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SUMMARY

We show that adjusted orthogonality properties are necessary and sufficient for
a multiway block design to be uniformly optimal for estimating the treatment
contrasts.
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1. INTRODUCTION

We consider a design D with m blocking factors. We assume that the model has
additive fixed effects and no interactions, and is given by

Yijrimt = 0+ 715+ 000 + Ymjm + Cijiimts

with i = 1,...,a,and jz = 1,..., b for k = 1,...,m, and t = 1,...,n4_;.-

We consider a design D with m blocking factors. We assume that the model has
additive fixed effects and no interactions, and is given by
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level ji. of the kth blocking factor. The observational errors e;;,.. j,.¢ are assumed
to be uncorrelated, with mean zero and variance o? > 0.

In matrix notation the model turns into

y=Uat X Zoute

withn =3

matrices U and Z; are binary n X a and n x by matrices, respectively, and satisfy

iiv oo THidtenjme L€t I denote the n X 1 vector of ones. The design
Ul, = Zily, = I,. They are related to the incidence matrices Vi between
treatments and blocking factor k, and N, between blocking factors k and £, for
k,£=1,...,m with k # £, through

Ne=U'Z;, N = 2,24,

where the superscript * denotes transposition. Moreover, we designate by Ay =
Z} Z the diagonal matrix with diagonal elements equal to the replication number
of the levels of blocking factor k, for k=1,...,m.

Our interest concentrates on the treatment contrasts
p— 1
(ar —@.y..oy a0 —al),

with @ = ), a;/a, while the effects ~;;, are considered as nuisance parameters.
As usual the information matrix for the treatment contrasts is denoted by C, we
call C the contrast information matrix. We are also interested in the matrix

Ck = Qo — Nk&EIN;,

the contrast information matrix of the simple block design for treatments
and factor k only, where A; is the diagonal matrix of treatment replications.
Pukelsheim & Titterington (1986), eq. (4), use the formula

C = Cy - By,

where the matrix By is nonnegative definite. This shows that the contrast
information matrix in an m-way block design, C, may be obtained from the
contrast information matrix in a simple block design, Cy, by subtracting a penalty
term B due to entertaining the nuisance parameters that come with the other
blocking factors £ # k.

The case of a vanishing matrix By is of interest because it provides a simple
way of obtaining C from Cj. Also it has an attractive interpretation in terms

contrast information matrix in a simple block design, Ci, by subtracting a penalty
term B due to entertaining the nuisance parameters that come with the other
blocking factors £ # k.

The case of a vanishing matrix By is of interest because it provides a simple
way of obtaining C from Ci. Also it has an attractive interpretation in terms




415

is uniformly optimal for the treatment contrasts, among the designs that lead to

the same “marginal” contrast information matrix C;.

Pukelsheim & Titterington (1986), page 263 gave a sufficient condition for the
penalty term By to vanish. However, that condition fails to be necessary. In

the present note we provide a necessary and sufficient condition for the equality

C=Cb

2. NECESSARY AND SUFFICIENT CONDITION
Out of the existing blocking factors 1,...,m we consider a fixed blocking factor k.

THEOREM 1. An m-way block design satisfies
C = Cy
if and only if the treatments and the blocking factors £ # k are orthogonal after
adjusting for blocking factor k, that is,
NATNie = Ny
forallf=1,...,m with £ # k.

Proof. Without loss of generality we choose k = 1. For a matrix A let R(4)
designate the range (column space) of A, and denote by P4 and @ 4 the orthogonal
projectors onto R(A) and onto the orthogonal complement of R(A), respectively.

We find it convenient to base the analysis on the representation

za)Us (1)
where (Zi,...,2Z,) denotes the partitioned matrix comprising the matrices
Zyy..., Zm; see Hedayat & Majumdar (1985), page 698. From the
decomposition of R(Zi,...,Zn) into the orthogonal direct sum of R(Z;) and
Zyy...y Zm; see Hedayat & Majumdar (1985), page 698. From the
decomposition of R(Z;,...,Zm) into the orthogonal direct sum of R(Z;) and

WHETe (L1y.+-y4m) GENOLES LOE PArtiLiOUEU LUALLIA WULLPLISILE WG 1Lauues
Zyy...y Zm; see Hedayat & Majumdar (1985), page 698. From the
decomposition of R(Zi,...,Zm) into the orthogonal direct sum of R(Z;) and
R(Qz (22, .., 2Zm)) it follows that

Qizi,ze) = In— (P2, + Bisy,8m)) = Q2 — B8 (2)
where Sy = Qz,Z¢ for £ > 2.

Substitution of (2) into (1) yields C = C, — U'Ps,,..5,)U. This shows that
C = C, if and only if U'S; = 0 for £ > 2. With S; = Qz, Z, the latter becomes

U'Qz,Z¢ = 0. ()
o
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Adjusted orthogonality was introduced by Eccleston & Russell (1975); it is also
known as strict orthogonality. Its relationships to another, weaker version of
orthogonality is studied by Khatri & Shah (1986), Styan (1986), and Baksalary &
Styan (1991). As predicted by Eccleston & Russell (1975), page 341, the concept
of adjusted orthogonality proves to be useful and reasonable in many situations.
Their Theorem 1 (1975) page 343, compares connectedness of a design D, with m
blocking factors, and the design D, with only the kth blocking factor, that is,
it concentrates on whether C has rank a — 1 when Cj has rank a — 1. The
conclusion of our Theorem 1 is considerably stronger, in that we assert equality
of the matrices themselves.

COROLLARY 1. For a two-way block design D with treatments orthogonal to
rows after adjusting for columns, D has the same subspace of estimable treatment
contrasts as the treatment-column one-way block design D,. In particular, D is
connected if and only if Dy is connected.

Proof. By Theorem 1 the matrices C and C; are equal, hence so are their ranges

which represent the corresponding subspaces of estimable treatment contrasts. 0

In terms of design optimality we have the following corollary. Eccleston & Kiefer
(1981) study optimality criteria that are real-valued. In contrast we here apply
the notion of uniform optimality of Kurotschka (1971) which refers to the usual
(Loewner) matrix ordering. This is a strong optimality concept, and the present

situation provides one of the rare circumstances where it can be brought to bear.

COROLLARY 2. An m-way block design such that treatments are orthogonal
to blocking factors £ # k after adjusting for factor k is uniformly optimal for
the treatment contrasts, among the designs with incidence matrix N, between

treatments and blocking factor k.

Proof. The candidate design has contrast information matrix C = Cj, by
Theorem 1. Every competing design with contrast information matrix 5, say,
satisfies C = Cy — B < Cr = C.

Pukelsheim & Titterington (1986) page 263, introduced the concept of a
determining blocking factor k by the condition that just a single level ji(ji)
of each blocking factor £ # k appears with level ji of factor k, for all jx =
1,...,bx In terms of the design matrices Z,,..., Z, this property is equivalent

satisfies C = Cy — By < Cx = C. 0

Pukelsheim & Titterington (1986) page 263, introduced the concept of a
determining blocking factor k by the condition that just a single level ji(ji)
of each blocking factor £ # k appears with level ji of factor k, for all ji =

be In terms of the desien matrices 7. 2. thin mranarts 1a sanivalant
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an m-way block design with a determining blocking factor k satisfies C = Cj.
However, the present result says more, in that it provides an interpretation of
how far the concept of a determining blocking factor is “necessary”.

COROLLARY 3. An m-way block design satisfies C = Ci irrespective of the
treatment design matrix U if and only if blocking factor k is a determining factor.

Proof. The adjusted orthogonality condition (3) holds true for all treatment
design matrices U if and only if @z Z, = 0. 0

3. EXAMPLES

There are several examples of designs having the property mentioned in
Theorem 1. None of the designs given below has a determining factor. We
present two examples of two-way block designs, m = 2, with rows and columns
as blocking factors, and one example of a three-way block design. The contrast
information matrices turn out to be proportional to the a x a orthediagonal
projector

s (R
a

I. An interesting illustration is the design for 12 observations on 3 treatments in
a 4 x 4 blocking system, with allocation table

2 3
e
=
1 2

= 1 2

wihana tha intarare dannta trastmant lowsls Thie dacion hae (M = (1. = Ma =4 K.

= 1 2 3

where the integers denote treatment levels. This design has C = Cy = C2 = 4K,

and
FHEA R

13 1 1\)=5k
A B
In the terminology of Pukelsheim (1986), page 340, this design is a variety—factor
product design.

II. More generally, two-way block designs with the property C = Cz can be
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whose rows and columns are orthogonal after adjusting for treatments. The
following example is a design for 36 observations on 12 treatments in a 4x9
blocking system, with allocation table

(52 0 6 SRR LR [T B
eI I EE  5 B (S 1
4 3L ER 28 T 9 5]
105 2 619 3 8 12 1

see Table 2 of Anderson & Eccleston (1985), page 134. By interchanging
treatments and columns and permuting the columns so as to obtain a nice pattern
we get a design for 36 observations on 9 treatments in a 4 x 12 blocking system

R AR SR IS (A e

E = 4 8 —7 B R OSIE S

5 20 =] T — 8 3 9 = 6
8

Ll

2 6 3 - 3 1 - 4 9 -

This design satisfies N;A7'Ny; = N; and NATINy, # N, By Theorem 1
it then fulfills C = C; < C;. Indeed, we obtain C; = 3Ky £ 4K, = C,.
According to Corollary 2 the design is optimal among all two-way block designs

with treatment-column incidence matrix

0

(=]
[ =]

L= — I~ — = e —
[ S S — T — NS —
L= T — N S — S - T — T — T
o - O O 0 - O = O
Lot — B — B — T R — T —
Lo — B — I — T — T — Y — T
Lo == I — S — O — A — O — ]
Lo — B — IR — B — T — T — |

O O O O O D e e
(== = B — o — T — TR
L= B — S = A L

/

III. The final illustration is an example with m = 3 blocking factors, obtained

Aike A&t kkka LTSN 44 rsessapean 0 OIS, AL A Oy R U L

as a modification of the example given by Eccleston & Russell (1977), page 344.

III. The final illustration is an example with m = 3 blocking factors, obtained
as a modification of the example given by Eccleston & Russell (1977), page 344.
This is a design for 16 observations on 4 treatmentsin a 4 x 8 x 2 blocking system,
with row-column pattern

1 2 = = — - - - - - - = 2

2 1 - = - = - = - - - - 1

- - - - =R - 3

- g
4

4
FREE o A

in layers 1 and 2, respectively. Application of Theorem 1 shows that C = C =




Ny =

2
2
0
0

as well as over the three-way block designs with treatment-column incidence

matrix

0 0
0 0
1 1
1 1
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