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Information matrices for subsystems of the mean parameters in a classical
linear model are studied, providing the basic quantities for the design of ex-
periments. The rank of information matrices reflects identifiability of the para-
meter system of interest. Their functional properties follow from a representa-
tion as the minimum of a set of linear functions. The information matrix
mapping is upper semicontinuous on the closed cone of nonnegative definite
matrices, but fails to be continuous. Most of the development is carried out
for parameter systems of full rank, but is seen to generalize to the rank deficient
case. The results are illustrated by the classical C-matrices for simple block
designs.

1. INTRODUCTION

In the theory of block designs a central notion is that of C-matrices.
Just where this acronym originates from is unclear. Reference to a C-matrix
is made implicitly by Bose (1948), page (12), and explicitly by Chakrabarti
(1963). In any case the name is appealing since the C-matrix is the

— coeflicient matrix of the reduced system of normal equations for the

symmetrized treatment contrasts, as well as the

— contrast information matrix,
assuming a two-way classification model with no interaction for a treatment
factor and a blocking factor.

The concept of information matrices pertains to more general design
problems rather than just block designs. Section 2 reviews the role of in-
formation matrices when the task is to estimate a parameter subsystem
K'0, to test a hypothesis K’0 = 0, or to find the Fisher information matrix
for K'6. Here 6 is a k < 1 unknown parameter vector for the mean value,
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and K is a known k < s coefficient matrix of full column rank s. For the
s X 1 parameter subsystem K’0 a design with positive definite & X k moment
matrix M has information matrix Cx(M), given by the positive definite s X s
matrix :

Cx(M) =(K'M-1K). 0

In this paper we study the dependence of Cx on its argument matrix M.

In design problems we need to evaluate Cx(M) for varying designs, that
is, for varying moment matrices M. Since an s x 1 subsystem K’0 is of
interest where possible s < k, designs with a singular moment matrix may
well be optimal for K’0, and cannot be neglected. Hence, it is imperative to
also cover singular moment matrices.

The extension of formula (1) from positive definite matrices M to all
nonnegative definite matrices 4 needs careful attention. Recent work of
Gaffke (1987) suggests that the following definition is appropriate:

Cg(A) = min LAL', 2)
LeRsTk LK =1
whenever A is a nonnegative definite & X k matrix. The minimum in (2) is
taken relative to the Loewner ordering, the usual ordering of symmetric
matrices, given by

C = D < C — D is nonnegative definite.

It is consistent with this notation that from now on we simply write 4 =0
in order to indicate that A is nonnegative definite.

In Section 2 we outline that the minimum in (2) exists and is attained,
and conforms with formula (1) for positive definite matrices 4. In fact, this
follows from a straightforward application of the Gaup-Markov Theorem, as
anticipated by Pukelsheim and Styan (1983). This theorem also entails
explicit representations for (2). Let L be an arbitrary left inverse of K,
LK = I, and define the residual projector

R =1, — KL.
The first representation is akin to the covariance adjustment formula of
Rao (1967),
Cx(A) = LAL — LAR'(RAR')-RAL'. (3)
There always exists at least one left inverse L 4 that satisfies LyAR" = 0, and
then (3) simplifies to
Ci(A) = L4AL 4. 4
For varying matrices A the complexity of computing Cx(A4) hence is that
of solving the linear equation L4(K, AR") = (I, 0) for L.
For the special case of the first s out of k parameters, K’ = (/; 0),
representation (3) turns into a Schur complement,
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c I (A) = Ay — A1 Az An. (5)
¥

The history of Schur complement matrices and their use in statistics is

reviewed by Ouellette (1981), and Styan (1987).

In Section 3 we concentrate on the rank behaviour of information
matrices. It transpires that the information matrix Cx(M) for K0 is positive
definite if and only if the parameter subsystem K’0 is identifiable under a
design with moment matrix M.

Section 4 investigates the continuity behaviour of the information matrix
mapping Ck. The central result is that Cg is matrix upper semicontinuous.
As a consequence, formula (1) extends beyond positive definite matrices to
all nonnegative definite matrices 4 = 0, according to

Cx(4d)= lim (K'(4+ %1,‘)—11()—1. (6)

This result is due to Gaffke and Pukelsheim (1987), page 40. We adapt an
example from Piazman (1986), page 67, to demonstrate that Cx need not be
continuous.

In Section 5 we sketch the generalization to degenerate coefficient
matrices K, that is, matrices K that do not have full column rank s. This
leads to generalized information matrices which coincide with the C-matrices
of the block designs from the beginning. We take this coincidence asa pro-
mising evidence for the present approach. The monograph Pukelsheim
(1992) will present a comprehensive development along these lines.

2. INFORMATION MATRICES

We assume a linear model of uncorrelated homoscedastic observations.
That is, the n X 1 vector Y of observations is taken to have mean vector and
variance-covariance matrix

Eo;02 [Y] = X0, Vosor [Y]= 6" In.

Here 0 is a k X | vector of unknown parameters for the mean, o2 > 0 is
the unknown model variance, and X is the known n X k model matrix.
The ith row of X represents the regression vector for the itt observation Y;.
The number of observations, n, and the rows of X are determined by the
experimental design. The moment matrix M of the design then is given by

M = lX'X.
n
This is a nonnegative definite & x k matrix. We take M to be positive

definite, for the time being; in other words, we assume the model matrix X
to have full column rank k.
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Let K be a known k x s coefficient matrix of full column rank s. Our
interest concentrates on the s X 1 parameter subsystem K’6. When the full
parameter vector is of interest, K = I, then (1) plainly yields Cr, (M)=M.
This is to say that the moment matrix of the underlying design is the same
as the information matrix for the full parameter vector 8. For proper sub-
systems K, the two notions differ, and the information matrices (1) start
playing a role of their own. They are motivated through variance-covariance
matrices of GauB-Markov estimators, through the power of the F-test, and
as Fisher information matrices, as follows.

The GauB-Markov Theorem provides the best linear unbiased estimator
for K’6. The variance—covariance matrix of this estimator is

2
_K'M-IK,
n

The smaller this matrix is in the Loewner ordering, the larger is its inverse,
(n/c*)Cx(M). This elucidates the role of the information matrix for K0,
when the problem is one of estimating K’0.

For the related problem of testing the hypothesis K'0 — 0, we further
assume that the vector Y of observations follows a normal distribution.
The F-test then is based on the test statistic F which, when n > k + 2, has
expectation

— 2
Euo(F) = 25 (14 MEOKC(MKD). )
Large values of F are significant for a deviation from the hypothesis K’0 —0.
Thus, the larger the information matrix Cx(M) for K'0, the larger values
for F we expect, and the clearer the F-test detects a significant deviation,
More precisely, the F-test then becomes uniformly more powerful. This
underlines the importance of the information matrix for K’0 for the problem
of testing K’'0=0.

Let us turn to general parametric modelling. It is well known that the
Fisher information matrix jointly for (6, o?) is

M 0
z
c? __1__
0 262

It follows that the Fisher information matrix for 6 alone is (n/s*)M.
Alternatively we may apply formula (1) from which, upon setting K = I,
we obtain

Cp (M) =M.
Thus the Fisher information matrix for 0 coincides with the information
matrix for 0 as defined by (1), except for the proportionality constant n/c2.

The same is true for subsystems K’0, as follows from the differential geo-
metric discussion in Barndorff-Nielsen and Jupp (1988).
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All this shows that the information matrix (1) for K’0 is firmly rooted
in statistical inference, provided the moment matrix M of the design is
positive definite.

In order to also cover singular argument matrices 4 of Ck, let us view
formula (1) through the Gaug-Markov Theorem. To this end consider
the auxiliary linear model

EpalZ) =K, VyolZ] = M.

Anarbitrary linear estimate LZ for + is unbiased if and only if LK I, that is,
Lisaleft inverse of K. The variance-covariance matrix of LZ is 2 LML’
The Gaup-Markov Theorem states that the weighted least squares estimator
solves the minimization problem of finding the unbiased estimator with
smallest variance-covariance matrix,
(K'M-1K)1 == min LML'.
LERkLK =] )

Thé@nimum is understood relative to the Loewner ordering, see for in-
stance Witting (1985), page 303. The matrix of the left hand side of (8) is
the same as in (1). However, the minimum on the right hand side of (8)
exists and is attained also when M is singular, and is given by (3) or (4).

Hence, it makes sense to define Ck(A) for nonnegative definite and
possibly singular matrices A through (2). Consistency with (1) then follows
from (8). When the first s out of k parameters are of interest, K’ = (I, 0),
we may choose L = K’ in (3) in order to derive the Schur complement
formula (5) Thus the functional properties of the information matrix
mapping A - Cx(A) embraces as a special case the functional properties
the Schur complement mapping 4> 4, — A2 A5, Ay

The rank behaviour of Ck(A) is related to matrix algebra and is pre-
sented in Section 3. The continuity behaviour is a topic of calculus and is
discussed in Section 4.

3. RANK BEHAVIOUR

The rank of a matrix is the dimension of its range (column space).
Therefore, we begin with a lemma on ranges before turning to rank.

LeEmMMA 1. Let the k < s coefficient matrix K have full column rank s,
and let 4 be a nonnegative definite k x k matrix. Then the matrix
Agx = KCg(A)K’ is the unique matrix with the three properties

0< Ak 4, range Ag C range K, range (4 — Ag) N (range K) = {0}.

PROOF. The proof follows from the works of Anderson (1971), Anderson
and Trapp (1975), and Mitra and Puri (1979). O
This characterization of Ag refers to the matrix K only through its

range. Hence two coefficient matrices K and X with the same range induce
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identical matrices Ax = A g even though Cg(A4) and C K(A) are, in general,

distinct.

THEOREM 2. Let the k X s coefficient matrix K have full column rank
s, and let 4 be a nonnegative definite k& x k matrix. Then

rank Cg(A4) = dim ((range 4) (N (range K)).

In particular, Cx(A) is positive definite if and only if the range of 4 includes
the range of K.

PrOOF. Define Ax = KCx(A)K’'. We know that A4 = (A4 — Ag) + Ak
is the sum of two nonnegative definite matrices, by Lemma 1. Hence the
range of A is the algebraic sum of the ranges of 4 — Ax and Ak, whence

(range A) N (range K) = (range (4 — Ag) N (range K))
I ((range Ag) N (range K)) = range Ag.

Since K has full column rank this yields

rank Cx(A4) = rank Ax = dim ((range 4) N (range K)).
In particular, Cg(4) has rank s if and only if

(range A) ) (range K) = range K,
that is, range 4 D range K. O
The condition that the range of 4 includes the range of K appears in

various disguises, as identifiability condition, estimability condition.
or testability condition. Theorem 2 says that the rank of the information
matrix Cg(M) for K'0 reflects the extent of identifiability (estimability,
testability) of K0 under a design with moment matrix M. The theorem
suggests the following check for identifiability. First compute Cg(M) from

formula (3) or (4), then find its rank. If the rank equals s then identifiability
holds, otherwise it holds not.

4. CONTINUITY BEHAVIOUR

We first list a couple of properties that are easy consequences of the
defining relationship (2). Let NND(k) denote the closed convex cone of
nonnegative definite k X k matrices, and let Sym(s) be the linear space of
symmetric § X s matrices.

THEOREM 3. Let the k& x s coefficient matrix K have full column rank s.
Then the information matrix mapping

A — Ck(A4) = min LAL'
LERsTk LK = I

from NND(k) to Sym(s) is nonnegative definite> matrix isotonic, positively
homogeneous, matrix superadditive, and matrix concave:
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Cx(d) = 0 for all 4 =0,
A=2B = Cg(4)=Cg(B) forall 4, B=0,
Cr(3A) = 3Cx(A) forall 4 >0,8 >0,

CK(A +B) = CK(A) -4~ C[((B) for all 4, B =0
Ck((1 — o)A+ aB) = (I — x)Cr(A)
+ aCk(B) for all A, B=20,ae(0,1).

Proor. The first four properties are immediate from the definition of
Ck(4) as the minimum over the matrices LAL’. The last property follows
since superadditivity and homogeneity imply concavity. O

Next we wish to show that the information matrix mapping is matrix
upper semicontinuous. The key fact is that the functions 4 — LAL’ are
linear, whence Ck is the minimum of a family of linear functions.

THEOREM 4. Let the k X s coefficient matrix K have full colmun rank
s. Then the information matrix mapping Cx is matrix upper semicontinuous,
that is, for all sequences (4,),>1 in NND(k) that converge to a limit A we
have

Cx(A,) = Ck(A) foralln =1 = lim Cg(d4,) = Cg(A).
PROOF. Suppose the matrices 4, = 0 converge to 4 such that
Cx(An) =2 Cx(A).
With a left inverse L4 of K that satisfies (4) we obtain
Cr(A) < Cr(An) = min LA,L’
LeRs*k: LK = I
< LaA L 4~ L4AL 4 = CK(A)

Hence the matrices Cx(4a) converge to the limit Cg(A). |

A prime application consists in extending formula (1) from the open
cone of positive definite matrices PD(s) to its closure, the closed cone of
nonnegative definite matrices NND(s). The method is called regularization.

CoOROLLARY 5. Let the k X s coefficient matrix K have full column
rank s and let B be a positive definite k& X k matrix. Then

Cr(4) = lim (K'(4 + ,-1113)—11()—1 for all 4> 0. 9)

ProoF. The matrices 4, — A - ’—llB evidently converge to 4. They ful-

fill 4, = A, whence monotonicity of Ck entails Cg(A,) = Cg(A). Thus the
matrices Ck(A4,) converge to Cx(A), by Theorem 4. Since A4, is positive



614 INFORMATION MATRICES IN EXPERIMENTAL DESIGNS

definite, formula (1) applies and yields Cg(A,) — (K'A,~ 1K)

As a particular case Corollary 5 covers formula (6) in Section 1. A
general discussion of regularization methods in statistics is given by Cox
(1988). :

The point is that the matrices 4, converge along the ray {4 + 3B :3=0},
emanating from 4 along the direction of B into the interior PD(k). In other
words, regularization ascertains that the representation (K’ A=t K)~! per-
mits a continuous extension from the open cone PD(s) to the closed cone
NND(k), as long as the argument matrices ‘‘converge along straight lines”
of positive definite matrices.

We demonstrate by example that Ck is not, in general, continuous on
NND(k). Consider a model for a straight-line fit,

Yij = o Bti + Ey,

where the experimental conditions, #; may be chosen from the domain
[ — 1, 1]. The intercept « and the slope  are unknown, and E;; are uncor-
related random errors with mean 0 and variance 6% We study the unsymmetric
two-point designs ts,, that assign half of the observations to the experimental
conditions 1/n and — s/n, respectively, where s # 1 is an additional support
parameter. The moment matrices Aj,, of the designs 7g,, converge to a limit
A that does not depend on s,

| 1 —s
2n 1 0
Ay — —>( ) — A. 10)
l—s 1+4s° 0 0 v
2n  2n®

Fig. 1. Regularization of the information matrix mapping on the closed
cone NND(k). Convergence to the boundary is continuous as
long as it takes place along straight lines from within the open
cone PD(k), as given by (9).
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In fact, 4 is the moment matrix of the symmetric two-point designs t,,-
Let the intercept « be the parameter of interest. For the two-point
designs 7y,,, the Schur complement formula (5) yields the information for «,

(A,) = 1 _(1 *5)2 2t 1(1+ s

1
) T~ 2 T = # (10

“®
say. The information ¢(s) is constant in 1, and hence equal to its limit as n
tends to infinity. Therefore, with varying support parameter s, the designs
7s,n exhaust all possible information values, from the minimum ¢(— 1) = 0
to the maximum ¢(1) = 1, even though for » tending to infinity their
moment matrices Ay,, converge to the common limit 4. See Fig. 2.

e

-2 "1 0 ) 2

Fig. 2. Discontinuity of the information matrix mapping in a line fit model:
The intercept information (11) of the unsymmetric tow-point designs
Ts,n attains all possible values between the minimum zero and the
maximum one for varying support parameter s, even though accord-
ing to (10) the moment matrices converge to a common limit not de-
pending on s,

In summary, the unsymmetric two-point designs 7s,, provide an instance
of discontinuity, in that if s =4 1 then

lim A;,=A4
lim C 1 (As,n) = ‘;‘I’(s) <Il= ¢(1) =C 1 (A)
nsw  (g) (o)

5. GENERALIZED INFORMATION MATRICES

Not all parameter systems K’0 that are of statistical interest have a
coefficient matrix K that is of full column rank. It is neither helpful nor
wise to remedy rank deficiency through a full rank reparametrization. In
most applications the parameters have a definite meaning, and this mean-
ing is destroyed or at least distorted by reparametrization. Instead the
notion of information matrices is generalized, so as to complement the
framework drawn by coefficient matrices which do have full column rank.
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In view of the preceding results we define the generalizd information
matrix for a parameter subsystem K’0, where the K x s coefficient matrix
K possibly is rank deficient, to be the k % k matrix

AK= min QAQ'. (12)

QERK*k; QK = K

When K is of full column rank s then we have Ax — KCx(A)K’; in this
form the matrix Ax has made its first appearance in (7) while discussing
the testing problem. It is not hard to show that it also conforms with the
estimation problem. Furthermore, the mapping 4 s Ax enjoys the same
functional properties as the mapping 4—»Cg(4), owing to the similarity of
the two definitions (2) and (12). From the Gaug-Markov Theorem we obtain
an analogue to (3),

Ag = A — AR’ (RAR')~ RA, (13)
with an arbitrary generalized inverse G of K and with residual projector
R=1I;—KG.

The major disadvantage of the definition is that the row-column num-
ber of a generalized information matrix Ax no longer exhibits the reduced
dimensionality of the subsystem K’0: Both matrices are k X k, and the
notation Ak is meant to indicate this. It is rank, not row-column number,
that provides a measure for the extent of identifiability of the subsystem
K'0.

As an example we compute the generalized information matrix for the
symmetrized treatment contrasts of a simple block design, in the two-way
classification model with no interaction

Yijk = o + Bj + Eijk.

Here «; and B; are the fixed effects of treatments i= 1, ..., « and blocks
J=1,..., b, respectively, while E;; are uncorrelated random errors of
mean 0 and variance o® Let 1, = (I, ..., ') be the @ X 1 unity vector,
and define the orthodiagonal projector K, by

1

Ka == Ia = Ia .

7 l,l
Upon introducing the parameter vector 6 = («’, f’) with « — (TP A Y
and B = (B, ..., P»)’, the symmetrized treatment contrasts are the sub-

system

(% - 5-) = K0 = (K,, 0)( o ) — K'0, K :(Ka )
Oy — d. B 0

An experimental design for this model is given by an a X b weight
matrix W whose entries w;; determine the proportion of observations with
treatment 7 in block j. A design for sample size » has weights w;; which
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are multiples of 1/n, w;; = ny/n. Let A, and A, be the diagonal matrices
formed from the row-sum vector r of W and the column-sum vector s of
W, respectively. It is well known that a design with weight matrix W has

moment matrix
Ar w
v )
w’ Ns

In order to compute the generalized information matrix My we choose

4 0 0
G =K', R=I;— KK', (RMR)~ = ( >
0 Ay

Straightforward calculation then turns (13) into

‘Ne— WA W' 0
i = )
0 0

Hence, except for vanishing subblocks, the generalized information matrix
Mk for the symmetrized treatment contrasts coincides with the Schur com-
plement of Ay in W,

C= A~ WATW"

This is the usual C-matrix, of the simple block design W. Thus our notion
of generalized information matrices is in good agreement with the classical
notion of C-matrices.

REFERENCES

W.N. Anderson, Jr (1971). Shorted operators, SIAM Journal on Applied Mathematics.
20, 520-525.

W.N. Anderson, Jr and G.E. Trapp (1975). Shorted operators II, SIAM Journal on
Applied Mathematics, 28, 60-71,
O.E. Barndorff-Nielsen and P.E. Jupp (1988). Differential geometry, profile likeli-

hood, L-sufficiency and composite transformation models, The Annals of Statistics,
16, 1009-1043.

R.C. Bose (1948). The design of experiments, in: Proceedings of the Thirty-Fourth
Indian Science Congress, Delhi, 1947, Indian Science Congress Association,
Calcutta, (1)-(25).

M.C. Chakrabarti (1963). On the C-matrix in design of experiments, Journal of the
Indian Statistical Association, 1, 8-23

D.D. Cox (1988). Approximation method of regularization estimators, The Annals of
Statistics, 16, 694-712.

N. Gaffke (1987). Further characterizations of design optimality and admissibility for
partial parameter estimation in linear regression, The Annals of Statistics, 15,
942-957,

N. Gaffke and F, Pukelsheim (1987). Admissibility and optimality of experimental
designs, in: Model-Ovriented Data Analysis, Proceedings, Eisenach, GDR (V. Fedorov
and H, Lauter, eds.) Springer Lecture Notes in Economics and Mathematical
Systems, 297, 37-43,

S.K. Mitra and M.L. Puri (1979). Shorted operators and generalized inverses of
matrices, Linear Algebra and Its Applications, 25, 45-56.



618 INFORMATION MATRICES IN EXPERIMENTAL DESIGNS

D.V. Ouellette (1981). Schur complements and statistics, Linear Algebra and Its
Applications, 36, 187-295.

A. Pizman (1986). Foundations of Optimum Experimental Design, Reidel, Dordrecht.
F. Pukelsheim (1992). Optimality Theory for Experimental Designs in Linear Models,
Wiley, New York, forthcoming.

F. Pukelsheim and G.P.H. Styan (1983). Convexity and monotonicity properties of
dispersion matrices of estimators in linear models, Scandinavian Journal of
Statistics, 10, 145-149.

C.R. Rao (1967). Least squares theory using an estimated dispersion matrix and its
applications to measurement of signals, in: Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability (L. Le Cam, ed.), Univer-
sity of California, Berkeley CA, 1, 355-372.

G.P.H. Styan (1987). Schur complements and linear statistical models, in: Proceedings
of the First International Tampere Seminar on Linear Statistical Models and Their
Applications (T. Pukkila and S. Puntanen, eds.), University of Tampere, Tampere,
37-75.

H. Witting (1985). Mathematische Statistik I, Parametrische Verfahren bei festem
Stichprobenumfang, Teubner, Stuttgart,



