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 E-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION

 BY FRIEDRICH PUKELSHEIM1 AND WILLIAM J. STUDDEN 2

 Pennsylvania State University and Purdue University

 E-optimal designs for the full mean parameter vector, and for many
 subsets in univariate polynomial regression models are determined. The

 derivation is based on the interplay between E-optimality and scalar
 optimality. The scalar parameter systems are obtained as transformations
 of the coefficient vector c of the Chebyshev polynomial.

 1. Introduction. In a linear model for polynomial rogression of degree d
 on the interval [-1, 1], we show that the E-optimal design for all d + 1
 parameters and for many parameter subsets are supported by the Chebyshev

 points si = cos((d - i)/rrd), for i = 0, 1, . . . , d. This result was conjectured by
 Preitschopf [(1989), page 148], on the grounds of an extensive numerical study.

 In addition, we present an explicit formula for the weights wi of s,
 Whereas generally results on E-optimality appear to be less explicit than

 those for D- and A-optimality, the present paper provides an instance testify-
 ing to the contrary. The D-optimal polynomial regression design has the
 extreme points of the Legendre polynomial for its support, with constant
 weight 1/(d + 1), as established by Hoel (1958). A similar characterization for
 the support of the A-optimal design is not known, but knowledge of the
 support points permits an easy way to compute the weights, see Pukelsheim
 and Torsney (1991).

 In Section 2 we start out by investigating the relationship between E- and
 c-optimality. There is a certain duality, but the kernel which relates the two
 problems to each other is convex in both variables. Hence duality gaps cannot
 be ruled out. Theorem 2.2 essentially states that duality holds true provided
 there exists a saddle-point.

 In Section 3, we therefore first turn to c-optimality. The work of Studden

 (1968) suggests that the Chebyshev polynomial Td(x)= Eq ocix' plays a
 central role. Theorem 3.1 introduces the designs (I that are optimal for

 c'KK'O, where c is the Chebyshev coefficient vector c = (cO, Cl, . . ., Cd)' and the
 matrix D = KK' is diagonal, with di, being 1 or 0 according as i is in the
 index set I or not. The proof relies on changing the polynomial basis from
 the power basis to the one provided by the Lagrange interpolating polynomials,
 with nodes given by the Chebyshev points.

 Received July 1991; revised January 1992.
 'On leave from the Universitait Augsburg, supported by the Volkswagen-Stiftung.
 2Partially supported by NSF Grant DMS-88-02535.
 AMS 1991 subject classification. 62K05.
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 E-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION 403

 Section 4 takes up E-optimality. Our main result, Theorem 4.1, establishes

 E-optimality for the subsystem Qr = K'S of the design e, that is optimal for
 the scalar system c'KK'O. To do so we make the assumption that the index set
 I contains at least one index for which the Chebyshev coefficient is nonzero.
 The proof concentrates on showing that the information matrix C of the

 design e, has /IllK'c 112 for its smallest eigenvalue. For degree d > 1 this
 eigenvalue is shown to be simple.

 Section 5 concludes the paper with a discussion of the results. There are
 interesting interrelations with the theory of polynomials, strengthening a
 result that flows from Erd6s (1947), and rederiving a theorem on the ex-
 tremum properties of Chebyshev polynomials that is due to Markoff (1916).

 We comment on the asymptotic behaviour of eI as the degree d tends to
 infinity, and on the transition to an arbitrary interval [a, b].

 Independently Heiligers (1991) has obtained results of a similar nature. He
 convexifies the kernel (d, M) --> d'K'M-1Kd on which we comment after

 Corollary 2.3, and he decomposes the E-optimal moment matrix M(e1) into
 two blocks of which each is investigated separately. In our exposition this
 corresponds to the polynomials P and Q which we introduce in part I of the
 proof of our Theorem 4.1. Our analysis is geometric in nature and connections
 with extremal properties of polynomials are made in Section 5. Besides these
 technical differences, Heiligers has a different outlook in that he exhibits the
 dependence of the results on the underlying interval [a, b] which we here
 simply take to be [-1, 1].

 2. E-Optimality and c-optimality. We consider the usual linear model
 in which the experimenter chooses experimental conditions x from a compact
 experimental domain g and then observes a real-valued response Y with

 expectation f(x)'O, where the continuous regression function f: 2- R' is
 known while 0 e WRk is an unknown mean parameter vector. Responses under
 different experimental conditions, or replicated responses under identical ex-
 perimental conditions are taken to be uncorrelated, with constant variance or
 This set-up for the design of experiments is standard, compare Kiefer (1974).

 An experimental design 6 on g" is a probability measure with finite support
 xl, ... , xl and corresponding weights w1, . . ., wl, directing the experimenter to
 realize a proportion wi of all observations under experimental conditions xi.
 The performance of a design 6 is evaluated through its moment matrix
 M(() = Eli = wi f(xi) f(xd)

 Let the parameter system of interest be K'O where the k x s matrix K has

 full column rank s. With a design 6 we associate the information matrix
 CK(M(6)) for K'O, given by

 CK(M()) = min LM() L
 LE-Rsxk: LK=I

 see Gaflke (1987). A design is called E-optimal for K'S when it maximizes the
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 404 F. PUKELSHEIM AND W. J. STUDDEN

 smallest eigenvalue of the information matrices CK(M(6)) among all possible
 designs.

 Given a coefficient vector c E Rk, a design is called optimal for c'O when it
 minimizes the standardized variance c'M(f)-c of the least squares estimator
 among all designs f under which the scalar parameter function c'6 is es-
 timable.

 The following two theorems point towards some intricate relations between
 E-optimality for K'S and optimality for z'K'6. The first theorem considers the
 case when the smallest eigenvalue of the E-optimal information matrix is

 simple.

 THEOREM 2.1. Let f be a design that has a positive definite information
 matrix C for K'6, and let +z E RW be an eigenvector corresponding to the
 smallest eigenvalue of C. If the smallest eigenvalue of C has multiplicity one,
 then f is E-optimal for K'O if and only if f is optimal for z'K'O.

 PROOF. By Theorem 8 of Pukelsheim (1980), if the smallest eigenvalue of
 C is simple, then 6 is E-optimal for K'O if and only if there exists a
 generalized inverse G of M(f) such that

 ( z'K'Gf (x) )2 < A (C ) ' for all x E .

 By the same theorem, the condition is necessary and sufficient for optimality
 for z'K'6. o

 In general, E-optimality may obtain without any scalar optimality property.

 For K = Ik and f(x) = (sin x, cos x)', with x e (0,2r], the only E-optimal
 design for 0 has moment matrix I2/2. But for every vector 0 # c e 0Rk the
 unique optimal design for c'6 has moment matrix cc'/IIc112. See Example 5 of
 Pukelsheim (1981).

 Following Elfving (1952) an important tool to discuss optimality for c'6 is
 the convex and compact set . c WRk which is the convex hull of the vectors
 ?f(x), with x e 9. We introduce

 p(c) = inf{,ut ? 0: c e , r = min{llcll ? 0: c e R k, p(c) = 1).

 We assume that there are k linearly independent vectors f(xl),..., f(xk);
 then . has nonempty interior, and p is a norm on R k. The quantity r is the
 in-ball radius of ., that is, the radius of the largest Euclidean ball inscribed
 in S.

 The central role of the Elfving set . is generally well known. For instance,

 for every design 6 there exists a design -q whose support points lie in the
 boundary of . such that -q is at least as good as 6, that is, M(rq) > M((). This
 is Proposition III.7 of Pazman (1986), see also Fellman [(1974), Theorem 2.1.2]
 and Elfving [(1959), Theorem 4.3]. In the present paper we take a different
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 E-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION 405

 approach in starting out, not from the boundary of M, but from the in-ball
 radius r.

 In Example 5 of Pukelsheim (1981) the E-optimal value for 0, v = 1/2, is
 strictly smaller than the squared in-ball radius, r2 = 1. In other instances, the
 two are equal. The following theorem implies the general inequality v < r2.

 THEOREM 2.2. Every design f with information matrix C for K'O and every
 vector 0 # z E Rs fulfill

 (1) Amin(C) < p(Kz))
 If a design e and a vector z # 0 satisfy (1) with equality, then 6 is E-optimal
 for K'O and every E-optimal design ( for K'S is also optimal for z'K'O.

 PROOF. Maximization of the smallest eigenvalue of C is the same as
 minimization of the largest eigenvalue of C1. We have the trivial inequalities

 Amax(C 1) ? min maxz'CK(M(q))1z
 -q: M00 >O 0lzlI =

 (2) ? max inf z'K'M(-q) Kz (2) ~ ~~~~~~llZlIl = n: M60 > 0

 = llax ( p( Kz))2.

 The last equality follows from the Elfving (1952) result that generally the
 optimal value for c'6 is (p(c))2, compare Studden [(1968), Theorem 2.1] or
 Pukelsheim [(1981), Theorem 1]. The final expression in (2) may be written in
 various ways:

 ( (K )2 ( p(Kz) \2 1
 max (p(Kz)) = max I
 IIzII= 1z#O lizil minz~ A( III/p Z))2

 This proves (1).

 Now assume that 6 and z satisfy (1) with equality. Attaining the upper
 bound (H1zII/p(Kz))2, the design f is E-optimal for K'6. For every E-optimal
 design ( for K'O we get

 (3) (P(K ))< 1112z'K'M( )Kz < AmaxCK(M(()) ) = (KI) 2

 Hence (p(Kz))2 = z'K'M(0 )-1Kz, showing that f is optimal for z'K'6. El

 COROLLARY 2.3. Let ( be an E-optimal design for K'6 such that the
 smallest eigenvalue of its information matrix C for K'O has multiplicity one,
 and let z be a corresponding eigenvector. Then C and z jointly satisfy (1) with
 equality.
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 406 F. PUKELSHEIM AND W. J. STUDDEN

 PROOF. The design f is also optimal for z'K'6, by Theorem 2.1. Hence we

 have (p(Kz))2 = z'K'M(6)-1Kz = 11Z112/Amin(C). E

 If f and z satisfy (1) with equality, then (3) implies, for all vectors d E R'

 with lid I I = 1 and for all designs -q with M(r) > 0,

 1 1 1
 d'K'M(() 1Kd _< 2z'K'(f) - Kz < -z'K'M(q)- Kz. 11Z~z11K - 11 Z112

 That is, the pair (z/lIllz, M(()) is a saddle-point of the kernel (d, M)
 d'K'M-1Kd that underlies (2). Notice, however, that this kernel is convex in
 both variables, see 16.E.7.f in Marshall and Olkin [(1979), page 469].

 Theorem 2.2 applies to polynomial regression of degree 2, see Kiefer [(1974),
 page 868] or Pukelsheim [(1980), Example 6.2.2]. There, the vector c =

 (-1,0,2)' fulfills llcll/p(c) = 1/ rf. The moment matrix of the optimal design
 f for c'O has smallest eigenvalue 1/5. Hence ( and c satisfy equality in (1),
 and f is E-optimal for 0.

 Thus Theorem 2.2 suggests a reverse approach to the problem, to begin
 with a vector z 0 0. Next find an optimal design f for z'K'6, the minimum
 variance provides the norm p(Kz). Finally check whether for ( and z equality
 holds in (1). If so, f is E-optimal for K'6.

 This poses the question with which vector z to begin. For K = Ik, the
 minimum of the right-hand side in (1) is given by the squared in-ball radius,

 minc A 0(IICII/p(c))2 = r2. The minimum is attained by a vector c which defines
 a direction where the in-ball touches the boundary of the Elfving set S.

 3. c-Optimal polynomial regression designs. In a polynomial regres-
 sion model of degree d ? 1 the regression function is f(x) = (1, x, ... , xdy.
 The experimental domain is taken to be Y= [-1, 1]. It is evident from
 Studden (1968) and the references given there that the Chebyshev polynomial

 Td(x) = E0Ocix' = c'f(x) plays a central role in the discussion. We
 call c = (c0, c1, ... , Cd)' E =d+1 the Chebyshev coefficient vector, and s=
 cos((d - i)7r/d), for i = 0, 1,... , d, the Chebyshev points.

 The Lagrange polynomials with nodes sO, Sl... . Sd are

 L(-) E vijxv = v'f(x), forall i = 0, 1 d,
 i H)rki~(Si - 8k) j-O

 say. The two (d + 1) x (d + 1) matrices

 A' = (vO, vl, * * *, vd), B = (f(s0), f(s1),..., f(sd))

 are inverse to each other, see Karlin and Studden [(1966), page 336].

 Any polynomial P(x) = E_0ajxi satisfies P(x) = Eq P(s,)Lj(x). A com-
 parison of coefficients yields

 d

 (4) aj E P (si)vij, for all j = 0, 1, ... ., d.
 i =o
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 E-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION 407

 For the Chebyshev polynomial Td we obtain Cd 2j = Ed( )d - Vi d-2j. The
 sign pattern of the Chebyshev vector is known to be Cd - 2j = (- lCd -2i . For
 our purposes the sign pattern of vi d-2j becomes essential.

 Multiplying out the products in the definition of the Lagrange polynomial
 we find, for all i=O, 1, ... ,d and j = 0, 1,...,[d/2],

 ( 5) ui,2 (- 1) d~- i +j 1 5I{o,l,...,[(d-1)/2]}\{i,d-i},#I=jf keISk
 H ke (0,1.d}\{i}I Si - SkI

 Thus the sign pattern of Vi,d-2j iS (- 1)d -+j. This and (4) yield
 d

 (6) ICd-2jI E IVi,d2jl.
 i=o

 The numerator in (5) is nonzero unless the summation is empty; this occurs
 only if d is even and j = d/2 : i. Since numerator and denominator of (5) are
 symmetrical in i and d - i we finally get

 (7) (-1) Vi,d-2j = IVi,d-2Il = lVd-id-2il > 0, otherse

 These properties were derived in Studden (1968) as a consequence of design
 optimality. Conversely, availability of these properties greatly facilitates the
 proof of design optimality.

 Let the parameter system of interest be 61 = Oi: i E I}, where I is the s
 element index set I = {i1, . .. , is). With the Euclidean unit vectors e0, e1, . . ., ed
 of Rd?1 and the (d + 1) x s matrix K = (eil, . . ., ej ), the parameter system of
 interest is represented as K'6. The matrix K fulfills K'K = Is and KK' -
 El=1eileii, the latter is a diagonal matrix D with dii being 1 or 0 according as
 i belongs to the set I or not.

 We will relate the set I to the Chebyshev index set {d - 2j: j =
 0, 1, . .. , [d/2]}, that is, the indices where the Chebyshev coefficients are
 nonzero. Our first essential assumption is that the parameters of interest
 contain at least one member from this set,

 (8) J = {j = 0,1, ,[d/2]: d-2j E I}) 0.

 This happens only if KK'c # 0. Notice that the vector KK'c = Ej E JCd-2jed-2j
 depends on I only through J. The following theorem gives the optimal design

 for c'KK'6 = EjEJCd-2jOd-2j

 THEOREM 3.1. Under assumption (8), the only design fI that is optimal for
 c'KK'6 has the Chebyshev points si for its support points, with weights

 ( )d-i u
 (9) Wi = Wd-i = .IK'c112 , for all i = 0,1,.. d,

 and minimum variance (p(KK'c))2 = IIK'c114, where the coefficients
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 408 F. PUKELSHEIM AND W. J. STUDDEN

 UO U1,...., Ud are determined from
 d

 (10) E u i f (si) = KK'c.
 i=o

 If J 0 {d/2}, then all the weights are positive; if J = {d/2}, then c'KKO = 00

 and Wd1/2 = 1, that is, the one-point design at 0 is optimal for 00.

 PROOF. The vector u = (u0, u1, . . ., UddY solves Bu = KK'c. We get u =
 A'KK'c, that is, u i = E8 E JVi d -2JCd -2j. This sum is nonempty by (8). Because
 of the sign pattern of vi d - 2j the weights are nonnegative,

 (11) (-1)dUi = (1)di E Vi,d-2jCd-2j = E IVi,d-2jl ICd-2il ? 0.
 jeJ jeJ

 Now (7) implies that the weights are all positive, unless J {d/2}, as well as
 symmetric. Using (- 1)d-' = Td(si) = c'f(si) we find that they sum to one,

 d d

 E (l)d-iui = C' E ui f(si) = c'KK'c = IIK'c112.
 i=O i=O

 Let M be the moment matrix of I The key step is the following:

 d 1 d 1

 (12) Mc = E wi f(si) f(si)'c = I I Kc12 E iuf(si)= 2 KK'c. i=O i=O I'c1

 Premultiplication by c'KK'M- gives c'KK'M-KK'c = IIK'c114.
 The design problem, of minimizing c'KK'M( )-KK'c over all designs (, is

 paired with the dual problem of maximizing c'KK'NKK'c, over those nonnega-
 tive definite matrices N that satisfy f(x)'Nf(x) < 1 for all x E [-1, 1]. In
 particular, the choice N = cc' satisfies f(x)'cc'f(x) = (Td(x))2 < 1, and the
 dual objective function takes the value IIK'c 114. Therefore I and N are
 optimal solutions of their respective problems.

 Furthermore only points x with f(x)'cc'f(x) = 1, that is, the Chebyshev
 points si, can support an optimal design. Corollary 1 of Pukelsheim and
 Torsney (1991) provides the unique optimal weights, wi = IuI /Ed0Iu k

 We remark that two index sets I and H that contain the same members
 from the Chebyshev index set lead to the same set J in (8), and hence yield

 identical designs in the theorem, fI = fH
 The case I = {, 1, ... , d} gives the optimal design (c for c'6, with minimum

 variance I1c114. The cases I = {d - 2j} yield the optimal designs fd-2j for the
 individual parameters 6d -2j, with minimum variance (p(ed 2j))2 = Cd21, given
 in Section 4 of Studden (1968). One has the relation

 _Jsi_ = E Cd2=) id2 __d2j~-j(i
 TrCr i j=o hCe Cd-2j j=w c /CI/2

 Therefore (c is a mixture of the designs d -2j, wihmxn egt d-2j111Cl2
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 E-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION 409

 From (12) we obtain the Elfving representation

 d

 KK'c/p(KK'c) = E (-l)d-iwif(Si) p(KK'c) = IIK'c112.
 i=O

 Thus the coefficient vector KK'c penetrates the Elfving set . through
 the face generated by the "alternating regression vectors" (- 1)df(S ),
 ( - 1)d - lf(s1),..., -f(Sd-1), f(Sd). Theorem 5.1 of Studden (1968) provides a
 related result.

 The following corollary sets the stage for E-optimality when the parameters
 of interest are K'O.

 COROLLARY 3.2. The design (I has an information matrix C for K'O that
 has K'c as an eigenvector corresponding to the eigenvalue IIK'cIK-2.

 PROOF. We introduce the residual projector R = Id1, - KK'. Let M be
 the moment matrix of I. Then we can represent the information matrix as

 C = K'MK - K'MR( RMR) RMK.

 Postmultiplication by K'c gives, using MKK'c = Mc - MRc and replacing Mc
 according to (12),

 I
 CK'c= K'c.

 IIK'c112

 4. E-Optimal polynomial regression designs. For E-optimality we
 need to ensure that the smallest eigenvalue comes from the block correspond-
 ing to the Chebyshev index set. Our second essential assumption is sufficient
 to secure this, demanding that any non-Chebyshev index is accompanied by
 the Chebyshev index following it,

 (13) d-1-2jE1I d-2jeI,

 for all j = 0, 1, .. ., [d/2]. Since the scalar case is taken care of by Theorem
 3.1, we assume that I contains at least two indices. Because of (13) the set J
 from (8) then cannot degenerate to {d/2}. Our main result is that the design {
 from Theorem 3.1 is E-optimal for K'O = OI.

 THEOREM 4.1. Under assumptions (8) and (13), the design fI from Theo-

 rem 3.1 is the only E-optimal design for K'O, with optimal value IIK'cIVl2. If
 d > 1, then the smallest eigenvalue of the information matrix C = CK(M(I))
 has multiplicity one.

 PROOF. (i) From Theorem 3.1 we know p(KK'c) = IIK'c112. In view of (1) of
 Theorem 2.2 we show that (IIK'c1I/p(KK'c))2 = IIK'cll-2 is the smallest eigen-
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 410 F. PUKELSHEIM AND W. J. STUDDEN

 value of C,

 z'Cz 2? Z 12 for all z E lR',
 IIK'c 1121

 with equality if and only if z is proportional to K'c. Let M be the moment

 matrix of ,. There exists a left inverse L of K such that the information
 matrix can be represented as C = LML'. Hence we wish to show that

 (14) IIK'cII2a'Ma 2 11z112, where a = L'z.

 Because of symmetry of the design fI the odd moments in M vanish, and M
 decomposes into two interlacing block matrices. Therefore IIK'cII2a'Ma can be
 written as

 d d

 E, (- 1)diu(af(si))2 = E (- 1)di Ui((P(si))2 + (Q(Si)))
 i=O i=O

 where P and Q are the polynomials associated with the Chebyshev index set
 and its complement,

 [d/2] [(d - 1)/2]

 P(x) = E ad-2.Xd2j, Q(X) = E ad-1-2jXd -1- 2j
 j=O j=O

 The contributions from p2 and Q2 are discussed separately.
 (ii) From (11) and (6) we get

 d d

 E (p(Si))2( _ 1)d-iu = E (p(Si))2 E IVi,d-2jIl Cd-2j1
 i=0 i=0 jeJ

 E ( E (P(si))2Ivi,d-2j1) ( E vi,d-2J)

 d J (15) 2 E t E ~~1: p(Si))2,Vi d-2jl (1) IVi,d-id2j
 jc-J i=O =

 d 2

 = E E p( Si) VVi, d-2j -Vid2
 jE-J i=O

 = E a-2j i
 jeJ

 where in the last line we have applied (4).
 If equality holds in the Cauchy inequalities in (15) then we need exploit only

 any one index j = d/2 to obtain proportionality, for i = 0, 1, ..., d, of

 P(sj) i|Vi,d-2jI and (-)d vivi,d2jl . Because of Vi,d-2j # O this entails
 P(si) = a(- 1)d-i, for some a E DR. Hence equality holds in (15) if and only if
 P = aTd, that is, ad-2j = aCd-2j for all j = O , [d/2].
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 E-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION 411

 (iii) The argument for Q2 is reduced to that in part (ii), by introducing

 [(d- 1)/2]

 xQ(x) = E ad-1-2jXd-2 = P(x),
 j=O

 say. From S2 < 1 and (15) we get the two estimates

 d d

 (16) E~1 (Q(Si))2(-1 di U i 5i2 S(Q(Si))2( _ d-iUi
 i=O i=O

 (17) (P(s)) 2 ( _ >l E a2
 i=O jeJ

 If d is even and j = d/2, then the last sum involves the coefficient of xo in P
 which is a-1 = 0.

 Equality holds in (17) only if, for some , E OR, we have P = ,3Td. In case
 d > 1 equality holds in (16) only if (Q(Si))2 = S?(Q(Si))2. Any one index
 i = 1, ... , d - 1 entails Q(si) = 0 = P(si) ( 1)-'I,. Hence equality obtains
 in (16) as well as in (17) if and only if ad-1-21 = 0 for all j = 0, 1, ...
 [(d - 1)/2].

 (iv) Combining (15), (16) and (17), and now utilizing assumption (13) we
 obtain

 IIK'cII2 a'Ma ? E (a 2J +a2 ||K 11 aa 2 ( d-2j + d-1-2j)
 jJE

 j E a-J

 iel

 = a'KK'a.

 With a = L'z and LK = Is we get a'KK'a = 11Z112. Hence (14) is established. If
 d > 1, then equality holds in (14) if and only if a = ac, that is, z = aK'c.

 (v) If f is another E-optimal design for K'O, then ( is also optimal for
 c'KK'O, by Theorem 2.2. Hence the uniqueness statement of Theorem 3.1
 carries over to E-optimality for K'O. ro

 It is an immediate consequence of the theorem that the design (c that is
 optimal for c'O is the unique E-optimal design for the full parameter vector 0,

 and that the smallest eigenvalue of its moment matrix is IICII-2.

 5. Discussion. It follows from Theorems 2.2 and 4.1 that for polynomial

 regression on [-1, 1] the Elfving set M has in-ball radius IICII-2, and that the
 Chebyshev coefficient vector c defines the direction where the in-ball touches
 the boundary of S. This can also be obtained from the following extremal
 property of the Chebyshev polynomial.

 LEMMA 5.1. For every vector a E d Rd+l with max i = , d(a'f(si)) < 1 we
 have the inequality Ia 112 < IcC12. If d > 1, then equality holds if and only if
 a = +c.
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 PROOF. Owing to a result of Erdbs [(1947), pages 1175, 1176], the polyno-
 mial P(x) = a'f(x) satisfies IP(z)I < lTd(z)l, for all complex numbers z with
 Izl ? 1. Hence integration relative to Lebesgue measure on the complex unit
 sphere yields

 1a112 =- 2IP(ei9)12dp < 2 "ITd(e ip)12 d -C112.

 Equality necessitates ITd(z)l = IP(z)l, for all z in the complex unit sphere.
 With z = =- , the arguments of Erdbs show that equality holds only if
 a = +c. O

 The supporting hyperplanes to R are given by the vectors 0 # a E Rd ? 1
 such that maxX [l,l]la'f(x)l = 1. Lemma 5.1 yields Iail2 ? 11c112. The hyper-
 plane {v E Rd+l: a'v = 1} has distance 1/llall to the origin. Therefore the
 supporting hyperplane closest to the origin is given by the Chebyshev coeffi-

 cient vector c, and has distance r = 1/llcll. This and Theorem 2.2 provided the
 starting point to show that the design (c that is optimal for c'O is also
 E-optimal for 0.

 However, in retrospect, Theorem 4.1 provides a result stronger than Lemma

 5.1, in that it refers p2 over s0, s . . ., Sd only to its average with respect to
 the measure (c, rather than to its maximum.

 COROLLARY 5.2. For every vector a E Rd + 1 with f[- 1, 1](af(x))2 d ?c < 1, we
 have the inequality ail2 ? 11c112. If d > 1, then equality holds if and only if
 a = +c.

 PROOF. For K = Id+?, the eigenvalue property (14) is a'Ma ? 1la112/11c112.
 This is equivalent to 1 ? 11aII2/11C1I2, for all vectors a E Rd+?1 satisfying
 a'Ma < 1. r1

 Yet another form of our result pertains to the polynomials P(x)=
 a'f(x)/llall that are standardized so that their coefficient vector has Euclidean
 norm one. Then (14) becomes

 (1()2 2
 ,( (P ( ) )d (C 2, Td (x) ) d(c,

 exhibiting a least squares property relative to (c of the standardized
 Chebyshev polynomial which is complementary to the usual least square
 property relative to the arcsin distribution, see, for instance, Rivlin [(1990),
 page 42].
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 Moreover, Theorem 3.1 rederives and extends the classical extremum prop-
 erty of Chebyshev polynomials. Namely, one has

 IIK'cil-4= max (c'KK'M(MY1KK'c)
 (: M(f)>0

 =max min a'M(f)a
 f a'KK'c = 1

 = min maxa'M(f)a
 a'KK'c==1 =

 2
 = min max (a'f(x))

 a'KK'c= 1 xe[-1, 1]

 Hence among all polynomials P(x) = a'f(x) that satisfy a'KK'c = 1, the

 sup-norm maxX E[_1 1]IP(x)J has minimum value IIK'cI1-2, and this minimum
 is attained only by the standardized Chebyshev polynomial Td/IlIK'cl2. For the
 highest index d this result is due to Chebyshev, for d - 2j to Markoff (1916),
 see Natanson [(1955), pages 36, 50] or Rivlin [(1990), pages 67, 112]. Our
 formulation also allows for combinations of those coefficients.

 It is not hard to provide an analogue of Theorem 3.1 that covers optimality
 for the remaining individual coefficients od-1-2j' see Pukelsheim (1992). As
 pointed out by Studden (1968), the optimal design for Od-1-2j is supported by
 the Chebyshev points of one degree lower.

 For large degree regression d -- oo, the E-optimal designs (c converge
 weakly to the distribution with Lebesgue density

 - 1 < x <1.
 'n(+2) 1- ) - 1 -r(l + x) X2

 If m(d) is the index of the maximum absolute entry of the Chebyshev

 coefficient vector, lcm(d)l = maxi=0,1 d12J1Cd-2j1) then Md- m(d)/d = 1/
 v. The limiting density is the member for q = 1/ x2_ of the family on page
 1395 of Studden (1978).

 That some assumption like (13) is needed is evidenced by Preitschopf
 (1989). He quotes d = 3 and I = {0, 1, 2} as an instance where the E-optimal
 design for K'o is not supported by the Chebyshev points.

 The majority of Preitschopfs tabulations are for the interval [0, 1]. They
 illustrate that our Theorem 4.1 does not carry over to this interval. For
 example, for d = 4 and the four subsets (0, 1, 2, 3, 4}, (0, 1, 2, 4}, (0, 2, 3, 4},
 (0, 2, 4}-all having the same set J = (0, 2, 4}-the E-optimal designs for K'O
 are distinct on [0, 1], whereas on [-1, 1] our Theorem 4.1 proves them to be
 identical.

 However, on [0, 1] or any other positive interval, the solution is more
 transparent since the oscillatory polynomial Wd(x) 0=wix' = w'o that
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 replaces Td has all nonzero alternating sign coefficients and the analogue of
 the Chebyshev index set is simply the full set {O, 1, . .. , d}. It can be shown [see

 also Theorem 5.1 of Murty (1971)] that the optimal design , for w'KK'O for
 every index set I (including the designs el for the individual coefficients) is
 supported by the extreme points of Wd. The same will apply to the E-optimal

 design 6, for 0, where now the interlacing block structure of M(6,) needed in
 the proof of our Theorem 4.1 is no longer prevalent. All these designs are
 supported on the full set of extreme points of Wd with the lone exception of

 the single coefficient 00 where the design concentrates all its mass at zero
 when the interval [0, 1] is under consideration.

 Acknowledgments. We would like to thank T. J. Rivlin for the proof of
 Lemma 5.1, A. Wilhelm for supplying numerical evidence toward Theorem 4.1
 and N. Gaffke for alerting us to the work of B. Heiligers.
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