det M( *) ] Il/k'

 Here M( t) denotes the k X k moment matrix of the design
 t. The scaling with the kth root makes the criterion homo-

 geneous of degree 1. We assume throughout that the usual
 determinant criterion is appropriate to evaluate the individ-
 ual objectives. Although this notion of efficiency is common

 to the design literature, a simple transition to what is given
 up in terms of sample size-similar to the interpretation of
 Pitman efficiency-is not available.

 In Section 2 we first list the D-optimal designs 2.1, 2.2,
 and 2.3 separately for each of the goals 1, 2, and 3.

 In Section 3 we discuss optimal augmentation of a given

 design (Chaloner 1984; Covey-Crump and Silvey 1970;
 Welch 1982; Wynn 1977, 1982). The uniform equispaced
 design 3.1, which assigns the same number of observations
 to the five equispaced points -1, -1 / 2, 0, 1 / 2, 1, has some
 intuitive appeal, apart from any optimality criterion. The
 augmentation design 3.2 takes half of the observations from

 ? 1993 American Statistical Association
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 Table 1. Efficient Designs for Second- and Third-Degree Model Discrimination

 Efficiencies

 Section Design 03 @(B) 0(A)

 2.1 optimal for 03, on [-1, 1] (optimal value .06250) 1 .93 .75
 2.2 D-optimal for 0(B) on [-1, 1] (D-optimal value .26750) .85 1 .87
 2.3 D-optimal for O(A). on [-1, 1] (D-optimal value .52913) 0 0 1
 3.1 uniform, on the five points ?1, ?1/2, 0 .72 .94 .84
 3.2 half D-optimally augmented for @(A). on [-1, 1] .42 .89 .94
 4.1 mixture D-optimal for O(A) and @(B). on [-1, 1] .66 .98 .91
 4.2 mixture D-optimal for O(A) and @(B). on ?1, ?1/2, 0 .64 .96 .90
 4.3 mixture D-optimal for O(A) and 63, on ?1, ?1/2, 0 1.00 .94 .75
 5.1 D-optimal for O(A), 50% efficient for 63, on [-1, 1] .5 .93 .94
 5.2 D-optimal for O(A), 50% efficient for 63, on ?1, ?1/2, 0 .5 .92 .93

 NOTE: Efficiencies for the individual component 03 are evaluated in the third-degree model, as are the D-efficiencies for the full parameter vector (B) = (B0, Oi, 02, 03Y. The D-efficiencies for O(A) = (fo,
 1, f2)' are calculated in the second-degree model, with the exception of 4.3, where both efficiencies are computed in a third-degree model.

 the given design 3.1 and adjoins the other half in a way that
 is D-optimal for O(A)*

 Section 4 presents designs that maximize the mixture of
 two criteria (Bunke and Bunke 1986; Lau and Studden 1985;
 Lauter 1974, 1976; Lim and Studden 1988). Design 4.1
 mixes the D-criterion for O(A) and the D-criterion for @(B) on

 the experimental domain [-1, 1] (Dette 1990). Design 4.2
 evaluates the same objective function but is restricted to the

 five equispaced points + 1, + 1/2, 0. Design 4.3 mixes the
 criterion for the individual parameter 63 and the D-criterion
 for O(A), again restricted to the five points ? 1, ? 1 / 2, 0.

 In Section 5 we impose the constraint that our solution
 must be at least 50% efficient for the individual component

 03 (Lau 1988; Lee 1987, 1988; Stigler 197 1; Studden 1982).
 We present two designs, both of which are constrained D-

 optimal for @(A). For design 5.1 (Studden 1982) the experi-
 mental domain is [-1, 1]. Design 5.2 is again restricted to

 the equispaced points ? 1, ? 1 /2, 0.
 Of course, the designs presented here are by no means

 exhaustive. Many other designs satisfy the same purpose,
 and other approaches place more emphasis on nonlinear
 modeling and sequential designs (Atkinson and Fedorov
 1975a, b). Section 6 provides some guidance for making a

 choice. Nevertheless, the final selection will reflect the pe-
 culiarities of the experimental situation under study, of the

 experimenter, or of the statistician.
 The derivation of these designs, seemingly as diverse as

 the literature is scattered, may be unified using an appropriate
 generalization of the celebrated equivalence theorem of Kie-
 fer and Wolfowitz (1960). The pertinent arguments are

 sketched in the Appendix, following Pukelsheim (1980,
 1993).

 2. INDIVIDUAL OPTIMALITY

 Our designs t are given in the form t(xi) = w1, on no
 more than five support points xi E [-1, 1] and with positive
 weights wi summing to 1. Such a design t directs the exper-
 imenter to draw a fraction wi of all observations under ex-
 perimental conditions xi.

 Assuming that the observations from model (B) are un-
 correlated and homoscedastic, the performance of a design
 t depends on its 4 X 4 third-degree moment matrix MB(t),
 with entries mp,q = IUp?q-2 =i WiXpq-2 for p, q = 1, 2, 3,
 4. In model (A) we evaluate the 3 X 3 top left subblock of

 MB( W), which is the second-degree moment matrix MA( ) .
 Each of our designs is symmetric around 0, and so all the

 odd moments vanish.

 As is usual in the approximate design theory (Kiefer 1974),

 every probability distribution t on [-1, 1 ] with a finite sup-

 port is called a design and competes for optimality. A design
 is optimal for 03 when it minimizes the bottom right entry

 Of MB(-1 among all designs t. A design is D-optimal for
 0(B) when it maximizes the determinant of M(B)(t) and is D-
 optimal for @(A) when it maximizes the determinant of

 MA(U). In addition to the design we display the moment
 matrix and its inverse, MB(t) and MB(') 1, as a means to
 see how the lower order moments of t determine its perfor-
 mance.

 Because more than one optimality criterion is of interest,

 we must standardize them so as to enable a meaningful com-

 parison. This is achieved by turning to

 (1) [(MB( )-1)44L1 for 03,
 (2) [det MB(t)] 1/4 for O(B), and

 (3) [det MA( )] 1/3 for 0(A) -

 As a function of the moment matrices, the criteria then are

 all positively homogeneous and concave and take value one

 for the identity matrix. Because they are information func-

 tions, as defined in Pukelsheim (1980), we call the associated
 optimal values the optimal information.

 2.1 Optimal Design for 03

 In a third-degree model, the optimal design t for
 the individual component 03 maximizes the criterion

 [(MB( M) )44] -1 and is supported by the Chebyshev points
 ?1, ?1/2 (Kiefer and Wolfowitz 1959). The weights, the

 third-degree moment matrix, and its inverse are

 1)= 1/6, 1(?l/2)= 1/3,

 1 .5

 . 5 . *38
 .38 34

 1B2 1 Vi
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 (Here and elsewhere, dots indicate Os.) The optimal infor-
 mation for 03 iS 1/ 16 = .0625.

 2.2 D-Optimal Design for O(B)

 In a third-degree model, the D-optimal design for the full
 vector O(B), maximizing [det MB(t)I 1/4, is (Kiefer 1959)

 1)= 1/4, t(?1/5_) = 1/4,

 .52 .52
 MB(O = .6 *6.52 -5

 *.52 * 50

 3.25 -3.75

 MB(t)-I= * 15.75 -16.25
 -3.75 6.25

 -16.25 18.75

 The D-optimal information for O(B) is 2/(5 5/4) = .26750.

 2.3 D-Optimal Design for 0(A)

 In a second-degree model, the D-optimal design t for the
 vector O(A), maximizing [det MA()] 1/3, is t(?1) = 1/3,
 t(O) = 1/3. The D-optimal information for O(A) is 41/3/3
 = .52913. Under this design, in a third-degree model neither
 the vector @(B) nor the component 03 are estimable.

 3. OPTIMAL AUGMENTATION DESIGNS

 3.1 Uniform Equispaced Design

 A design with some appeal of symmetry and balance is
 the uniform design 40 on five equispaced points,

 to(?1)= to(?1/2)= o(O) = 1/5,

 1 * .5

 MB((O)= .5 * .43 *
 * .43 * .41

 2.43 * -2.86 .

 MB( -= I -2 86 18.06 5 -18.89 -2.86 5.71

 -18.89 * 22.22

 It has efficiencies of 72%, 94%, and 84% for 03, O(B), and O(A)-

 Of course, there is no direct merit in the constant spacing.
 The high efficiencies are explained by the fact that the points
 + 1 ? 1 / 2, 0 are the second- and third-degree Chebyshev
 points (Kiefer and Wolfowitz 1959; Studden 1968). They
 already appear as support points for the optimal designs 2.1
 and 2.3 and are close to the support points of design 2.2.

 3.2 D-Optimal Augmentation for 0(A)

 For the second-degree model, the previous design 40 has
 a D-efficiency of 84% for O(A). As an alternative, only half of

 the observations are drawn according to the old design 40.
 Subject to this "protected" design portion, the other half is
 filled in a D-optimal way for @(A). That is, the criterion is to

 find a design t that maximizes

 {det[2 MA(Qo) + 2 MA(6l)1}

 The resulting combined design, t = (0o + (,)/2, is

 (1) = .2987, t(?1/2) .1, t(O) .2026

 1 .65 *6

 = 65 * .61 *
 .61 .60

 3.20 * -3.39

 .-339 5.24
 -36.31 38.54

 The combined design t has efficiencies of 42%, 89%, and
 94% for 03, @(B), and O(A). Thus the D-efficiency for @(A) has
 increased by 10% at the cost of the other two efficiencies-
 in particular, that for 03.

 We sketch a proof of optimality along the outline presented
 in the Appendix. To see that t is the D-optimal augmentation

 for O(A) of the old design 40, we represent it as t = (Q0 + 4,)/
 2, with ,(? 1) = w, 4,(0) = 1 - 2w. That is, the new part
 4 is supported by the three second-degree Chebyshev points
 ?1, 0. The equivalence theorem for this situation (Welch
 1982; Wynn 1977) rests on the evaluation of the polynomial

 P(x) = (1, x, x2)(MA(Uo/2 + 41/2))-'(1, x, x2)', which
 gives the standardized variances of the estimated response
 surface. Optimality of requires P( ? 1) = P(0), necessitating
 w = (1 + F71 /5)/12 = .3974. With this value, we find

 P(x) = 3.20 - 5.24x2 + 5.24x4.

 Now P(x) < 3.20 = P(0) = P(?1), for all x E [-1, 1],
 establishes the optimality of t.

 4. OPTIMAL MIXTURE DESIGNS

 The objective in this section is to optimize the geometric
 mean of the design criteria. Of course, the criteria also may
 be averaged by the arithmetic mean or the harmonic mean
 (Cook and Nachtsheim 1982).

 4.1 D-Optimal Mixture Designs for O(A) and O(B),
 on[-1, 11

 The geometric mean of the D-optimality criteria for @(A)
 and @(B) is

 { [det MA(t)] "/3 [det MB(t)] 1/4 } 1/2

 The optimal design with respect to this objective function is
 (Dette 1990)

 1) 17/60, V( 17/117) = 13/60,
 .63

 .63 .58

 MB .~.6 .58 1
 .58 * .57

 MBOI= (3 5I 21.79 -3.51 -22.109
 * -22.10 * 24.161
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 The efficiencies for 03, @(B), and @(A) are 66%, 98%, and 91%.
 The value of the optimality criterion is .35553.

 Following the general approach of the Appendix, we need
 to study the polynomial, which we designate as (C):

 P(X) = -(1, X, X2)MA() ( Xs)
 6 x2

 2 ~ ~ (2 + 8 (1, x, x, x3)MB(O)' 2

 - .94 + .94x2 - 3.90x4 + 3.02x6. (C)

 Because P attains the value 1 at ?1 and at ? +17/117
 and has local maxima at ? 17 / 117, it is bounded by 1 on
 [-1, 1]. This proves that the design t maximizes the geo-
 metric mean on the experimental domain [-1, 11].

 4.2 D-Optimal Mixture Designs for O(A) and O(B),
 on ?1, ?1 /2, 0

 As an alternative, we propose the design that maximizes
 the same criterion but restrict the support points of the design
 to the five Chebyshev points ? 1, ? 1 /2, 0. The resulting de-
 sign is

 (1) = .279, t(?1/2) =.164, t(O) .1 14,

 1 .64
 * .64 .58

 MB(O= .64 .58*
 * .58 .56

 3.43 -3.80

 = -3.80 21188 -22.48 MB(O- = -3.80 5.92
 -22.48 * 24.87

 The efficiencies for 03, @(B), and @(A) are 64%, 96%, and 90%.
 The criterion takes the value .34974, which is 98% of the
 maximum value of the design in 4.1. The efficiencies are
 excellent, even though the design is inadmissible (Kiefer
 1959).

 To compute the design and verify its optimality, we pro-
 ceed as indicated in the Appendix. We conjecture the optimal
 design to be symmetric, (?1) = w, t(?I/2) = u, t(0) = 1
 - 2w - 2u, and express the polynomial (C) in terms of u
 and w. If 0 belongs to the optimal support, then we must
 have P(0) = 1, yielding a relation for u in terms of w. Further,
 if the optimal support point contains + 1, then we get P( ? 1)
 = 1, leading to an equation that determines w. In summary,
 we obtain

 17 172 17 17 10 1

 96 \96 4 3u2 t22w

 From this, w is computed numerically as .279. The poly-
 nomial becomes

 P(x) = 1 + .78x2 - 3.89x4 + 3.11x6.

 Now P( ? 1) = P( ? 1 / 2) = P(0) = 1 proves optimality, on
 the Chebyshev support points ? 1, ? 1 / 2,0.

 4.3 D-Optimal Mixture Designs for O(A) and 03,
 on ?1, ?1/2, 0

 The previous objective function is a mixture of two D-
 optimality criteria for two different models, the second- and
 third-degree models. As an alternative approach, one may
 embed the second-degree model in the third-degree model
 (Atkinson 1972). Hence @(A) no longer is the full para-
 meter vector in the model. Rather, it is considered a sub-
 vector of O(B)-

 In the third-degree model, the information matrix for O(A)
 is M - M12M2-21M21, where matrix M = MB(t) is parti-
 tioned with a top left 3 X 3 subblock MI1 = MA(t). That
 is, the information matrix for @(A) now is a difference, the
 information matrix MI I of the second-degree model minus
 a 'penalty term' M12M22-'M21 which reflects the loss of in-
 formation due to fitting the additional parameter 03.

 We now maximize the geometric mean of the D-infor-
 mation for @(A) and the information for 03,

 {[det(M11 - M12M1M21)] 3[M22 - 11

 on the Chebyshev points + 1, + 1 / 2, 0. We obtain

 =1).168, (?1/2) =.332,

 .50

 .50 . .38
 MB .~.5 .38

 .38 .35

 3.01 -4.00 *
 (? 11.05 . -12.04

 M0= I 7.96
 -12.04 * 16.00

 The efficiencies for 03, @(B), and O(A) are 100%, 94%, and 75%.
 As the efficiency for 03 indicates, the present design is prac-
 tically the same as design 2.1, which is optimal for 03.
 Derivation of the design 4 parallels the steps in 4.2. Again

 we conjecture the optimal design to be symmetric, ( ? 1)
 = w, 4(? I /2) = u, 4(0) = 1 - 2w - 2u. Now the equivalence
 theorem calls for the investigation of the polynomial

 1 2 3 P(X) =- (1, X, x2, x3)
 6

 /L4 _ /21

 d d

 4116 _ 3 414

 D 112 D

 x~~~~~~~~

 d d X

 . 4/14 4,/2 1 3
 D D /16

 where d = ,U4- and D = /12/6 /14-
 Suppose that x = 0 is an optimal support point. Then we

 have P(0) = 1, entailing a relation to express u in terms of
 w. On the other hand, P( 1) = 1 yields an equation that
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 determines w. Thus we get

 u = 5 - 4w + + 5w

 1 17 1 2

 -,U 5A2 6 +W

 The resulting values w = .19 and u = .44 are not feasible,
 because the sum 2w + 2u exceeds 1. Hence x = 0 cannot be
 an optimal support point.

 This leaves us with the relation u = 1 /2 - w. From P(1)
 = 1 we calculate w = .168, and hence the design t. Its mo-
 ments yield the polynomial

 P(x) = .50 + 5.04x2 - 14.73x4 + 10.19x6.

 Now P(0) = .50 < 1 = P(? 1 / 2) = P(? 1) establishes the
 optimality of t on the five points + 1, + 1 /2, 0.

 5. D-OPTIMAL CONSTRAINT DESIGNS

 The original paper of Stigler (1971) proposed maximizing
 one criterion while securing some efficiency level for another
 criterion. Our last two designs implement this idea.

 5.1 D-Optimal Design for O(A), Half Efficient for 03,
 on[-1, 11

 The D-information for @(A) in the second-degree model is
 [det MA(t)I 1/3. The design maximizing this criterion among
 those designs on the experimental domain [ - 1, 1] that guar-
 antee 50% efficiency for 03 in the third-degree model is
 (Studden 1982)

 t(?1)= .30095, t(?.3236) =.19905,
 1 * .64

 .64 . .61

 .61 .60

 3.16 * -3.35

 MB( = I _3 35 9.95 -30.14
 (3.35 f. 5.21

 -30.14 * 32.00
 The efficiencies for 03, 0(B), and 0(A) are 50%, 93%, and 94%.
 For all practical purposes, the four support points would be
 considered equispaced in the interval [ - 1, 1].

 According to the Appendix, the necessary and sufficient
 condition of the equivalence theorem is in terms of the poly-
 nomial P(x) = (1, x, x2, x3)N(1, x, x2, x3)', where Ninvolves
 two matrices, one corresponding to the side conditions and
 the other one to the objective criterion, as well as a Lagran-
 gian multiplier a:

 28.40 -30.14'j

 k -30.14 * 32.00

 11 .52-12

 From P(1) = 1 we obtain a = .074, giving

 P(x) = .98 + .52x2 - 2.88x4 + 2.38 x6.

 Now P(1) = P( .3236) = 1 and the vanishing of the derivative,
 P'(.3236) = 0, imply that on the interval [-1, 1] the poly-
 nomial P is bounded by 1. This proves the desired optimality
 property of t.

 5.2 D-Optimal Design for O(A). Half Efficient for 03,
 on ?1, ?1 /2, 0

 As a final example, we take the same criterion as for design
 5.1 but again restrict attention to the five Chebyshev points.
 As a result, we obtain the design

 1)= .292, t(?1/2) = .123, (0) =.170,

 1 * .65

 .65 .60

 MB .~.6 .60 *J
 .60 * .59

 3.28 * -3.53 *
 = ~~~29.15 -2.7

 MB(O-1 - 354
 \ * -29.72 * 32.00 /

 The efficiencies for 63, 0(B), and @(A) are 50%, 92%, and 93%.
 For all practical purposes, these efficiencies are just as good
 as those of design 5.1. The major difference is that design
 5.2 has five support points rather than four.
 For the optimality proof, we use the notation of Section

 4.3. The efficiency constraint gives ,A2/D = 32, where u is
 represented in terms of w. The polynomial to be studied is

 P(x) = (1, x, x2, x3)N(1, x, x2, x3)y, with

 2
 /14 _ /4

 N= oe 32D2 D

 32
 D

 /A4 _2 \

 3d 3d

 3A2
 + (1-oa) 3

 _2

 3d 3d

 From P(0) = 1 we obtain a formula for a, whereas w is
 obtained from P(1) = 1. In summary, we get

 4w 6w3

 U 36w- 1 a (w- 1/48)(w- 1/36) 2.

 With the resulting weights w = .292 and u = .123, we cal-
 culate ae = .086 and

 P(x) = 1.00 + .69x2 - 3.43x4 + 2.75x6.
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 Thus P( ? 1) = P( ? 1 / 2) = P(O) = 1 establishes optimality
 for the design on the Chebyshev points ? 1, ? 1/2, 0.

 6. DISCUSSION

 In the settings discussed in this article, the design problem

 relates simultaneously to various models, various parameter

 systems, or various optimality criteria. There are many ways

 to combine information arising from these several sources

 into a single number. Consequently, there are many designs,

 each of which has good, convincing merits.

 The multiplicities to be handled may arise at any one of

 the following four stages:

 l. different models: Depending on the underlying regres-

 sion functions, a design t may give rise to different moment

 matrices Ml (t) of different orders k, X ki, for a finite number
 of models i = 1, ... , m-Models (A) and (B) in this article.

 2. different parameter systems: In model i the full k--di-

 mensional parameter vector 0(i) may be of interest, or only
 an si-dimensional subsystem Kl 0(i), where the k, X si coef-
 ficient matrix Ki is assumed known.

 3. different optimality criteria: Given model i and the pa-

 rameter system K 0 (i), different choices are possible for the
 optimality criterion 4i to evaluate the information matrix
 for the parameter system of interest, CK, (Ml). Thus as a
 function of the moment matrix Mi, the objective criterion
 is a two-fold composition:

 4'i(Mi) = i(CKi(Mi))

 4. different averaging criteria: The final step is to average

 the information quantities 4'I, ..., 4A,m that originate with
 the m models and then merge them into a single number

 't(41 , X A m).

 The optimality criteria 0 of greatest interest are the classical
 D, A, and E criteria, which correspond to maximizing the

 geometric mean, the harmonic mean, and the minimum of
 the eigenvalues of the moment matrix. As long as one single
 model is being investigated, the classical means suffice for
 all practical purposes.

 For the averaging criteria, we may similarly select the geo-

 metric mean, the harmonic mean, and the minimum of the
 information quantities 4{i. But when the information from
 the m models is combined, we obtain a grand composi-
 tion 4,

 O(M1, ... ., Mm) = I(4'(Mi) ... ., tm(Mm)).

 This terminal composition 0 is not one of the classical means,
 but does belong to the class of information functions dis-
 cussed next.

 For a unified view of the problem, it thus is imperative to
 permit a wider class of criteria. The information functions of
 Pukelsheim (1980) serve this purpose well. By definition,
 they are required to be nonnegative, positively homogeneous,

 concave, nonconstant, and upper semicontinuous. For ex-

 ample, the vector means of order p E [- oo, 1] are infor-
 mation functions on the vectors X =(X1, . .., X)' in the

 nonnegative orthant R 7,

 I1I/p
 IP(Al. **, XM) - -EXP) for -oo <p <1,

 m ic m

 p 7* 0
 I/M ~ ~ p#

 i ) for p =0

 - mini?m{Xi} for p = oX.
 In our examples we have used the geometric mean (P on

 the quadrant R14.

 Similarly, the matrix means /p, defined for nonnegative
 definite s X s matrices C through

 1 1/p

 AC) = - E trace CP) for -oor<p<1, p 0

 = (detC)l/m for p-=O

 = smallest eigenvalue of C for p -oo

 are information functions on NND(s), the cone of nonneg-

 ative definite s X s matrices. Of course, matrix means and

 vector means are related, in that a matrix mean Op(C) on
 NND(s) may be reexpressed as a vector mean 4Pp on R+
 applied to the eigenvalues (X1 (C), . .., X(C))' of C.

 In general, a composition of such means 4(X1, . . ., Xm)

 and 01 (C1), . . . om(Cm) fails to produce a classical mean.
 But any composition of the form

 ?> = q4411 .. 1 * ?m)

 does enjoy all the properties that constitute an information
 function, provided only that + is an information function

 on RI+m and 4i is an information function on NND(k1) for
 all models i = 1, .I. , m. This shows that the concept of
 information functions is wide enough to embrace the classical
 criteria and also to permit functional operations, such as
 forming compositions of information functions.

 Hence for the type of problems discussed in this article,
 a unified view emerges when we use an equivalence theorem

 of sufficient generality to apply to arbitrary information
 functions. An appropriate result has been given by Pukel-
 sheim (1980) and is briefly reviewed in the Appendix. Just
 as in the original equivalence theorem of Kiefer and Wol-
 fowitz (1960), this theorem typically leads to one set of
 equations that implicitly determine the optimal weights-
 as in 3.2, 4.2, 4.3, 5.2-while another set determines the
 optimal support points (see Dette 1990 or Studden 1982).

 Four points deserve a final comment. The designs in 4.2,
 4.3, and 5.2, on the five equispaced support points +1
 ? 1 / 2, 0, are inadmissible. For instance, the results of Kiefer
 (1959, p. 291), imply that for our Section 5.2 there is a four-

 point design 77 with a larger moment matrix, MB(77) 2 MB(t)
 and MB(7q) # MB(). Because the objective function and
 the efficiency side condition in Section 5.2 are given by in-
 formation functions, and because any information function
 is monotone under the usual matrix ordering, the design ti

 is at least as good as t. Nevertheless, t enjoys excellent effi-
 ciencies, as do the designs of Sections 4.2 and 4.3. This il-
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 lustrates one virtue of a general approach: to calculate the

 efficiencies explicitly and thus provide numerical, indisput-
 able evidence that the designs not only look good, but also
 do indeed perform well.

 Second, all of our examples result in designs symmetric

 around 0. This demonstrates that symmetry considerations

 and a reduction by invariance applies to general information
 functions in the same powerful way that it helps with the
 classical criteria.

 Third, all our results are in the approximate case. The

 transition to an exact design for sample size n can be carried

 out in the spirit of Fedorov (1972, chap. 3.1). Among the
 many available apportionment methods, the method of John

 Quincy Adams (Balinski and Young 1982, p. 28) is best for
 the design of experiments.

 Fourth, when it comes to combining information (as was

 done in Section 4 for mixture designs), the most sensitive
 issue is that of scaling. The information quantities to be av-

 eraged must somehow be scaled to be represented in com-
 parable units. The sole exception is the geometric mean of
 the determinant criterion, which is why we have chosen it
 for the examples in this article.

 The design ordering that originates with the determinant

 criterion 00 is invariant under nonsingular affine transfor-
 mations (Gafike 1981). A similar order invariance pertains
 to the geometric mean (Po. The reason is that bF0 is homo-
 geneous separately in each variable Xi. This is not true for
 other information functions on R'. Thus the determinant

 criterion, and geometric means thereof, lead to the same
 optimal design irrespective of how the regression functions,
 and hence the moment matrices, are scaled. This provides
 a strong argument in their favor.

 APPENDIX: EQUIVALENCE THEOREM

 The equivalence theorem concentrates on moment matrices
 rather than on the set Z of all designs t. We have encountered the
 following sets . of moment matrices:

 3.2 A = I I E CNND(3)
 4.1, 4.2 A = {(MA(t), MB(t)) M E _} NND(3) X NND(4)

 4.3 AX = {MB(t): E E} ' NND(4)

 5.1, 5.2 JR = {MA(): t E , (MB( )-1)44 ? 32} C NND(3).

 Each of these sets is convex and compact, which are the only two
 properties called for by the equivalence theorem.

 As pointed out in Section 6, all the optimality criteria considered

 are information functions 0. As a substitute for the notion of a
 gradient, or a subgradient, it proves advantageous to introduce the
 polar information function q5 by defining, for any nonnegative
 matrix D,

 = inf trace CD
 c>o ?5(C)

 where the notation C > 0 designates positive definiteness of C. For
 example, the polar functions of the matrix means O., on NND(s)
 are known to be kr = Sq5q, where the numbers p and q are conjugate,
 P + q = pq.

 For the sake of simplicity, we assume that the moment matrix

 M = M(t) checked for optimality is positive definite.

 Theorem. Let the set A of moment matrices be convex and

 compact and let the optimality criterion A be an information func-
 tion.

 Then a design t with positive definite moment matrix M = M( )

 in A maximizes the criterion A over AM if and only if there exists
 a nonnegative solution N of the equation

 O(M)0'(N) = trace MN = 1 (A.1)

 that satisfies

 trace AN < 1 for all A E A. (A.2)

 For a proof see Pukelsheim (1980). Equation (A. 1) relates to the

 polar function XX and is called the polarity equation. Inequality
 (A.2) requires the matrix N to be normal to the set A at M, and
 is called the normality inequality.

 We have already mentioned that the matrix means /Pp have polars
 proportional to kq. This and related results make it usually easy to
 solve the polarity equation (A. 1) and display the solution (s) N in
 terms of M.

 The point is to verify the normality inequality (A.2). For a third-

 degree model, the set A is generated by the rank one matrices

 f(x)f(x)' with x E [-1, 1], wheref(x) is the power vector (1, x,
 x2, x3)'. Hence the left side of the normality inequality (A.2) turns
 into a polynomial P(x),

 tracef(x)f(x)'N = f(x)'Nf(x) = (1, x, x2, x3)N x = P(x).
 vx3

 Thus (A.2) boils down to calculating the polynomial P(x) that comes

 with the optimality candidate M and checking whether on [-1, 1]

 it is bounded by 1. In our exposition, from Section 3.2 on we have

 directly supplied the polynomial P that, because it is bounded on
 [ -1, 1 ] by 1, establishes optimality. A unified approach for obtaining

 the matrix N that determines P was given by Pukelsheim (1993).
 Individual approaches for each setting discussed here also exist and
 are found in the literature references in Section 1.

 [Received July 1991. Revised April 1992.]
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