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 Efficient rounding of approximate designs

 BY FRIEDRICH PUKELSHEIM AND SABINE RIEDER

 Institut fur Mathematik, Universitiit Augsburg, W-8900 Augsburg, Germany

 SUMMARY

 Discretization methods to round an approximate design into an exact design for a

 given sample size n are discussed. There is a unique method, called efficient rounding,

 which has the smallest loss of efficiency under a wide family of optimality criteria. The

 efficient rounding method is a multiplier method of apportionment which otherwise is
 known as the method of John Quincy Adams or the method of smallest divisors.

 Some key words: A-optimal polynomial regression design; Asymptotic order of efficiency loss; D-optimal
 polynomial regression design; Exact design; Method of John Quincy Adams; Method of smallest divisors;
 Multiplier method; Quota method; Rounding method.

 1. INTRODUCTION

 In approximate design theory a design assigns to a number, say 1, of points in some

 underlying design space weights wl,..., w, e [0, 1] which sum to one, directing the
 experimenter to draw the fraction wi of all observations under experimental condition i.
 For the design to become realizable for a fixed sample size n, the weights wi must be
 discretized to integers ni which sum to n. One approach is to calculate the quota nwi,
 also called the fair share, and to rely on the usual numerical rounding of nwi to the
 closest integer ni. However, the numbers ni so obtained need not sum to n.

 As an example consider rounding the weights wi to three digits, which is just another
 manifestation of the problem of discretizing the design weights for a sample of size
 n = 1000. The 20 A-optimal designs for polynomial regression listed by Pukelsheim &
 Torsney (1991, pp. 1622-3) may serve as an example. Only half of them sum to one,

 whereas the counts of the sets of weights which sum to 0-998, 0-999, 1-001, 1-002 are
 three, five, one, one, respectively. This is in line with the results of Mosteller, Youtz &

 Zahn (1967) and Diaconis & Freedman (1979) that the probability that rounded percen-
 tages not sum to one is clearly positive.

 In the present paper we argue that there is another rounding procedure which performs

 much better. The literature contains some remarks that the asymptotic efficiency loss due

 to rounding stays bounded of order n-1. In the case of differentiability the order improves
 to n-2. In ?? 2 and 3 we use G- and D-optimal approximate and exact designs to illustrate
 that these orders are generally best possible. On the other hand these examples make it
 clear that the asymptotic results are misleading if anything, when it comes to finding
 apportionment methods which work well for any finite sample size n.

 In ? 4 we discuss the class of multiplier methods. Every discretization method in this
 class is sample size monotone, that is, if n increases then the discretizations ni do not
 decrease. This is investigated in detail by Balinski & Young (1982) who study methods
 of apportionment for electorial bodies. The problem in political science contexts is that
 there is no clear-cut optimality criterion to justify a specific choice out of the ensemble
 of all multiplier methods.

This content downloaded from 137.250.161.163 on Thu, 31 Aug 2017 12:33:33 UTC
All use subject to http://about.jstor.org/terms



 764 FRIEDRICH PUKELSHEIM AND SABINE RIEDER

 In contrast experimental design theory provides a wide selection of optimality criteria,

 such as the D-, A-, E-criteria and others. In ? 5 we deduce an efficiency bound which
 holds uniformly over the class of all such criteria that are of interest in experimental

 design. We then set out to optimize the efficiency bound. The best bound is attained for
 a unique multiplier method which is based on efficient rounding, otherwise known as
 the method of John Quincy Adams or method of smallest divisors (Balinski & Young,
 1982). Of the various ways to characterize the efficient rounding procedure, one which

 is particularly rewarding from the statistical point of view is based on the likelihood
 ratios of the standardized discretizations nil n relative to the true weights wi.

 2. ASYMPTOTIC ORDER O(nn1)

 Kiefer (1959, p. 281; 1960, p. 383) mentions that given an approximate design with
 weights wl,..., w1 there exists an exact design with frequencies nl,..., n, for sample
 size n =i_,ni with criterion value to within order O(n-1). To see that this order is
 generally best possible we need consider only linear regression with a single control
 variable in [-1, 1] (Silvey, 1980, p. 4). In the approximate theory the G-optimal design
 assigns weights 2 to the two endpoints ?1. In the exact theory the G-optimal design
 assigns frequencies m to ?1 if n = 2m is even, while adding an additional observation
 at zero if n = 2m + 1 is odd. Straightforward evaluation of the G-criterion yields efficiency
 loss 1/(2n - 1) or 0 for n = 2m + 1 or n = 2m, respectively. Hence the order is O(n-1).

 In this example the exact G-optimal design calls for an additional support point at
 zero if n is odd. Furthermore the remarks of Gaffke & Krafft (1982, p. 397) suggest that
 for quadratic regression the exact G-optimal design has support points ?1, ?a(n), 0 of
 which a (n) varies with sample size n. This is just another illustration of the well-known
 fact that the problem of finding an exact optimal design is quite intricate. Bandemer &
 Niither (1980, ? 4.4.5) present several round-off strategies which take into account the
 particulars of a given specific optimality criterion. However, we do not aim to solve an
 exact design problem. Rather we want to find a rounding method which works well
 uniformly over all reasonable criteria, and which is simple to handle. Therefore we restrict
 attention to those methods which maintain the 1 support points that belong to the given
 approximate design.

 For instance, the approximate G-optimal design for linear regression with a single

 control variable has support points ?1. If n = 2m + 1 is odd then for the points ?1 the
 frequencies m + 1 and m, or m and m + 1 are natural discretizations. Under the G-criterion
 either choice has efficiency loss equal to 1/n = O(n-1). Thus the restriction to the support
 points ? 1 increases the efficiency loss from 1/ (2n -1) to 1/n, but does not change the
 asymptotic order O(n-1).

 3. ASYMPTOTIC ORDER O(n 2)

 If the optimality criterion is differentiable at the optimal design weights then the
 gradient term in the Taylor expansion vanishes whence the efficiency loss becomes
 bounded of order n-2. The subtleties are in the differentiability assumptions which permit
 an application of Taylor's theorem; see Pukelsheim (1992, Theorem 12.10) and unpub-
 lished reports by J. Fellman and S. Rieder. In the case of differentiability the order
 O(n-2) is best possible, as is shown by the following example.
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 Efficient rounding of approximate designs 765

 Consider a dth-degree polynomial regression with a single control variable over [-1, 1].
 The approximate D-optimal design assigns uniform weight 1/k to each of k= d +1
 support points (Silvey, 1980, p. 43). For the exact problem we represent the sample size
 n = mk + r as an integer multiple m of k plus a remainder r e {O,..., k - 1}. It seems
 natural to consider the discretizations which come as close as possible to the uniform

 weights 1/k, that is, which assign frequency m + 1 to r points and frequency m to the
 remaining k - r points. A remarkable result of Gaffke (1987) says that these discretizations
 are exactly D-optimal, except for a few small values of n. In other words, these discretiz-
 ations have the smallest D-efficiency loss, and any other discretization performs worse.

 In this example it is fairly straightforward to determine the constant in the O(n-2)
 term. To this end we scale the D-efficiency loss by n2/k2 and introduce

 n2[ detIl/k {M(n)}
 AD(n)=p[1- detlk {M(o)}J (1)

 where M(n) is the k x k information matrix of the standardized exact D-optimal design
 for sample size n, with weights (m + 1)/n and m/n, while M(oo) is the information matrix
 of the approximate D-optimal design, with weights l/k. Following Gaffke (1987) and
 Pukelsheim (1992), direct evaluation of the determinants yields

 AD(n)=(m+a){ m+a-m (+ ) }, (2)

 with remainder a = rl k e [0, 1]. The biggest loss is incurred in the first interval where
 the discretization effect is felt most,

 AD(n) - max (1 + a)(1 + a -2a) < 0-135.
 a!E[O,1]

 For large periods m the bound 0-135 tightens to 0-125, see Fig. 1.

 Unfortunately the uniformity of the D-optimal weights makes it impossible to appreci-
 ate different discretization methods. Every reasonable method will lead to the frequencies
 m + 1 and m as given above.

 Nor does the Taylor expansion provide the right clue to discriminate between different

 apportionment methods. The estimate of the remainder term is based on the principles

 AWD(n)

 0.135{-

 11 55n0 n

 Fig. 1. Asymptotic efficiency loss of order O(n-2). The dots
 indicate the scaled efficiency loss AD(n) of (1) and (2), of
 the standardized exact D-optimal design for sample size n
 relative to the approximate D-optimal design, in a poly-
 nomial regression of degree d = 10 with a single control
 variable over [-1, 1]. The bound 0-135 does not depend
 on the degree d of the model, and asymptotically tightens
 to 0-125.
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 of calculus, not statistics. Kiefer (1971, p. 116) chooses to minimize the total variation

 distance maxi, Inil/n - wij. The method of Hamilton is the unique apportionment method
 which minimizes this sup-norm or any other Ip-norm (Balinski & Young, 1982, p. 104).
 A systematic analysis shows that this method is seriously flawed, and Balinski & Young
 review the political complications that arose with its use in the history of the U.S.A. For
 design purposes it suffices to notice that the method of Hamilton is not sample size
 monotone. In other words, a sequential application of the rule may lead to the situation
 that for sample size n +1 the Hamilton apportionment calls for the removal of an
 observation which was part of the discretization of sample size n.

 4. MULTIPLIER METHODS

 The defect of the method of Hamilton is that it is too concerned with the quotas nwi.
 It ignores the problems that are caused by which procedure is used to round nwi to ni,

 and whether it applies to all quotas nwl,..., nw, equally fairly. Multiplier methods
 reverse the issue. Every multiplier method corresponds to a rounding procedure R. This
 is a monotone function rounding a real number z to one of the two integers closest to z
 or to both; see ? 5. The rounding procedure R is then applied to the pseudoquotas
 Vw1, . . ., i'w,, where v > 0 is some multiplier such that the rounded numbers R ( iwi) sum
 to n. The point is that every pseudoquota i'wi gets rounded using the same method R.
 The multiplier v has no meaning other than being a technical tool.

 As the multiplier x' increases so do the frequencies R(Pwi) and their sum Xi,, R(Piwi).
 Hence for two sample sizes n > n a multiplier i which works for the large sample size
 n cannot fall below a multiplier v for the small sample size n. This proves that every
 multiplier method is sample size monotone.

 There is another advantage of multiplier methods of apportionment. Due to limited
 machine precision the weights wi often do not sum to one on a computer. This calls for
 the normalization wi/u, with , = YL1 wi. But a multiplier method yields the same result
 whether based on wi, or on wi/u. In other words, multiplier methods are stable against
 numerical inaccuracies.

 Thus our problem now reduces to finding a rounding procedure R which is appropriate
 for the design of experiments. Fedorov (1972, p. 157) argues that the discretizations ni
 of the approximate weights wi ought to fulfil

 ni B r(n -I)wi l (i = 1, . . ., 1). (3)

 Here the function [.1 means to round up to the next integer. Appendix B of Balinski &
 Young (1982) shows that of the five classical multiplier methods that are associated with
 the names of Adams, Dean, Hill, Webster and Jefferson only that of Adams respects the
 Federov minimum apportionment (3). We conjecture but are unable to prove that this
 extends to all multiplier methods. However, there is an alternative and more convincing
 approach which distinguishes the Adams method even among all apportionment methods,
 including those which are not multiplier methods.

 To this end let f denote the approximate design which assigns weight wi to the support

 point xi, for i = 1, ..., 1. For any other approximate design q we define the minimum
 likelihood ratio of 7 relative to (,
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 Efficient rounding of approximate designs 767

 Then we have

 E, (xxT) T E 'q(xi)xix> e Eisl w,x,Xf = e,1Ee(XXT).

 That is, the information matrices of q and f (Silvey, 1980, p. 15) satisfy

 M( 7q) ? r/e(f) (5)

 Now we consider a specific optimality criterion 4, a real-valued function defined on
 the nonnegative definite k x k matrices, and assume that 4 is matrix isotonic and positively
 homogeneous. This embraces virtually all of the classical criteria. For instance the D-,

 A- and E-criteria correspond to OD(M) = detl/k M, kA(M) = (tr M1/kf1, and E(M)
 equals the smallest eigenvalue of M. For any such 4, (5) entails

 O(M(rq)) >- O(tn/1M(0)) = 8"/MM(0)-

 In other words, , from (4) provides a lower bound on the +-efficiency ratio
 (k(M(7,))/4>(M(f)). We call e,/~ the efficiencybound of q relative to f. It holds uniformly
 over all criteria 4 which are matrix isotonic and positively homogeneous, and it applies
 to the information matrices (5).

 For the discretization issue we consider a standardized exact design q (xi) = ni/ n. We
 have now arrived at a specific optimization problem, to find a discretization ni which

 has the best efficiency bound. That is, we wish to solve maxnj,...,n, minj1< ni/ wi. The solution
 is the Adams apportionment, see Proposition 3.10 of Balinski & Young (1982, p. 105),

 or Pukelsheim (1992, Theorem 12.7). Thus the Adams apportionment is the most efficient
 discretization method for the design of experiments. In the next section we discuss the
 rounding procedure which underlies the Adams apportionment, and which we call efficient
 rounding.

 5. EFFICIENT ROUNDING

 The rounding procedure which underlies the Adams apportionment is the one where

 fractional numbers z always get rounded up to the next integer, while integers z may be
 rounded up or not. Because of the latter ambiguity the rounding [z[ is defined to be a
 one- or two-element set, rather than a number R(z) as in ? 4,

 HT 11 {{k+1} forzE(k,k+1),
 {{k,k+1} forz=k,

 for all integers k. The corresponding multiplier method results in a set of apportionments

 E (e, 7)) which consists of those discretizations (nl,.. ., nl) such that the frequencies ni
 lie in I vwi1 and fulfil Xi,- ni = n, for some multiplier v ? 0. We call LI the efficient rounding
 procedure, and E(g, n) the efficient design apportionment.

 The fact that an efficient apportionment E((, n) may be a set rather than a singleton

 is illustrated by the D-optimal designs of ? 3. For sample size n = mk + r there are

 k!/{r!(k- r)!} possible ways to assign the frequencies m +1 and m to the available
 support points. These assignments make up the set E((, n), and they appear equally
 persuasive. The reason is that the constant weights wi = 1/k do not provide enough
 information for the apportionment method to discriminate between these discretizations.
 The same phenomenon occurs when two or more weights are too close together rather
 than being exactly equal.
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 768 FRIEDRICH PUKELSHEIM AND SABINE RIEDER

 Under the efficient rounding a pseudoquota iwi with a positive fraction is rounded up
 to the next integer regardless of how small the fraction is. Therefore if n : 1 then every

 discretization in E(e, n) has ni : 1, and the support set stays the same as that of 4. It
 follows that the associated information matrices have the same range, and provide the
 same set of identifiable parameter functions. One can also verify (Pukelsheim, 1992) that

 the efficiency bound 6,/E is the same whenever the standardized exact design q (xi) = ni/n
 arises from some discretization (nl, . . ., n,) in E(g, n), no matter which one. This shows
 that the efficiency bound is intrinsic to the set E(g, n) rather than to any one of its

 members. Hence we define

 ,(n ) = min nil
 ilWi

 with an arbitrary member (nl, . . ., n,) of E (e, n). Having singled out the efficient rounding
 as the one which has the uniformly best efficiency bound we are left with the task of
 finding a quick way to calculate an appropriate multiplier v.

 6. IMPLEMENTATION

 In our use of the efficient design apportionment we have found it fastest to proceed
 in two steps, to use the multiplier v = n -1/2 to apportion most of the observations, and

 to deal with the remaining observations individually. The multiplier vz= n -1/2 is moti-
 vated as follows.

 The multiplier n - 1 of the Fedorov minimum apportionment (3) is generally too small

 since ni E j (n - I) wil implies

 EiGI1 ni < iG (n - 1)wi + 1} = n.

 We tested this multiplier for the efficient apportionment of the E-optimal design for

 polynomial regression of degree 10, for n = 11,..., 1000. The average discrepancy
 (z;Gni) - n turned out to be -5 499. That is, on average the last 1/2 = 55 observations
 had to be assigned individually. On the other hand the multiplier n tends to be too large

 since n E I Enwij implies ni n, Xi,-,l nwi = n. As a compromise between n - 1 and n we
 recommend the use of v = n -1/2.

 For the 20 designs of Pukelsheim & Torsney (1991) the multiplier n -1/2 for n = 1000
 yields the following discrepancy counts,

 (Xi- ni) - n -2 -1 0 1 2
 counts 3 2 12 2 1

 That is, in 60% of cases the multiplier n - 1/2 gave the efficient design apportionment,
 while in 25% and 15% it assigns too few and too many observations, respectively.

 This leads to problems of the following type. Given (nl, . . ., n1) E E(e, n), where does
 the next observation go or which observation should be deleted to obtain an efficient
 apportionment of sample size n+ 1 or n -1? The optimality property of ? 4, that the
 efficient apportionment maximizes mini, nil/wi, provides the answer. For a transition
 from n to n + 1, a frequency nj such that nj/ wj attains mini-I ni/ wi ought to be augmented
 to n. + 1. Similarly, for a transition from n to n - 1, a frequency nk for which nk/wk attains
 maxiS1 (n, - 1)/we ought to be reduced to nk - 1; compare Balinski & Young (1982, p. 100).
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 Efficient rounding of approximate designs 769

 7. EFFICIENCIES

 Since the efficient design apportionment has an efficiency bound which is optimal it
 is not surprising that it obeys the asymptotic orders of ?? 2 and 3. If f is +-optimal and
 differentiability holds then the order O(n-2) applies, with a constant depending on 4
 and f. In contrast, order O(n-1) is achieved by the efficiency bound itself irrespective of
 the criterion X,

 E-,(n) S /n.

 This estimate holds, not just asymptotically, but for every n. The bound i/n also applies
 to the loss of 4-efficiency, uniformly over all optimality criteria 4 which are matrix
 isotonic and positively homogeneous. The constant I may be improved if a particular

 criterion 4 is under study. For instance in the example of ? 2 the G-efficiency loss is
 l/n, while the present bound is 2/n.

 For the 20 designs of Pukelsheim & Torsney (1991) we obtained the following results.
 In the ten cases where the numerical rounding fails to sum to one, the A-efficiency of
 the numerical rounding relative to the efficient rounding is clearly governed by the
 discrepancy of the numerical rounding and equals 0-998, 0-999, 1-001, 1-002 in the three,
 five, one, and one cases mentioned in ? 1. Of the ten cases where the numerical rounding
 sums to one only six are rounded efficiently. For the other four the efficient rounding is
 different, and improves the A-criterion in one case while being the same up to order
 10-5 in three cases. Of course, there is no guarantee that a particular criterion 4 improves
 under the efficient rounding although our derivation suggests that this is more likely to
 happen than not.

 The efficient apportionment results in a unique discretization in 16 out of the 20 cases.
 In the remaining four cases the efficient apportionment contains two discretizations which
 break the symmetry. For instance, the A-optimal design for degree six has efficient
 apportionment (65, 147, 185, 205, 185, 148, 65), or (65, 148, 185, 205, 185, 147, 65). In
 all four cases the A-criterion is constant. Another example where a transition to exact
 designs entails a loss of symmetry is given by Kiefer (1959, p. 281; 1971, p. 117).
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