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Complete Class Results For
Linear Regression Designs
Over The Multi-Dimensional

Cube
Friedrich Pukelsheim!

ABSTRACT Complete classes of designs and of moment matrices for linear
regression over the multi-dimensional unit cube are presented. An essen-
tially complete class of designs comprises the uniform distributions on the -
vertices with a fixed number of entries being equal to unity, and mixtures
of neighboring such designs. The corresponding class of moment matrices
is minimally complete. The derivation is built on information increasing or-
derings, that is, a superposition of the majorization ordering generated by
the permutation groups, and the Loewner ordering of symmetric matches.

1 Introduction

In a brilliant paper C. -S. Cheng (1987) recently determined optimal designs
over the k-dimensional unit cube [0, 1]* for the linear model

ElY] =28, V[Y]=d>

In this setting the experimenter chooses the regression vector z in the cube
[0,1]* prior to running the experiment, and then observes the response
Y. The response is assumed to have expected value and variance as given
above; furthermore, responses at different design points z, and replicated
observations at the same point z, are all taken to be uncorrelated. As
pointed out by Cheng this model has interesting applications in Hadamard
transform optics.

The optimal designs of Cheng (1987) are the j-vertex designs §; and
mixtures of (j + 1)— and j-vertex designs, defined as follows. A j-vertex
of the unit cube [0, 1]* is a vector z with j entries equal to unity and the
remaining k — j entries equal to zero, for j = 0,...,k (See Figure 1.) There
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U many j-vertices. The j-vertex design §; is the design that has the

Jj-vertices for support, and assigns uniform mass 1/ AU to cach of them. For
.::xS:,mm of the form aé; 41 + (1 —a)¢; the following notation is convenient,
in that it provides a continuous parameterization. Given 7,5 =0,...,k—1,
define the design

are (

€e=(s—5)ir+(1—-(s-4)  forse(Gj+1)

In terms of s we have that j is the integer part of s,5 = int s. In other
words, the two integers j+1 and j closest to s specify the number of vertices
supporting &,, and the fractional part s—j determines the weight for mixing
&;+1 and §;. For example, £3.11 = 0.11€3 + 0.893, and &7.4 = 0.465 + 0.6£7.

Under the p-mean criteria considered by Cheng (1987) the class of opti-
mal designs is

2

starting from the ‘median vertex design’ &, +1)/2 and running through
the j-vertex designs &; and mixtures &, up to the design & that assigns
all mass to the vector with each entry equal to unity. It is notationally
convenient to define

C=<&:s¢€ 5%+~,w W,

k+1

2
this is the largest median of the set of numbers 0, ..., k. As usual the class
of all designs on [0, 1]* is denoted by =.

m = int

FIGURE 1. n.uo_dmnm of the unit cube with j entries 1 and the remaining entries
0 are called j-vertices. For the cube in dimension 3 the figure shows the 0-, 1-,
2-, and 3-vertices.
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In Section 2 we show that Cheng’s class C is essentially complete, and that
the corresponding class of moment matrices M(C) is minimally complete,
with respect to the information ordering generated by the permutation
group Perm(k). As a consequence, the class C contains an optimal design

Friedrich Pukelsheim 351

whenever the optimality criterion is given by an information function ¢
that is permutationally invariant.

Cheng (1987) studied the subclass of p-means ¢,. In Section 3 we present
some graphs showing how the optimal support parameter s(p) and the
optimal value v(p) change with the order p € [~o0, 1] of the mean ¢,, and
with the dimensionality k.

2 Complete Class Results

The performance of a design £ hinges on its moment matrix
M) = \ zx'dE.
(0,1]*

These matrices are of order k x k, and nonnegative dcfinite. Our com-
plete class results refer to the information increasing ordering generated
by the group Perm(k) of k x k permutation matrices. The general theory
is surveyed in Pukelsheim (1987). We here only recall such details as are

necessary for the present discussion.
A matrix B is said to be more centered than a moment matrix A whenever

B e conv{QAQ' : Q € Perm(k)},

that is, B lies in the convex hull of the orbit of A when the group Perm(k)
acts through congruence. A moment matrix M is said to be at least as
informative as another moment matrix A when in the Loewner ordering
one has M > B for some matrix B that is more centered than A. A moment
matrix is said to be more informative than another moment matrix A when
M is at least as informative as A, but does not lie in the orbit of A.

Theorem 2.1 The class of designs C is essentially complete; that is, for
all designs n in Z there ezists a design § in C such that M(&;) is at least as
informative as M (n). The corresponding class of moment matrices M(C) is
minimally complete; that is, for all moment matrices A not in M(C) there
erists a moment matriz M in M(C) such that M is more informative than
A and there is no proper subclass of M(C) with the same property.

Proof: Let n be a design not in C. First symmetrization leads to an
invariant design 7, then a Loewner improvement produces a better design
¢, and another Loewner improvement yields a design &, in the class C.

1. Averaging 7 leads to a design 7 that is permutationally invariant. Its

moment matrix A is the average of the moment matrix A of n,

- H ‘
A=5 ). QAQ,
QePerm(k)
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and therefore more centered than A.

It may happen that 7 has an invariant moment matrix A without n
itsclf being invariant. In this case A = A, so that the passage from A to
A means no improvement whatsoever. The optimal balanced incomplete
block designs of Corollary 3.5 in Cheng (1987) provide an instance of this.

II. Being invariant the design 7 must be a mixture of J-vertex designs

for 7 <0,
7= Bt
j20
with min §; > 0 and 3° 6; = 1. Let J be the k x k matrix with each entry

equal to 1/k, and set K = I} — J; this is an orthogonal pair of orthogonal
projections. The moment matrix of ¢; is

_ .N ¥, _ .
>NAM..~V = >.~.\ + \/&Nﬂ, where >u. = .N\n.J Y.n. = MMM I-MW .

Therefore the moment matrix of 7 is
g M(7) =Y Bi(A;] + \K).
j20

The eigenvalues Ajand ); increase as j runs over the initial section from 0
up to m. Hence we introduce new weights a; that sweep the initial mass
into the median m

a; =0 for all j <m, QSHMP; a; = f; for all j > m.
j<m
This produces a design which is a mixture of Jj-vertex designs for j > m,
§= MU a;&;,
jzm

with a Loewner improved moment matrix M (&) > M(7). Furthermore the
two moment matrices are distinct, unless the weights 3; vanish for j < m.
III. The moment matrix of ¢ is M(€) = AJ + MK, with

.\ 2 k . .
>“MUQ.~.#AWV. »“MUstlHM\mAlev

jzm

Thus the eigenvalue pair (A, \) varies over the convex set
e

k
k-1

conv{(A;.X;):j=m,... .k} = no:<ﬁ?uu‘

In other words, on the curve z(z) = kz? and y(z) = »IP.NC — z) we pick
the points (A;, ;) corresponding to z = j/k for j > m, and then form
their convex hull.

Ncnavvnuuw,..._@.
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The geometry exhibits that for every eigenvalue pair (A, ) there exist
vertices (Aj41,Aj41) and (A, A;) of the upper boundary of the convex hull
containing (A, ) such that with some o € [0, 1], s = j + o, we obtain

A < Q>.N.+— + : = Qv>u. = >3 A < Q\/u..: + AH = vau. = »u.

Thus the design £, has a Loewner improved moment matrix, M(&,) >
M(£), and lies in Cheng’s class C. Furthermore the two moment matrices
are distinct, unless ¢ itself lies in C.

IV. As s varies over [m, k] the eigenvalues A, and ), strictly increase
and decrease, respectively. Therefore a proper subclass of M (C) cannot be
complete. o

The eigenvalue improvement in part III of the proof appears to be small,
indicating that mixtures of j-vertex designs for ; > m may perform well
even when they are not in the class C.

Every optimality criterion ¢ that is isotonic relative to the Loewner or-
dering, concave, and permutationally invariant is isotonic also relative to
the information increasing ordering: M is at least as informative as A if
and only if .

M N MQsostM,

with Q; € Perm(k), and mine; > 0 and §_ o; = 1. The functional proper-
ties of ¢ then yield

(M) 2 6 (3 aiQiAQ)) 2 3" aid(QiAQ;) = ¢(A).

The same reasoning also establishes that if there exists a design ¢ € = that
is ¢-optimal over = then there actually exists a design & € C with the
same optimality property. An optimal design always exists provided the
criterion ¢ is upper semicontinuous. The following corollary summarizes
this behavior.

Corollary 2.2 Let ¢ be an optimality criterion that is Loewner-isotonic,
concave, and permutationally invariant. If a moment matriz M is at least
as informative as another moment matriz A then

(M) > ¢(A).
Moreover, there ezists a design &, € C which is ¢-optimal over =,

$(M(E,)) = max $(M(€)),

§e=

provided ¢ is upper semicontinuous.

A particular class of criteria to which this corollary applies are the p-
means ¢y, for p € [~o0, 1], studied by Cheng (1987).
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3 OUSBWH Ummwmbm for the prlficall Q:ﬁ.m:m. FIGURE 3. The graph shows the dependence of the optimal value v(p) = ¢(£s(p))

i ; i der of p of the mean for varying dimensions k.
As it happens the complete class of moment matrices M(C) is in fact ex- on the order of p0 ¢ps

hausted by the moment matrices M (¢,(,)) belonging to ¢,-optimal designs

&s(p), @s p varies over [—o0,1]. This follows from Theorem 3.1 in Cheng 1.0F ;
(1987); we now briefly recall this result. Cheng subdivides the interval \\\.
[~00, 1] using two interlacing sequences of numbers f(m), g(m), ..., f(k), g(k), 8k i
according to A/ . ;
: . . . 3 6+ ]
—00 = f(m) < g(m) < f(4) < g(4) < F(j+1) < g(j+1) < f(k) = g(k) = 1 g6 e N\\_
. . g =4 I /.
for j=m+1,...,k — 2. His result can then be stated as follows. ) —— kit = \t|.x =1000
. X2 =00 7L 210,000
Theorem 3.1 For every order p € [—oc0, 1], there exists a support param- _ T - IR
eter s(p) € [m, k| such that the design &, is ¢-optimal over =. As a M 26y
function of p the support parameter s(p) is continuous, equal to j on the -1 -8 -6 -4 -2 0 2 4 6 8 |1
interval [f(j),g(j)], and strictly increases from j to j + 1 on the interval P
l9(3), f(G+1)], for j=m,....k—1.
FIGURE 2. The graph shows the ¢,-optimal support parameter sx(p) standard-
ized by the dimension k, as a function of the order p of the mean ¢p. Most of the
variation takes place when p is positive. The limiting value for large dimensions " L
kis 1/2. iG+1) A»ITFA |.§+IL v ). FG+1))
hﬁwwv" . B }q Num AQA.\\Vu .w ‘
10 “ T 2+ 1)(k - 1)+ (2 +1-k) {1~ 71}
i
! /o \ .
9r “" b \.L_ Figures 2 and 3 illustrate how the mem:.am&a& .mcﬁ.vvoﬂ parameter s(p)/k
8l N \. ?: and the optimal value ¢(£,(,)) vary with p. Variation is small for p < -1
- m Fresanaes \\ ' \\ and is not shown; variation is relatively large for p > 0. . .
,.w aF | 4 P \\: Writing sk(p) in place of m@.v we now show that m.oﬂ _mnm.m agwsmmoﬂm .\a
8 __\\x 210 .\ \.\ \\ k = 1000 the support of the optimal designs tends to the vertices with half of their
i k=4 /""" Toa 7 S/ tri nity,
N KA A —k= 10000 e . s(p) _ 1
5 = L T lim = -,
1 1 1 1 L L J k—oo k 2

Let jx be the integer part of sk(p), so that sk(p) € [jk,jk + 1), and p €
[£(Gx), fGik + 1)). It suffices to show that ji/k tends to 1/2. . .

From jx > m we clearly get liminf jx/k > 1/2. We argue that ._:: sup jk/k =
1/2. Otherwise there is no loss in generality in assuming lim ji Jk=a>
1/2. Then we obtain

Cheng (1987) actually provides explicit formulae for these quantities, log AH - ﬂgv _omﬁ = %mv 4
namely fOr) =1+ a1+ lim ] =
— ’ k— Oan - : 1=
_omA - I»Iv _omA - lev log(k Cm.wdwm - :
3 25-1 ; 2j+1 . . 3 i :
fG)=1+ Tm 7 9(j) =1+ ?u_ww ; Hence eventually p must fall below f(jx), and this is impossible.
k—j
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Remark

The criteria used to compare designs in this paper assume that all observa-
tions incur a constant cost regardless of the design point at which they are
taken. Thus, the total cost is fixed by fixing the total sample size n, and
the goal is to allocate proportions of this total sample size to design points
in an optimal fashion. For example, a j-vertex design ¢; assigns approxi-
mately n/ AU observations to each of the AU Jj-vertices. However, there are
many situations where investigators are also concerned with minimizing
the number of design points. In this case, the first observation at a new de-
sign point is more expensive than all succeeding replications at that point.
Criteria reflecting this concern, and designs optimal with respect to such
criteria, are a worthy subject for further study.
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