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SUMMARY

We show that adjusted orthogonality properties are necessary and sufficient for

a multiwa y block design to be uniformly optimal for estimating the treatment

contrasts.
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1. INTRODUCTION

We consider a design D with m blocking factors. We assume that the model has

additive fixed effects and no interactions, and is given by

with i = l , . .. , a , and jk = l , .. . ,bk for k = l, . .. ,m , and t = l , ... ,niil oo.im'

We consider a design D with m blocking factors. We assume that the model has

additive fixed effects and no interactions, and is given by
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level i» of the kth blocking factor. The observational errors ei;' oo .;~1 are assumed

to be uncorrelated , with mean zero and variance 0'2 > O.

In matrix notation the model turns into

y = Ua +~m Zk"{k+ e,
L....-k=l

with n = I:i,;"oo ',;m ni;, oo .;~ ' Let In denote the n x 1 vector of ones. The design
matrices U and Zk are binary n x a and n x bk'matr ices, respectively , and satisfy

U la = Zk h. = In' They are related to the incidence matrices Nk between

treatments and blocking factor k, and N kl between blocking factors k and i, for

k,i = 1, ... , m with k =Ii, through

where the superscript I denotes transposition. Moreover, we designate by D..k=
Z~Zk the diagonal matr ix with diagonal elements equal to the replication number

of the levels of blocking factor k, for k = 1, . . . , m .

Our interest concentrates on the treatment contrasts

(a1-o., .... , aa -0 .)',

with a . = I:i ad a, while the effects "{k;. are considered as nuisance parameters.

As usual the information matrix for the treatment contrasts is denoted by C, we

call C the contrast information matrix. We are also interested in the matrix

the contrast information matrix of the simple block design for treatments

and factor k only, where D..o is the diagonal matrix of treatment replications .

Pukelsheim & Titterington (1986), eq. (4), use the formula

where the matrix B; is nonnegative definite. This shows that the contrast

information matrix in an m-way block design, C, may be obtained from the

contrast information matrix in a simple block design, Ck, by subtracting a penalty

term Bk due to entertaining the nuisance parameters that come with the other

blocking factors e=Ik.

The case of a vanishing matrix Bk is of interest because it provides a simple

way of obtaining C from Ci : Also it has an attractive interpretation in terms

contrast information matrix in a simple block design, Ck, by subtracting a penalty

term Bk due to entertaining the nuisance parameters that come with the other

blocking factors e=Ik.

The case of a vanishing matrix Bk is of interest because it provides a simple

way of obtaining C from Ci: Also it has an attractive interpretation in terms
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2. N ECE SSARY AND SUF FICIENT CONDIT ION

(1)

We find it convenient to base the analysis on the representation

C = U'Q(Z'.....Zm)U'

Proof . Without loss of generality we choose k = 1. .For a mat rix A let R (A)

design ate the range (column space) of A, and denot e by PA and Q A the orthogon al

projectors ont o R(A) and onto the orthogona l complement of R (A), respectively.

for all!. = l, oo.,m with t =fk .

Substitution of (2) into (1) yields C = CI - U'p(S,.....Sm)U. Thi s shows th at

C = C I if and only if U'SI = 0 for l. ~ 2. With 51= QZ,ZI, the latter becomes

(3)

o

where (Zit . .. , Zm) denotes the partitioned matrix compnsmg the matrices

ZI, ' 00' Zm; see Hedayat & Majumda r (1985), page 698. From the

decomposit ion of ~(ZIt . . . , Zm) into th e ort hogonal direct sum_ of R (Ztl and

Zit 00" Zm; see Hedayat & Majumda r (1985), page 698. From the

decomp osition of R(ZIt .. . , Zm) into the orthogonal direct sum of R(Ztl and
wnere t.bI, ... , LJm"j'cenoces vne PC:U"U.lUllt:U Hld-UlA \..VIUPUO)lUC; r.tllll:' U.J.(I,"'U"'~

ZI, " " Zm; see Hedayat & Majumdar (1985), page 698. From the

decomposit ion of R( ZIt . . . , Zm) into the orthogonal direct sum of R (ZI) and

R (Qzl(Z2,oo. , Zm)) it follows that

Q(Zl,....Zm)= In - (Pz 1 + p(S,.....Sm))= Qz, - p(S,.....Sm)' (2)

where SI = QZlZI for l. ~ 2.

if and only if the trea tments an d the blocking factors l =fk ar e orthogonal after

adjusting for blocking factor k, that is,

Nk6.;,1Nkl = N[

THEOREM 1. An m-way block design satisfies

C = Ck

Out of the existing blocking factors 1, . . . , m we conside r a fixed blocking factor k.

Puk elsheim & Ti t terington (1986), page 263 gave a sufficient condit ion for the

pen alty term Bk to vanish. However , that conditi on fails to be necessary. In

the present note we provide a necessary and sufficient condition for the equality

C= Ck •

is uniformly opt imal for the treatment contr ast s, among the designs that lead to

th e same "marginal" contrast informati on matrix Ck •
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Adjusted orthogonality was introduced by Eccleston & Russell (1975); it is also

known as strict orthogonality . Its relationships to another, weaker version of

orthogonality is studied by Khatri & Shah (1986), Styan (1986), and Baksalary &
Styan (1991). As predicted by Eccleston & Russell (1975), pageSd l , the concept

of adjusted orthogonality proves to be useful and reasonable in many situations .

Their Theorem 1 (1975) page 343, compares connectedness of a design D, with m

blocking factors, and the design Dk , with only the kth blocking factor, that is,

it concentrates on whether C has rank a-I when Ck has rank a - 1. The

conclusion of our Theorem 1 is considerably stronger, in that we assert equality

of the matrices themselves.

COROLLARY 1. For a two-way block design D witb treatments ortbogonal to

rows after adjusting for columns, D bas the same subspace of estimable treatment

contrasts as tIle treatment-column one-way block design D2 • In particular, D is

connected if and only if D2 is connected .

Proof. By Theorem 1 the matrices C and C2 are equal, hence so are their ranges

which represent the corresponding subspaces of estimable treatment contrasts. 0

In terms of design optimality we have the following corollary. Eccleston & Kiefer

(1981) study optimality criteria that are real-valued . In contrast we here apply

the notion of uniform optimality of Kurotschka (1971) which refers to the usual

(Loewner) matrix ordering. This is a strong optimality concept, and the present

situation provides one of the rare circumstances where it can be brought to bear .

COROLLARY 2. An m-way block design such that treatments are orthogonal

to blocking factors e oFk after adjusting for factor k is uniformly optimal for

the treatment contrasts, among the designs witb incidence matrix Nk between

treatments and blocking factor k .

Proof. The candidate design has contrast information matrix C = Ck , by

Theorem 1. Every competing design with contrast information matrix C,say,

satisfies C= c; - Bk ::; c; = C. 0

Pukelsheim & Titterington (1986) page 263, introduced the concept of a

determining blocking factor k by the condition that just a single level jt(jk)

of each blocking factor e oFk appears with level jk of factor k, for all jk =
1,.. . , bk • In terms of the design matrices ZI>"" Zm this property is equivalent

Pukelsheim & Titterington (1986) page 263, introduced the concept of a

determining blocking factor k by the condition that just a single level jt(jk)

of each blocking factor e oFk appears with level jk of factor k, for all jk =
1. .. . . b•. In terms of the desizn matrices Z, . . . . . Z_ this oronertv is enuivalent



II. More generally, two-way block designs with the property C

In the terminology of Pukelsheim (1986), page 340, this design is a variety -factor

product design.

where the integers denote treatment levels. This design has C = Ct = C2 =4K3 ,

and

2 3

1. An interesting .illustration is the design for 12 observations on 3 treatments in

a 4 x 4 blocking system, with allocation table

3. EXAMPLES
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1 2 3

2 3
3 1 2'

2 3

2 3

There are several examples of · designs having the property mentioned in

Theorem 1. None of the designs given below has a determining factor. We

present two examples of two-way block designs, m = 2, with rows and columns

as blocking factors, and one example of a three-way block design. The contrast

information matrices turn out to be proportional to the a x a orthodiagonal

projector

Proof. The adjusted orthogonality condition (3) holds true for all treatment

design matrices U if and only if Qz,Zl = O. 0

COROLLARY 3 . An m-way block design satisfies C = Ck irrespective of the

treatment design matrix U if and only if blocking factor k is a determining factor .

an m-way block design with a determining blocking factor k satisfies C = Ci :

However, the present result says more, in that it provides an interpretation of

how far the concept of a determining blocking factor is "necessary".
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in layers 1 and 2, respectively. Application of Theorem 1 shows that C = C
1

=

III. The final illustration is an example with m = 3 blocking factors, obtained
.&. ""' ollUUo l U.;ll U.U.I HV 1.;l1 UOU . "' "" " ~ • •• - OJ " "'''' 6 "" ""1 vv .. u..u",,~

3 4 '

4 3

9

5

6

1 2

2 1

2

7

9

9

3 9

8 4

6 4
8 2

8

5 7 8

4 3 6

147

3 7 5

3

1

5 2
2 6

3 4

4 3

1 2

2 1

100 1 001 0 0 1 0 0

1 1 000 001 001 0

o 1 1 1 0 000 1 000

o 0 1 0 1 001 0 1 0 0

N2 = 1 0 1 0 0 1 0 0 0 0 0 1

o 1 001 0 1 000 0 1

00011 1 0 0 001 0

o 0 0 0 0 1 1 1 1 000

o 0 000 000 1 1 1 1

see Table 2 of Anderson & Eccleston (1985), page 134. By interchanging

treatments and columns and permuting the columns so as to obtain a nice pattern

we get a design for 36 observations on 9 treatments in a 4 x 12 blocking system,

1 11 3 5 6 10 4 9 7

2 5 4 6 7 8 11 10 12

4 3 12 8 2 7 9 5 1 '

10 2 6 1 9 3 8 12 11

whose rows and columns are orthogonal after adjusting for treatments. The

following example is a design for 36 observations on 12 treatments in a 4 x 9
blocking system, with allocation table

This design satisfies N2s; 1N21 = N 1 and N1t:.jl NI 2 ¥ N 2 • By Theorem 1

it then fulfills C = C2 $ C1• Indeed, we obtain C2 = 3J(g $ 4J(g = C1 .

According to Corollary 2 the design is optimal among all two-way block designs
with treatment-column incidence matrix

as a modification of the example given by Eccleston & Russell (1977), paze 344.

III . The final illustrat ion is an example with m = 3 blocking factors, obtained

as a modification of the example given by Eccleston & Russell (1977), page 344.

This is a design for 16 observations on 4 treatments in a 4 x 8 x 2 blocking system,
with row-column pattern
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(

1 1

N = 1 1
2 0 0

o 0

)

(
2200)
2 2 0 0

n, = 0 0 2 2 '

o 022

as well as over the three -way block des igns with treat ment- column incidence

matr ix

4(1201(2) +2(1(2 0 121;) . By Corollary 2, op ti mality of th e design exte nds over

the three-way block design s with treatment-row incidence ma tri x
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