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ABSTRACT

The matrix partial orderings considered are: (1) the star ordering and (2) the
minus ordering or rank subtractivity, both in the set of m X n complex matrices, and
(3) the Lowner ordering, in the set of m X m matrices. The problems discussed are:
(1) inheriting certain properties under a given ordering, (2) preserving an ordering
under some matrix multiplications, (3) relationships between an ordering among
direct (or Kronecker) and Hadamard products and the corresponding orderings
between the factors involved, (4) orderings between generalized inverses of a given
matrix, and (5) preserving or reversing a given ordering under generalized inversions.
Several generalizations of results known in the literature and a number of new results
are derived.
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1. INTRODUCTION AND PRELIMINARIES

Let C m , n stand for the set of m X n complex matrices. Given A E C m,n'

the symbols A*, ~(A), r(A), and a(A) will denote the conjugate transpose,
range, rank, and set of all nonzero singular values, respectively, of A. Further,
A{I} and A{2} will denote the sets of all inner and outer inverses of A,
specified as

and

A{I} = {XECn,m:AXA=A}

A{2} = {X E Cn,m:XAX = X},

(1.1)

(1.2)

while A{3} and A{4} will denote the sets of all right and left symmetrizers of
A (ef. Baksalary and Kala [6]), specified as

and

A{3} = {X E Cn.m:AX = (AX)*}

A{4} = {X E Cn,m:XA = (XA)*}.

(1.3)

(1.4)

Various intersections of the sets from among (1.1) through (1.4), denoted
according to the convention A{ i 1, ••• , i k } = A{ i 1 } n ... nA(i k } , constitute
the well-known classes of generalized inverses of A; ef. Ben-Israel and
Greville [7], Rao and Mitra [29], Styan [33]. In particular, A{I,2} is the class
of all reflexive generalized inverses of A, and the unique member of
A{I,2,3,4} is the Moore-Penrose inverse of A, henceforth denoted by A+.

The star partial ordering A ~ B, the minus partial ordering or rank
n S

subtractivity A ~ B, the space preordering A -<B, and the singular-values
a

preordering A -<B in Cm,n' are defined as follows:

• A*A = A*B and AA* = BA*, (1.5)A~B =
rs

A -A = A- B and AA - = BA- for some A- ,A = E A{1 },A~B =

(1.6)

s
~(A) ~ ~(B) and ~(A*) ~ ~(B*), (1.7)A-<B =

a
a(A) ~ a(B). (1.8)A-<B =
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The star ordering (1.5) is due to Drazin [11, 12]. Matrices A and B
satisfying (1.5) were, however, also considered earlier by Hestenes [21,
Lemma 3.4]. It was pointed out by Drazin [12] that

as well as

(1.10)

These characterizations are easily seen to be equivalent to

d. Hartwig [14].
Hartwig [15] proved that (1.6), with both A- and A = replaced by one

and the same reflexive generalized inverse of A, defines a partial ordering
relation, and called it "plus ordering." Hartwig and Luh [16] and Hartwig
and Styan [18] noted that the reflexiveness and identity of generalized
inverses in the two equalities in (1.6) are immaterial, and adopted the term
"minus ordering." Moreover, Hartwig [15] showed that (1.6) is equivalent to

rs
A~B ~ r(B-A)=r(B)-r(A). (1.12)

In view of Marsaglia and Styan [24, p. 288] and Cline and Funderlic [10, p.
195], (1.12) may alternatively be expressed as

rs
A ~ B = BB-A = AB-B = AB=A = A for some B-,B~,B= E B{1}.

(1.13)

S (J

It is clear that each of the relations A -<B and A -<B, defined in (1.7) and
(1.8), is reflexive and transitive but not antisymmetric, and therefore (d.
Marshall and Olkin [25, p. 13]) constitutes a preordering of em,n' It is well
known that

S

A-<B ~ BB-A=A=AB-B for some B-,B=EB{l}. (1.14)
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s

Also, it may be pointed out that the space preordering A --<B entails the
invariance of AB-A with respect to the choice of B- E B{I}, and that the
reverse implication holds whenever both A and B are nonzero; d. Rao and
Mitra [29, pp. 21 and 43]. See also Hartwig [13] and a recent discussion on
invariance properties by Carlson [8].

From (1.6), (1.10), (1.13), and (1.14) it is seen that

rs= A~B

s

= A --<B. (1.15)

Several characterizations of the star ordering through supplementing rank
subtractivity by one or more suitable extra conditions were recently given by
Hartwig and Styan [18]; see also Baksalary [2] for an extension of a part of
their Theorem 2. Further, from (1.13) and (1.14), it follows that

rs
A~B

s

~ A --<B and A{1} n B{I} '*0 ,

while Mitra [27, Theorem 2.1] showed that

rs
A~B ~ B{I} C;;;A{1}.

Combining this result with Theorem 1 of Sambamurty [31] yields

rs
A~B ~ B{I,2} <;;;;A{I}.

On the other hand, from Theorem 2 of Hartwig and Styan [18], it is clear that

(J

= A --<B. (1.16)

The first part of (1.15) and the implication (1.16) motivated Baksalary and
Hauke [4] to investigate the partial ordering defined as the conjunction of the

~ (J

minus partial ordering A ~ B and the singular-values preordering A --<B.
L

The Lowner partial ordering A ~ B in em, m may be defined by

L
A ~ B ~ B - A = KK* for some K. (1.17)

The ordering (1.17), due to Lowner [23, p. 177], is usually considered when
both the matrices A and B are Hermitian or even both Hermitian nonnega-
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tive definite. This is, however, not necessary and, as in Hartwig and Styan
[19], will not, in general, be assumed in the present paper.

L • rs
There is no known relationship between A ~ B and any of A ~ B, A ~ B,

s a

A -<B, and A -<B when A and B may vary over the entire Cm,m' However,
Hartwig and Styan [19, Theorems 2.1 and 2.2] proved that

L rs L
A = A*, 0 ~ B, and A ~ B = A ~ B

and

Also, it is known (d. Baksalary and Hauke [3, p. 35]) that

(1.18)

L L
O~A~B

s
= A -<B. (1.19)

The implications (1.18) and (1.19) may be strengthened to the equivalence

L L L s L
O~A~B - A=A*, O~B, A-<B, and AB-A~A (1.20)

for some (and hence all) B - E B{1}, which follows by applying Theorem 10f
Albert [1] to the matrices

see also Hartwig [14, Lemma 1]. Comparing (1.20) with

rs
A~B

s

- A -<B and AB- A = A for some (and hence all) B- E B{1}

(1.21 )

reveals an essential difference between the minus and Lowner partial order­

ings. Finally, for solutions to the problem of characterizing A ~ B via
rs L L

supplementing A ~ B by a suitable extra condition, when 0 ~ A and 0 ~ B,
the reader is referred to Corollary l(d) of Hartwig and Styan [18].
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The purpose of this paper is to examine various properties of the star,
minus, and Lowner partial orderings. Section 2 is concerned with the
problem of inheriting certain characteristics under these orderings, with the
problem of preserving a given ordering under some matrix multiplications,
and also with the problem of establishing relationships between orderings of
direct (or Kronecker) and Hadamard products and analogous orderings of the
factors involved in them. Sections 3 and 4 deal with generalized inverses of
matrices: the former in the context of orderings between generalized inverses
of a given matrix, and the latter in the context of preserving or reversing a
given ordering under generalized inversions. Several generalizations of the
results known in the literature and a number of new results are derived.

2. GENERAL PROPERTIES

In the first part of this section, we collect together various results
concerned with inheriting some properties of matrices under the partial
orderings and preorderings considered, in the sense that if a matrix has a
certain property, then all its predecessors have it as well.

THEOREM 2.1. For A,BEe m, n' the following inheritance properties
hold:

(J

(a) B+ =B* and A-< B=A+=A*,
L (J L

(b) BB* ~ 111/and A -<B = AA* ~ 1m ,

For A, BEe '''. ,,,, the following inheritance properties hold:

(e) B2=0 and A~ B=A 2=0,

(J

(d) B = B* = B3
, A = A*, and A -<B = A = A3

,

(e) B=B 2and A;;;B=A=A 2
,

L rs L
(f) 0 ~ B, A = A*, and A ~ B = 0 ~ A,

rs a
(g) B = BB*, A ~ B, and A -<B = A = AA*,

(h) B*B+=B+B* and A;;B=A*A+=A+A*.

The results (a) and (b), concerning partial isometries and contractions,
respectively, were given by Baksalary and Hauke [4, Theorem 1]. In view of
(1.16), they strengthen the corresponding results in which the singular-values

(J •

preordering A -< B is replaced by the star ordering A ~ B, as in Theorem 3 of
Drazin [12] and Lemma 2 of Hartwig and Spindelbock [17]. On the other
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hand, the matrices

(
- 1A=
12

12),
-2
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(2.1)

(J rs L
show that A -<B cannot be replaced by A ~ B or A ~ B.

The result (c), stating that nilpotency is inherited under the space
s

preordering, follows by noting that if B2 = 0 and A -<B, then (1.14) yields

In view of (1.15), this result strengthens Proposition l(ii) of Hartwig [15], in
s ~

which A -<B is replaced by A ~ B.
Since a Hermitian matrix is tripotent if and only if it is a partial isometry,

the property (d) is an immediate consequence of (a); d. Corollary 1 in
(J

Baksalary and Hauke [4]. Again, the matrices in (2.1) show that A -<B cannot
rs L

be replaced by A ~ B or A ~ B. Moreover, the matrices

(2.2)

show that for non-Hermitian matrices, tripotency need not be inherited even
(J •

when A -<B is strengthened to A ~ B. [Notice, parenthetically, that the
matrices in (2.2) also show that if B is Hermitian, normal, or EP, then the
star-predecessors of B need not have the same property.]

The property (e) is a particular case of Proposition 1.8(a) of Chipman and
Rao [9]. In view of (1.15), it clearly implies that idempotency is inherited
under the star ordering; d. Drazin [12, Theorem 3] and Hartwig and
Spindelbock [17, Lemma 2]. See also Theorem 3.1 in Hartwig and Styan [19]
and a version of (e) in Hartwig and Styan [18, p. 159].

The result (f) is an immediate consequence of (1.21). In view of (1.18),
L L

the right-hand side of (f) may actually be extended to 0 ~ A ~ B.
The result (g), concerning orthogonal projectors, was given by Baksalary

and Hauke [4, Theorem 1). In view of (1.15) and (1.16), it strengthens the
rs

corresponding result in which the partial ordering defined by A ~ Band
(J •

A -< B is replaced by the star ordering A ~ B, as in Theorem 3 of Drazin [12]
and Lemma 2 of Hartwig and Spindelbock [17]. On the other hand, taking
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any non-Hermitian idempotent A together with B being the identity matrix
(J

shows that the condition A -<B on the left-hand side of (g) cannot be
dropped. See also Theorem 3.2 in Hartwig and Styan [19].

Finally, the result (h) was pointed out by Drazin [ll, p. 58]. Its proof is
obtained by noting that, in view of (1.11),

Since the property A*A+ = A+A* is equivalent to AA*A +A = AA +A*A, it
follows that it is trivially fulfilled for all partial isometries and normal matrices
and also when r(A) = 1.

It is obvious that the star, minus, and Lowner partial orderings, as well as
the space and singular-values preorderings, are all preserved under conjugate
transposition of the matrices involved. Further, as pointed out in Baksalary
and Hauke [4, p. 21], the following properties can easily be verified:

THEOREM 2.2.
Then

Let A,B E Cm,n, and let
? • rs
~ stand for ~ or ~ or -<.

?
A~B = (2.3)

Similar properties do not hold for the Lowner partial ordering and
singular-values preordering. As an example we may take

A = ( 1
-1

-11) (2and B = 0

?
In view of (1.5), it is clear that the first part of (2.3), with ~ replaced by

~ , implies the result given originally by Drazin [ll, Proposition 7.2].

COROLLARY 2.1. Let A,B E Cm,n' Then

A ~ B = A*A ~ B*B and AA* ~ BB*. (2.4)
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In view of (1.8), another consequence of Theorem 2.2 is that
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= A+A ~ B+B and AA + ~ BB+. (2.5)

This was established by Drazin [11, Corollary 7.4] by combining (2.4) with
the properties

and

AA* ~ BB* = AA + ~ BB+,

given in his Proposition 7.3. Since the relations of the star ordering, minus
ordering, Lowner ordering, and space preordering are actually all identical in
the set of orthogonal projectors (d. Theorem 5.8 in Hartwig and Styan [19]),
the result (2.5) may be strengthened to the form revealed in Corollary 2.2
below. On the other hand, (2.4) cannot be modified to the statement

~ rs ~ L
A ~ B = A*A ~ B*B or AA* ~ BB* or to the statement A ~ B =

L L
A*A ~ B*B or AA* ~ BB*, a counterexample being the matrices in (2.1).

COROLLARY 2.2. Let A, B E C m, n' Then

s
A -<B <=> A+A ~ B+B and AA + ~ BB+.

It is obvious that the space preordering is preserved under multiplication
of the matrices involved by any (possibly different) nonzero scalars. The
singular-values preordering and the Lowner ordering are much more sensitive
to such manipulations, although the use of different nonzero scalars is still
possible. The star ordering and minus ordering, however, are extremely
sensitive, as shown in the theorem below, which follows directly from (1.11)
and (1.13).

THEOREM 2.3. Let A,B E C m •n , and let a, b E C. If A *0 and A ~ B
rs * rs

or A ~ B, then neither aA ~ bB nor aA ~ bB can hold except for the trivial
cases where a = 0 or a = b.
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The last part of this section is concerned with two special products of
matrices. First, it is shown (in Theorem 2.4) that if A,BEe m nand C, D E
e p,q are star-ordered, minus-ordered, or space-preordered, then so are the
corresponding direct products, also referred to in the literature as Kronecker
products or sometimes (d. [20)) as Zehfuss products. It is also shown that the
reverse implications for the star and minus orderings require certain minor
modifications.

THEOREM 2.4. Let A,BEe m,n and C, DEe p, q be all rwnzero. Then:

(a) A®C ~ B®D <=>A ~ sB and sC ~ D for some s *"0,
u n rs

(b) A®C ~ B®D <=>A ~ sB and sC ~ D for some s *"0,
s s s

(c) A®C -<B®D <=>A -<B and C -<D.

Proof. On account of (1.5), the ordering A ®C ~ B ®D is equivalent to

A*A®C*C = A*B®C*D and AA* ®CC* = BA*®DC*. (2.6)

Lemma 1 in [5] asserts that, for any nonzero K 1,K2 E em,n and L 1,L 2 E e P.q'

the equality K1®L 1= K 2®L 2 holds if and only if K 1= sK 2 and sL l = L 2

for some s *"O. Consequently, (2.6) is equivalent to

(2.7)

Observing that S2 in (2.7) must be identical with Sl concludes the proof of
(a). The statements (b) and (c) follow similarly in view of (1.13), (1.14), and
the fact that B- ®n- E(B®D){l} for any B- E B{l} and D- E D{l}. •

Combining Theorems 2.3 and 2.4 leads to the following:

COROLLARY 2.3.
Then

? • n
Let A,BEe m,n' and let :i;; stand for either ~ or ~ .

? ??
A®A~B®B <=> A~B or A~-B.

Since a(K ®L) consists of all possible products of the nonzero singular
values of K with those of L, it is clear that, for any A,BEe m, nand
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C,DEC",q'

a a a

A -<B and C -<D = A@C -<B@D,
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but not the other way around.
Considering the Lowner ordering between Hadamard products of matri­

ces (d. Styan [32]), Johnson [22, p. 590] established a result which is
generalized here to the following form:

THEOREM 2.5. Let A,B E C m, n' let C, DEC n, n' and let A with C, A
with D, or B with C be Hermitian nonnegative definite. Then

L L L
A~B and C~D = A@C~B@D.

L L L L
Proof If 0 ~ A and 0 ~ D, then A ~ B and C ~ D imply that

Lo~ A@(D-C)+(B-A)@D=B@D-A@C, (2.8)

L L
as desired. Similarly, if 0 ~ B and 0 ~ C, then

L L L L L
Since 0 ~ C and C ~ D entail 0 ~ D, the case where 0 ~ A and 0 ~ C is
covered by (2.8). •

The assumption in Theorem 2.5, which actually means that at least three
of the matrices involved are Hermitian nonnegative definite, is essential. The
quadruplets

A1=(g ~ ), B1= (~ ~ ), (-1 g), D 1= (- ~ -1)C1= 0 1'
(2.9)

(-1 g), B2=(_~ -1) (-1 n,D2=(~ ~ ),A2= 0 1' C2= 1
(2.10)
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(2.11)

constitute appropriate examples.
Since the operation of taking principal submatrices is isotonic with

respect to the Lowner ordering and since the Hadamard product, K *L, of
K, LEe rn, m is just a principal submatrix of the corresponding direct prod­
uct, Theorem 2.5 leads to Corollary 2.4 below, which is comparable with
Theorem 17 of Johnson [22].

COROLLARY2.4. Let A,B,C, DEC m m' and let A with C, A with D, or
B with C be Hermitian nonnegative defi~ite. Then

(2.12)

The matrices in (2.9), (2.10), and (2.11) can again be utilized to show that
the assumption in Corollary 2.4 is essential.

In view of the above and Theorem 2.4, we may ask whether an analogue
to (2.12) holds under the star ordering or minus ordering. The answer is in
both cases negative, as can be seen by taking

A = C = ( ~ g) and B = D = (i U·
This example also shows that the operation of taking principal submatrices is
not isotonic with respect to the star ordering or the minus ordering.

3. ORDERINGS AMONG GENERALIZED INVERSES OF A
GIVEN MATRIX

Theorem 2 in Drazin [12] asserts that A+ is the least element in the set
A{1,3, 4} and the greatest element in the set A{2,3, 4} with respect to the
star ordering, that is

for every G E A {l,3,4} and every H E A{2,3,4}. (3.1)

The part A + ~ G is an immediate consequence of Corollary 2.6 in Drazin
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[11], stating that

while the part H ~ A+ follows by the dual characterization

69

d. Hartwig and Styan [18, Theorem 2(c)]. In the first part of this section, a
number of new relationships among star-ordered inner and outer inverses of a
given A E C m n are established. In particular, it is shown that A{1,3,4} and
A{2,3, 4} are actually the sets of all star-successors and all star-predecessors,
respectively, of A +.

THEOREM 3.1. Let A E Cm,n' Then, for i = 3 or 4,

(3.2)

Proof. If i = 3, then A = G6'A*A, d. (1.1) and (1.3), and hence

AGA = AGG6'A*A = AGoG6'A*A= AGoA = A.

For i = 4, the result follows similarly using the equality A = AA*G6'; d. (1.1)
and (1.4). •

Notice that the implication (3.2) is no longer true when the condition
Go E A{1, i} is weakened to the form Go E A{1}. A counterexample is the
triplet

uo)
Wo ' G=(~ ~), (3.3)

with to = U o = Vo = W o = 1 and t = w = 0, u = v = 2. Moreover, G need not
be an inner inverse of A either in the case where the star ordering on the
left-hand side of (3.2) is reversed, a counterexample being (3.3) with to = W o
= 1, U o = Vo = 0 and t = u = v = 0, W = 1. However, if the reversed ordering
holds and G is known to be an inner inverse of A, then G has necessarily the
same additional property as Go.
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THEOREM 3.2. Let A E C m •n • Then, for i = 3 or 4,

G E A{ I}, Go E A{1, i}, G ~ Go = G E A{ 1, i}. (3.4)

Proof. If i = 3, then

A(G - Go)(G - Go)*A* = A(GoGd' - GG*)A* = AGo - AGG*A*. (3.5)

But

AGo = AGAGo = AGGd'A* = AGG *A*, (3.6)

and combining (3.5) with (3.6) yields AG = AGo. If i = 4, then similar
arguments lead to the equality GA = GoA. •

If the star ordering on the left-hand side of (3.4) is reversed, then G need
not have the additional property of Go- A counterexample for i = 3 is (3.3),
with to = Vo = 1, Uo = Wo = 0 and t = v = W = 1, u = - 1. However, the
situation changes when Go has the two additional properties simultaneously.

THEOREM 3.3. Let A E Cm,n' Then

GoEA{1,3,4}, Go~G = GEA{1,3,4}.

Proof. Theorem 3.1 implies that G E A{1}. Moreover,

AG = AGoAG = AA*Gd'G = AA*Gd'G o = AGo

and, similarly, GA = GoA. •

Combining Theorem 3.3 with the latter part of (3.1) yields the following:

COROLLARY 3.1. Let A E Cm,n' Then

that is,

A + ~ G - G E A{1,3,4}.
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In view of (1.15), an obvious consequence of (3.1) is that A+ is the least
element of A{I, 3, 4} also with respect to the minus ordering. However, a
characterization similar to that in Corollary 3.1 is not valid in this case.
Actually, none of Theorems 3.1, 3.2, and 3.3 remains true when the star
ordering involved is replaced by the corresponding minus ordering. Coun­
terexamples are obtained from (3.3) taking to = 1, Uo = Vo= Wo = 0 and
t = 2, U = v = W = 1 in the first and third cases, and to = Wo = 1, Uo = Vo = 0
and t = U = 1, v = w = 0 in the second case (i = 3).

A similar series of results will now be given for outer inverses of A. The
first may be formulated using the minus ordering.

THEOREM 3.4. Let A E C m • n • Then

Proof. In view of (1.13), it follows that, for any H oE H o{1 },

HAll = HH oHoAHoH oH = HH oH = H.

THEOREM 3.5. Let A E C m • n • Then, for i = 3 or 4,

HEA{2}, H oEA{2,i}, Ho~H = HEA{2,i}.

Proof. If i = 3, then on account of (1.11) and (1.10), it follows that

THEOREM 3.6. Let A E C m . n • Then

H OEA{2,3,4}, H~Ho = HEA{2,3,4}.

•

•

Proof Theorem 3.4 implies that HE A{2}. Moreover, on account of
(1.11),

and, similarly, HA = HH+. •
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Combining Theorem 3.6 with the first part of (3.1) yields the dual of
Corollary 3.1:

COROLLARY 3.2. Let A E Cm,n' Then

that is,

The matrices

o
1
o

o
z
o

1
o
o

with Y = z = 0, constitute an example that Theorem 3.5 is no longer true
when the star ordering involved is replaced by the corresponding minus
ordering. Setting y = z = 1 in (3.7) shows that the same conclusion may be
made about Theorem 3.6.

The second part of this section refers to Theorems 3 and 4 of Wu [37],
which are restated in Theorem 3.7 below. Henceforth, A{l, ~} and A{2, ~}
will denote the sets of all Hermitian nonnegative definite inner and outer
inverses, respectively, of a Hermitian nonnegative definite A E C m, m'

THEOREM 3.7. Let A E Cm,m be Hermitian nonnegative definite, and
let r(A) = p, Then, for any fixed G~ E A{1, ~ } of rank r and any p ~ q ~ r
~ s, there exist G~, G~ E A{1, ~ } of ranks q and s, respectively, such that

(3.8)

and for any fixed H~ E A{2, ~ } of rank r and any s ~ r ~ q ~ p there exist
H~,H~ E A{2, ~} of ranks q and s, respectively, such that

(3.9)

Precise inspection of the arguments used by Wu [37, pp. 53-54] in
establishing the results quoted in Theorem 3.7 shows that he actually proved
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rs rs rs ostronger relations than (3.8) and (3.9), namely G~ ~ G~ ~ G? and H? ~ H q

~ H~, respectively; d. (1.18). It appears that similar relations can be
established for inner and outer inverses of any A E C m,n'

THEOREM 3.8. Let A E C m, n and let r(A) = p. Then for any fixed
GrEA{1} of rank r and any p~q~r~s there exist Gq,G sEA{I} of
ranks q and s, respectively, such that

(3.10)

and for any fixed H rEA {2} of rank r and any s ~ r ~ q ~ p there exist
H q» H sEA {2} of ranks q and s, respectively, such that

(3.11)

Proof. If q = r = s, which is necessarily the case when p = min(m, n),
then the only solution to (3.10) is Gq = G r = Gs ' Now, let min(m, n) < p < q
< r < s, and let P E Cm,m and QE Cn,n be nonsingular and such that
PAQ = Jp'where Jpdenotes the matrix, of size clear from the context, with
I p in the northwest corner and zeros elsewhere. Consequently, O, admits the
representation

(3.12)

with some fixed KECp,m_p' LECn_p,p' and MrECn_p,m_p such that
r(M r - LK) = r - p. Let S E Cn-p,n-p and T E Cm-p,m-p be nonsingular
and such that

S(M r - LK)T = Jr-p'

Then it can easily be verified that Gq and Gs of the form (3.12) but with M,
replaced by

respectively, satisfy the conditions r(G q ) = q, r(G s ) = s, and (3.10), thus
establishing the first part of the theorem.
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To prove the second part, let

n, =Vr~rU:,

JERZYK. BAKSALARYET AL,

(3.13)

with U, E C m.r, Vr E C n.r, and positive definite diagonal ~r E Cr,r' be a
singular-value decomposition of H,; Then since H, E A{2}, it follows that

(3.14)

Let the matrices Us and Vs comprise the first s columns of U, and Vr,
respectively, and let ~s be the s X s northwest submatrix of ~r' From (3.14),
it is seen that U: AV: = ~;- 1, and thus H s = Vs~.u: is an outer inverse of A
with rank s. Moreover,

r(H r - n.) = s - T = r(H r) - r(H.). (3.15)

To complete the proof of (3.11) let WE Cm,m-r and Z E Cn,n-r be of ranks
m - T and n - T, respectively, and such that

W*AVr = 0 and Ur*AZ= O. (3.16)

From (3.14) and (3.16) it follows that 9l'(Ur) n 9l'(W) = {OJ and 9l'(Vr) n
9l'(Z) = {O}, and hence both (Ur: W) and (Vr: Z) are nonsingular. Conse­
quently, r(W*AZ) = p - T, and thus there exist S E Cm-r,q-r and T E
C n_r,q - r such that

S*W*AZT = I q _ r.

Using (3.16) and (3.17), it can easily be verified that

H q = Vr~,u: +ZTS*W*

is an outer inverse of A such that r(Hq ) = q and

r(H q - a.) = r(ZTS*W*) = q - T = r(H q ) - r(H r),

which concludes the proof.

(3.17)

•
It is interesting to remark that three of the four results in Theorem 3.8 do

not hold if the minus orderings involved are replaced by the corresponding
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star orderings. For example, if
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A=(~ ~),

then there does not exist G E A{l} with rank 1 such that G ~ G2 and there

does not exist G E A{1} with rank 2 such that G I ~ G. Further, if

A=(~ ~),

then there does not exist HE A{2} with rank 1 such that HI ~ H. However,
an outer inverse of A preceding a given outer inverse of A can always be
found.

THEOREM 3.9. Let A E em.n and let r(A) = p. Then for any fixed
H, E A{2} of rank r and any s ~ r ~ p, there exists H, E A{2} of rank s

such that n, ~ a..

Proof. Let H, be decomposed as in (3.13), and let H, be specified as in
(3.15). Then, H:Hr=Usa~Us*=H:Hs and HrH:=Vsa~Vs*=HsH:, as
desired. •

4. PRESERVING OR REVERSING MATRIX ORDERINGS UNDER
GENERALIZED INVERSIONS

Drazin [12, Corollary 1] pointed out that

(4.1)

which means that the Moore-Penrose inverse is isotonic (d. Marshall and
Olkin [25, p. 13]) with respect to the star ordering. Combining ( 4.1) with our
Corollaries 3.1 and 3.2 shows that

and every G D E B{1,3,4}. (4.2)

A part of (4.2) may be used to generalize (4.1).
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THEOREM4.1. Let A,B E C m, n' Then the following statements are
equivalent:

(a) A ~ B,
+ •(b) A ~ C B for every C BE B{1,3,4},
s •

(c) A -< B and A+ ~ C B for some C BE B{1,3,4}.

Proof. The part (a) = (b) is inherent in (4.2). The condition (b) implies,
• s

in particular, that A+ ~ B+. Then (1.15) entails A+ -<B+, which is clearly
s

equivalent to A -<B. If (c) holds, then from (1.14) and (1.11) it follows that
ACBB = A = BCBA and

(4.3)

Consequently, postmultiplying the first and premultiplying the second equal­
ity in (4.3) by B yields the two equalities in (1.10). •

It is interesting to remark that the Moore-Penrose inverse is not, in
general, isotonic with respect to the minus ordering. A counterexample is
given by

B=(i ~).

The problem of characterizing the cases in which the isotonicity property
holds was considered by Hartwig and Styan [18, Theorem 3]. They showed
that if A ~ B, then A+ ~ B + if and only if A+ BA+ = A+, and also pointed

out that even if the orderings A ~ B and A+ ~ B+ hold simultaneously, then

A ~ B need not hold.
On the other hand, there is no nontrivial case in which the Moore-Penrose

inverse is anti tonic with respect to the star ordering or minus ordering. This
is a direct consequence of the following more general statement:

THEOREM4.2. Let A,B E Cm,n, and let H A E A{2} and C BE Bj l }.
rs rs

Then the orderings A ~ B and C B ~ H A cannot hold simultaneously except
for the trivial case where A = B and H A = C B •

rs rs
Proof. If A ~ B and C B~ H A , then (1.15) implies that r(A) ~ r(B) and

r(C B)~ r(H A ) . But, in view of (1.1) and (1.2), we have r(H A ) ~ r(A) and
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r(B) :s:;;r(G o), and hence r(A) = r(B) and r(H A ) = r(G o)' Consequently, (1.12)
yields A = B and H A = Go. •

Clearly, in view of (1.15), Theorem 4.2 also holds for the star ordering.
Contrary to the above, however, the Moore-Penrose inverse proves to be
antitonic with respect to the Lowner ordering, although within the set of
Hermitian nonnegative definite matrices of equal ranks only. Generalizing
the well-known result (d. Roy and Shah [30, p. 140]), that if Hermitian

L
nonnegative definite A,B E C m m are both nonsingular, then A :s:;;B is equiva-

L .
lent to B- 1 :s:;;A-I, Milliken and Akdeniz [26], Hartwig [14], and Werner [36]
contributed to establishing the following:

THEOREM 4.3. Let A,B E C m , m be Hermitian nonnegative definite.
Then any two of the conditions

L
(a) A:s:;;B,
(b) r(A) = r(B),

L
(c) B+ :s:;;A +,

imply the third condition.

For a quick proof of Theorem 4.3 see Styan [34, Theorem 1.2].
From (1.19) it is clear that the condition (b) in Theorem 4.3 may be

replaced by 9fl(A)= 9fl(B); d. Hartwig [14, Theorem 1]. Also notice that the
restriction to the case of Hermitian nonnegative definite matrices is essential,
as may be seen taking

A=(~ ~), B=U~).

Theorem 4.3 can be generalized by considering wider classes of the
generalized inverses involved. Henceforth, A{1,2, H} will denote the set of all
Hermitian reflexive generalized inverses of a Hermitian nonnegative definite
A E C m • m • Observe that all matrices in A{1,2,H} are Hermitian nonnegative
definite (d. Wu [37, Theorem 1]) and also that A+ E A{I,2,H}.

THEOREM 4.4. Let A, B E C m m be Hermitian nonnegative definite.
Then, for any GA E A{I,2,H} and' Go E B{I,2,H},
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Proof. Since A E GA{1}, it follows from (1.20) that the proof of the =>

part reduces to establishing that

(4.4)

But (4.4) is equivalent to

L
which is a straightforward consequence of A ~ Band G B= G:. The reverse
implication follows similarly. •

A somewhat different approach to the problem of reversing the ordering
L

A ~ B results in the following:

THEOREM 4.5. Let A,B E emmbe Hermitian nonnegative definite. If
L .

A ~ B, then for any GAE A{1,2,H} and G BE B{1,2,H} the following
statements are equivalent:

L
(a) G B ~ GA,

s
(b) G B -<GA,

(c) ~(GA) = ~(GB)'

(d) AGA= BG B.

L
Proof. The result that if A ~ B then (a) - (d) is due to Styan and

Pukelsheim [35]; for a quick proof see Styan [34, Theorem 1.1]. That
(a) = (b) follows by (1.19). The part (b) => (c) is a consequence of the
equalities r(G A) = r(A) and r(G B) = r(B) and the inequality r(A) ~ r(B). Fur­
ther, since A E GA{1}, the condition (c) implies that G B= GBAGA.Premulti­
plying this equality by B and using BGBA = A yields (d). •

It is clear that the condition (c) in Theorem 4.5 implies r(A) = r(B).
Contrary to the case when GA= A+ and G B= B+ (d. Theorem 4.3), this
rank equality is not sufficient for the ordering

(4.5)

to hold for any Hermitian reflexive generalized inverses of A and B. A
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counterexample is obtained by taking
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A simple consequence of Theorem 4.5 is the result originally given in
Theorem 7 of Wu [37].

THEOREM 4.6. Let A,B E C m m be Hermitian nonnegative definite. If
L •

r(A) = r(B) and A ~ B, then for any fixed GAE A{1,2,H} there exists a
G B E B{1,2,H}, and for any fixed G B E B{1,2,H} there exists a GAE

L
A{1,2,H}, such that G B~ GA'

L
Proof. In view of (1.20), the assumptions r(A) = r(B) and A ~ B imply

L
~(A)=~(B) and AB+A~A. Given GAEA{1,2}, let G B=G AAB+AG1,
and notice that BGBB = BB+ B = B, r(G B)= r(AB+A) = r(B), and

as desired. The proof of the second statement follows similarly. •
Theorem 4.5 obviously implies that there are no GAE A{1,2,H} and

G BE B{1,2,H} satisfying (4.4) when Hermitian nonnegative definite A,B E
C m m are such that r(A) < r(B). However, the ordering (4.4) may hold when
the' generalized inverses involved need not be reflexive. This was shown by
Werner [36, Theorem 2] and, in a much stronger form, by Wu [37, Theorem
5]. The first part of Wu's result is restated below as Theorem 4.7 with a new,
shorter proof.

L L
THEOREM 4.7. Let A,BEe m, m be such that 0 ~ A ~ B, and let a, b be

positive integers such that r(B) ~ b ~ a ~ m. Then for any fixed G B E

B{l, ~} of rank b there exists a GA E A{l, ~} of rank a such that
L

G B ~ GA'
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L L
Proof. In view of (1.20), the assumption 0:0:;;A :0:;;B implies that AGBB

L
= A and AGBA:o:;;A. Consequently, the matrix

L
satisfies the conditions GB:o:;;G, r(G) = r(G B) = b, and G E A{l}. This actu-
ally concludes the proof, for Theorem 3.7 assures the existence of GA such

L L
that r(GA) = a and G :0:;;GA,which in tum entails G B:0:;;GA' •

An immediate consequence of Theorem 4.7 and the fact that the Lowner
ordering of Hermitian nonnegative definite matrices entails the correspond-

L L
ing space preordering [ef. (1.19) and (1.20)] is that if 0:0:;;A :0:;;B, then for any
Hermitian nonnegative definite C E C m m and for any (A + C) - E
(A+C){1} and (B+C)- E(B+C){1} we h~ve

where AlAi = A and CICt = C. Consequently,

and

(4.6)

The inequality (4.6) may be applied to establish a generalization of a result in
Patel and Toda [28, Inequality V].

L L
COROLLARY 4.1. Let A,B E C m •m be such that 0:0:;;A:o:;;B. Then, for

any Hermitian nonnegative definite C E C m, m and any (A + C) - E

(A+C){l} and (B+C)- E(B+C){l},
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L L
Proof. It is clear that 0..;; A + C ..;;B + C. Hence, r(A + C) ..;;r(B + C)

[ef. (1.19)] and using this inequality along with (4.5) yields

trace[(A+Cr A] = trace[(A+C)-(A+C - C)]

= r(A+C) - trace[(A+CrC]

..;;r(B+C) - trace[(B+C)-C]

= trace [(B+C)- (B+C - C)]

= trace[(B+C)-B],

as desired. •
Hartwig [14, Theorem I] proved that if Hermitian nonnegative definite

L
A,BEe m m are ordered as A ..;;B, then their Moore-Penrose inverses cannot

, L •
be ordered as A + ..;; B + unless A ..;;B, which in view of (1.9) is equivalent to
the equality AB + = AA+. The following theorem generalizes this result to
Hermitian reflexive generalized inverses.

L L
THEOREM 4.8. Let A, BEe m m be such that 0 ..;;A ..;;B, and let GA E

A{I,2,H} and G D E B{I,2,H}. Thenthe following statements are equiva­
lent:

L
(a) GA ..;; G D,

(b) AG D = AGA,
rs

(c) GA ..;; G D•

Proof. In view of (1.20), it follows that

Combining this with (a) yields the equality A(G D - GA)A = 0, and hence (b).
Since (b) =(c) and (c) =(a) follow directly from (1.6) and (1.18), respec­
tively, the proof is complete. •
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The condition A;; B (d. Hartwig [14]) for Hermitian nonnegative defi-
L L

nite A, BEe m m to satisfy simultaneously A ~ B and A + ~ B + may also be
expressed as the equality BA+ = AA +; d. (1.10). Its counterpart BGA= AGA,

L L
however, proves to be insufficient for A ~ B to hold along with GA~ G B
when GA and G B are any Hermitian reflexive generalized inverses. The

s
reason is that the preordering GA-<G B is then not assured as seen by the
following example:

1
1
1

1
1
1

G.~ (~
0 0,0
0

G. ~ ( ~1-1

~)2
0

Theorem 4.8 solves the problem of isotonicity of Hermitian reflexive
generalized inverses with respect to the Lowner and minus partial orderings.
When considering the same problem in the context of the star ordering, the
first observation is that (4.1) fails to be true if the Moore-Penrose inverses A+
and B+ are replaced therein by any GAE A{1,2,H} and any G BE B{1,2,H},
respectively. An example is obtained by taking

A~(~ ~ ~),

B~(~ ~ ~),

G. ~ (1i ~),

G.~ (~ : 0,
in which case A ;; B while GA is not a predecessor of G B even under the
Lowner ordering. A general solution is given in the following:

THEOREM 4.9. Let Hermitian nonnegative definite A, BEe m, m be such

that A;; B, and let GA E A{1,2,H} and G BE B{1,2,H}. Then GA ;; G B if
L

and only if GA~ G B and GAGB= GBGA.

Proof. The necessity is obvious in view of (1.18), (1.15), and (1.5).
L

Conversely, according to Theorem 4.8, GA~ G B implies that AG B= AGA ,



MATRIX PARTIAL ORDERINGS

and then
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as desired. •
The commuting condition in Theorem 4.9 may be deleted when GA = A+.

L
In view of Theorem 4.8, A+ ~ G B implies that AGB = AA +. Premultiplying
this equality by (A+)2 yields A+ G B = (A+)2 = G BA+. This establishes the
following:

COROLLARY 4.2. Let Hermitian nonnegative definite A, BEe m. m be

such that A ~ B, and let G B E B{1,2,H}. Then A+ ~ G B if and only if
+ L

A ~GB'

This concludes our results on some properties of matrix partial orderings.
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From the Editor-in-Chief

Richard A, Brualdi

In this column, written by one of the occupants of the position of
editor-in-chief and included in every volume whose number is divisible by 20
(except those divisible by 100), we relate comments from authors and readers
concerning papers that have recently appeared in Linear Algebra Appl. The
column will contain errata, additional references, and historical and other
comments that we believe will be of interest to readers of the journal.

Michael 1. Gil', On inequalities for eigenvalues of matrices, 184:201-206
(1993). C. K. Li has written to say that the main result in this paper can be
deduced from results in his paper "A note on Miranda's results about the
characteristic values and the three types of singular values of a complex
matrix [Linear and Multilinear Algebra 16:297-303 (1984)]. Here is the
deduction:

Let A be an n X n complex matrix with singular values SI > ... > S"

and eigenvalues Ai"'" An' Suppose H = (A + A*)/2 and G = (A ­
A*)/(2 i) are such that H 2 has eigenvalues ai> '" > a~ and G 2 has
eigenvalues bi > ... > b,:,If Ai = Xi + V-1 Yiwith x., Yj E IR,then (see
Theorems 1 and 2 of Li's paper) for any k = 1, ... , n,

k k k

"( 2 _ b2) " ( .2 2) "( 2 b2 )i..J an - i + 1 i ~ i..J Xi - Yi ~ i.J ai - n-i+l '

i= I i=] i= I

k"2,-,Sn-i+l~
i=l

k

L (a~-i+1 + bf),
i=1

k k

L (a7+ b,:-i + 1)~ L
i= I i=l

(2)

By (1) and (2), we have

k

L (S~-i+l - 2bn ~
i~1

k k

L (a~_j+ I - bn,;;; L (x; - Yn,
i= I i~ I

(3)

k k k

L(x;-yn~ L(a7-b~-i+I)';;; L(sf-2b~_j+l)' (4)
i= 1 i > I i > 1

One easily checks that (3) and (4) are equivalent to the inequalities (1.1) and

LINEAR ALGEBRA AND ITS APPLICATIONS 220:1-6 (1995)
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(1.2) in the paper of Gil'. Moreover, putting k = n in (1) and (2), one gets
(1.3) in the paper. (The results in Li's paper were improved in his thesis.)

P. J. Bushell and G. B. Trustrum, Trace inequalities for positive definite
matrix power products, 132:173-178 (1990), and Bo-Ying Wang and Ming­
Peng Gong, Some eigenvalue inequalities for positive semidefinite matrix
power products, 184:249-256 (1993). In the first paper Bushell and
Trustrum, who were concerned with giving elementary proofs of inequalities
involving products of matrices, made a statement that might have led to the
misunderstanding that the inequality

Tr(AB)m ~ TrAmB m

was proved by E. H. Lieb and W. Thirring (Studies in Mathematical Physics,
Essays in honor of Valentine Bargmann, Princeton, N.J., 1976, p. 269) only
for integer m, when in fact they proved it for all m ;;;.1. Subsequently, in one
of their theorems, Wang and Gong believed that they had extended the
Lieb-Thirring inequality to nonintegral m.

R. E. Gonzalez and D. J. Hartfiel, On the structure of the stochastic
idempotent matrix space, 145:141-158 (1991). Peter Flor has written to say
that his paper "On groups of non-negative matrices" [Compositio Math.
21:376-382 (1969)] is quoted for the characterization of stochastic idempo­
tent matrices. That characterization, however, is much older than his paper,
having been obtained by J. L. Doob in his paper "Topics in the theory of
Markoff chains" [Trans. Amer. Math. Soc. 52:37-84 (1941)]. Flor says that
Doob's paper was one of the starting points for his investigation, and that
what he himself proved (as far as idempotent matrices are concerned) was an
extension of Doob's theorem which describes all nonnegative idempotent
matrices.

T. Summers (Bibelnieks) and C. R. Johnson, The potentially stable tree
sign patterns for dimensions less than five, 126:1-13 (1989). Tracy Bibel­
nieks has written to say that Pauline van den Driessche noticed that the
sign-pattern example given on the bottom of p. 2 and continuing on P: 3
contains an incorrect sign. As it is, the matrix A is not potentially stable and
their Theorem 4 does not apply, as A has no 3-by-3 potentially stable
principal submatrix. The point of that example is made by the alternative
pattern

o
+
o

o

o
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The (3, 2) entry of A' is + instead of the - that appears in the (3,2) entry of
A. As in A, the (3, 1) entry of A' could be + . The remaining entries of A
and A' coincide. The only (irreducible) tree sign-pattern matrix that is a
subpattern of A' is the pattern obtained by changing the (4, 1) entry to 0,
and it is not potentially stable. Thus A' is not an extension of a potentially
stable tree sign-pattern matrix. Yet A' is a potentially stable matrix, since the
matrix

-2
o
2
o

o
-2
o

-1

is stable. (Note also that in Figure 4 on p. 3 the missing sign should be a -.)

Jerzy K. Baksalary, Friedrich Pukelsheim, and George P. H. Styan, Some
properties of matrix partial orderings, 119:57-85 (1989) Selahattin Kaciran­
lar and Fikri Akdeniz have pointed out to the authors that there is a mistake
in Theorem 3.5, which can be repaired by replacing the partial ordering
II o ~ * II in the display with" ~ * "0'In fact, Theorems 3.5 and 3.6 may
be strengthened to the following result (Theorem 2.1 in the unpublished
paper "Some properties of matrix partial ordering" by Kaciranlar and Akd­
eniz):

Fori = 3 or 4'"0 E A{2, i} and" ~ *"0 implies that" E A{2, i}.

Hans Joachim Werner pointed out to the authors that the proof of
Theorems 3.6 given at the bottom of P: 71 actually proves this.

Karl Mosler, Majorization in economic disparity measures, 199:91-114
(1994). Karl Mosler has written to say that the last two lines on p. 108 and
the first line on p. 109 should read as follows:

LZ(F) = cl {Z E ffid+1:Z= (i g(x) dF(x),
ffi d

i g(x)' T(x) dF(X)), g:ffi d ~ [0,1] continuous}
ffi d

is called the Lorenz zonotope. Here cl denotes closure. Then, for the
egalitarian distribution » •
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On p. 97, line 4, (2.12) should be (2.10).

RICHARD A. BRUALDI

K. D. Ikramov, A simple proof of the generalized Schur inequality,
199:143-149 (1994). Rajendra Bhatia has written to say that Theorem 1 is
in the treatise Introduction to the Theory of Linear Nonselfadjoint Operators
by I. Gohberg and M. Krein (see p. 95 of the English translation). Roger
Hom (and others) has also observed that the given range for p in (16) can be
replaced by 0 < p ~ 2, so that the same extension of the range for p is
possible in (10) and (4).

Roy Mathias, An arithmetic-geometric-harmonic mean inequality involv­
ing Hadamard products 184:71-78 (1993). Roger Hom has pointed out to
Roy Mathias that in Theorem 1.3 on p. 73-74, the following assumption
should have been included immediately before the conclusion:

Assume in addition that the main diagonal entries are the largest entries
of PAin absolute value.

K. Nordstrom and J. Fellman, Characterizations and dispersion-matrix
robustness of efficiently estimable parametric functionals in linear models
with nuisance parameters, 127:341-361 (1990). A query from Thomas
Mathew to the authors led to the detection of an error. Theorem 4.2 is
incorrect as stated. Denoting

E* = {p'y:p = W'q, q E m 1-(VW 1-) n meW) n m 1-(Z)},

the corrected version is:

THEOREM 4.2. For the subspaces E n e; Ea n Eo(l), and Ea n EiV)
the follOWing results hold:

E n e, =:>E*, (4.14)

Eo(V) n Eo(l) =:>E*, (4.15)

{p'y E Ea:p'y = p'y = p'Ya = p'Ya} =:>E*, (4.16)

E(/n Eo(l) =:>{p'y:p = W'q, q E m 1-[V(W:Z) 1-]

nm(W)nm1-(Z)}, (4.17)

E(/n Eo(V) =:>{p'y:p = W'q, q E m 1-(VW 1-)

n m(w:Z) n m 1-(Z)}. (4.18)
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Since the subspace on the left-hand side of (4.16) equals E II En II Eo(V)
II Eo(I) by definition, it can clearly be sandwiched between the left- and
right-hand side of both (4.14) and (4.15). In the earlier result all the above
inclusions were incorrectly given as equalities. However, in each case a
necessary and sufficient condition for equality can be derived using the fact
that, for a linear transformation A: X -) Y (X and Y finite-dimensional) and
two subspaces U and V of X, the equality A(U II V) = (AU) II (A V) holds
iff

(U + V) II N( A) = [U II N( A)] + [V II N( A)] .

These corrections affect the first two paragraphs following the proof of
Theorem 4.2 (pp. 357-358). In particular, both the inclusion (4.19) and the
first equation displayed on P: 358 are in error.

In view of the above corrections, the subspace E* is not a characteriza­
tion of those parametric functionals p'y E Ea which are "doubly robust,"
i.e. robust against both the presence of nuisance parameters and an alterna­
tive dispersion matrix. Nevertheless, all functionals p'y E E* do enjoy these
model- robustness properties.

J.-E.Martinez-Legaz and I. Singer, Compatible preorders and linear
operators on R n

, 153:53-66 (1991). The authors correct Corollary 104 and
Remark 1.4(c). In statement (3) of Corollary lA, the rank of a compatible
order is undefined, unless it is a total order. Consequently, Corollary 104
should only state the equivalence of (1) and (2). Nevertheless, Corollary 104
admits the following more general version (stated for preorders instead of
orders), in which a suitable modification of (3) is also included:

COROLLARY 104. For a compatible preorder p on R"; the following
statements are equivalent:

(1) p is a total order.
(2) C; is the complement of a semispace at 0 (i.e., C; = R U

\ S, where S
is a maximal convex subset of R n such that 0 $ S).

(3) p is a total preorder, with r( p) = n.

Proof. The proof given in the paper for the equivalence (1) = (2) of
Corollary 1.4 applies to this new version, with no changes. The implication
(1) => (3) directly follows from Theorem 1.2 and Definition 1.1. Finally, the
"proof" given for the "equivalence (2) = (3)" of Corollary 1.4 becomes
correct when interpreted as a proof of the implication (3) => (2) with the new
statement (3).
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The authors also point out that in their restatement of the "lexicographic
separation theorem" [Theorem 2.1 in their paper "Lexicographic separation
in W, 90:147-163 (1987)]. Remark 1.4(c), the words "For two sets G1,

G2 eRn ... " should be replaced by "For two disjoint sets G 1, G2 eRn .... "

E. Spiegel, Sums of projections, 187:239-249 (1993). Pei Yuan Wu has
written to say that results in this paper are contained in the papers "When is
a matrix a sum of idempotents?" by R. E. Hartwig and M. S. Puchta, Linear
and Multilinear Algebra 26:279-286 (1990), and "Sums of idempotent matri­
ces" by P. Y. Wu, this journal 142:43-54 (1990).

L. Kolotolina and B. Polman, On incomplete block factorization methods
of generalized SSOR type for H-matrices, 177:111-136 (1992). In the
introduction, reference to the paper "Block preconditioning for the conjugate
gradient method" by P. Concus, G. H. Golub, and G. Meurant [SIAM j. Sci.
Statist. Comput. 6:220-252 (1985)] was inadvertently omitted.

T. Markham, 179:7-10 (1993) C. K. Li has pointed out that one of the
main results in this paper is contained in Lemma 4.1 of his paper "Matrices
with some extremal properties," 101:255-267 (1988).

Robert Grone, A biography of Marvin Marcus, 201:1-20 (1994). The
rank of Mohammad Shafqat Ali is that of Professor, not Associate Professor as
given.


