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Abstract Cnven an exponential fanuly of samphng chstnbutions of order k, one may construct m a natural way an exponential 
family of conjugate (that is, prior) distnbuuons depenchng on a k-dimensional parameter c and an addtttonal weaght w > 0. 
We compute the bins term by wtuch the expectation of the samphng mean-value parameter under the conjugate distribution 
deviates from the conjugate parameter c. Tins bins term vamshes for regular exponentml families, providing an appealing 
mterpretauon of the conjugate parameter c as a 'prior location' of the sampling mean-value parameter. By way of example we 
explore the extension of tlus approach to moments of bagher order, m order to interprete the conjugate weight w as a 'pnor 
sample s~ze'. 
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1. Introduction 

Conjuga te  exponent ia l  families were i n t roduced  
by  Ralf fa  and  Schlaifer  (1961, Sect ion 3.2). A 
review, together  wi th  many  references,  is given b y  
Dickey  (1982). Conjuga te  famil ies  are also in- 
c luded  in the  monographs  b y  Barndor f f -Nie l sen  
(1978, pp.  131f) and  Brown (1986, pp.  112ff). 

F o r  an exponen t ia l  sampl ing  fami ly  wi th  an  
open  canonica l  p a r a m e t e r  d o m a i n  O Diaconis  and  
Ylvisaker  (1979, Theo rem 2) es tab l i shed  the re- 
markab le  resul t  tha t  the conjugate  p a r a m e t e r  c is 
the expected value of  the sampl ing  mean-va lue  
pa rame te r  ~-(0) unde r  the conjugate  d i s t r ibu t ion  
Q~W), 

e o , . , [ , ( 0 ) ]  = c; 
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see also T h e o r e m  4.19 in  Brown (1986, p. 113). In  
the presen t  no te  we ex tend  this resul t  to a rb i t r a ry  
exponen t ia l  families,  and  explore  the va l id i ty  of  a 
s imilar  s t a t ement  for  the  conjuga te  weight  w. 

In  Sect ion 2 we review conjuga te  exponent ia l  
famil ies  given a s ampl ing  fami ly  that  is exponen-  
t ial  and  of  o rde r  k,  in the  t e rmino logy  of  Barn- 
dor f f -Nie l sen  (1973). The  p r o p e r t y  of  be ing  closed 
under  s ampl ing  suggests to  in t roduce  sample  size 
n and  con juga te  weight  w as a k + 1 st pa ramete r ,  
l ead ing  to the  famil ies  ya and  ,~ of  sampl ing  
d i s t r ibu t ions  and  con juga te  d is t r ibut ions ,  respec- 
tively. 

Con juga te  densi t ies  a re  log-concave,  as dis- 
cused in Sect ion 3. Barndor f f -Nie l sen  (1973, p. 
194; 1978, p. 93) p rov ides  a useful  in tegrable  
m a j o r a n t  for  log-concave  densit ies.  Based  on  this 
m a j o r a n t  a shor t -cu t  p r o o f  and  an extens ion of  
T he o re m 2 of  Diacon i s  and  Ylvasakar  (1979) is 
given. This pe rmi t s  an  exhaust ive  d iscuss ion  of  
exponen t ia l  famil ies  of  o rde r  1. 
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In Section 4 we go one step further and outline 
a corresponding result for the conjugate weight w, 

VQW[~'(O)] = 1EQ~.)[I(O)],  

that is, under the conjugate distribution Q~W) for 
the sampling parameter 0 the variance-covariance 
matrix of the mean-value parameter r(O) is equal 
to expected Fisher information I (0)  rescaled by 
the conjugate weight w. We show that even in 
classical regular families this result holds true only 
when the weight w is sufficiently large, and that 
there are other regular families for which it fails 
completely. 

2. Conjugate exponential families 

Let # o )  = (poO): O ~ O } be a family of distribu- 
tions on R k for a sample of size 1. Suppose that 
~(1) forms a full and linear exponential family of 
order k, in the terminology of Barndorff-Nielsen 
(1978, Chapter 8). Then there exists a dominating 
measure /~ such that the distribution p~l)~ # o )  
admits a/~-density 

Nielsen (1978, p. 93; 1973, p. 194). The key point 
is that the function f(O) = K(O) - O'c is a convex 
function of 0, whence the functions e -wf~e)= 
(e°%-~(e)) w are log-concave in 0 for fixed weight 
w > 0 .  

Lemma 2.1. For every wetght w > 0 and for every 
vector c ~ R ~ one has 

fo  (e°'C-~'°) )W d~ ( O ) < oo ,=, c ~ i n t  C. 

Proof. The convex function f ( O ) =  x ( O ) -  O'c Is 
closed and has an effective domain with nonempty 
interior. Thus the integral f o e  wf(O) dX(0) is flmte 
if and only if 

0 ~ i n t  dom(wf )*  = in t (w( (dom x* ) - c)) 

= w((int  C)  - c), 

where an asterisk indicates conjugate functions. 
The latter property means that c lies in the inter- 
ior of C. Details of this reasoning are given m 
Barndorff-Nielsen (1978, pp. 132, 93, 140). Thus 
the proof is complete. 

p ( 1 ) ( t )  (X e °'t-~(°) for t ~ C, 

while p~l)(t) = 0 for t ~  C. Here O't=Y.j<.~Ojtj is 
the Euchdean inner product of the column vectors 
0 and t, and K(0) = logfe °'t d/t( t )  is the cumulant 
transformation. These distributions all share a 
common closed convex support 

C = cl conv supp ~(]) 

which is the range of variation of t, see 
Barndorff-Nielsen (1978, p. 90). 

The family of 'prior distributions' conjugate to 
~i~(1) IS defined to be a family of distributions on 
the parameter domain O. The parameter domain 
O is a Borel subset of R k since it is the countable 
union of closed sets U,~>a(x~<n), due to the 
closedness of the cumulant transformation k, see 
Barndorff-Nielsen (1979, p. 103). The parameter 8 
(and the canonical statistic t) are unique only up 
to regular affine transformations, leaving k-di- 
mensional Lebesgue measure A as the only rea- 
sonable candidate for a dominating measure. 

Convex duality determines the conjugate 
parameter, based on a result due to Barndorff- 

This justifies the definition of the family .~w) 
of conjugate dtstrtbunons Q~W) for weight w > 0 on 
O by requiring that c lies in the interior of C and 
that Q~W) has Lebesgue density 

q~w)(o)o~(e°'C-~(°))w for 0 ~ O, 

while q~w)(o)=o for 0 ~ O .  Thus ~(w) is an 
exponential family with canonical parameter c 
and canonical statistic wO. The union over varying 
positive weights w > 0, 

a =  LJ.~(w,=(Q~W): c ~ i n t  c ,  w > 0 } ,  
w>0 

will be called the famtly of conjugate &strtbutions. 
The weight w plays a role similar to sample size as 
to be discussed next. 

Suppose T 1 . . . . .  T, is a sample of size n from a 
distribution P0 (1) ~ ~ i~(1). Then the sample average 
T (n) = E , ~ , T , / n  is distributed according to the 
distribution Po ~") that has density 

p~"'(t) cx(e°"-~°))"  for tG  C, 
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while pg~) ( t )=0  for t ¢  C, relative to some 
dominating measure p(~). The family ~ ( ~ ) =  
{P0(~): 0 ~ (9} of sampling dtstnbutionsfor sample 
size n is an exponential family with canonical 
parameter 0 and canonical statistic nt. For a 
seamless correspondence between ~(~) and ~(m) 
we let the 'sample size' n vary continuously over 
all positive numbers (0, o0) whenever possible, 
rather than restricting it to take integer values 
only. Thus the family of sampling distrtbutwns is 

n > 0  

The most useful consequence of this correspon- 
dence is that the family .~ of conjugate distribu- 
tions is closed under sampling from ~ :  A prior 
distribution Q~W)~.~ for the sampling parameter 
19 ~ O is transformed by an observed response t 
- distributed according to P ~ )  ~ ~ -  into a poste- 
rior distribution of O given t that again is a 
member of .,~, namely 

(w+n) 
*~Q~')~I"~'( O I t) = O(wAw+~))c+~.A~+.))t 

Thus the conjugate weight w and the sample 
size n are added, and the relative magnitudes 
w / ( w  + n) and n / ( w  + n) determine that mixture 
of the prior parameter c and the observed re- 
sponse t which yields the posterior parameter 
( w / ( w  + n))c + ( n (w  + n))t. 

This construction emphasizes the similarities 
between the families ~ and .~. However, the 
dissimilarities are more intriguing, and surface as 
soon as regularity of these families is considered. 

3. l oca t ion  interpretation of the conjugate 
parameter 

The family of conjugate distributions .~ is an 
exponential family of order k + 1, as pointed out 
by Barndorff-Nielsen (1978, p. 132). However, 
little if anything seems to be gamed by this fact. 
Notice that the family of sampling distributions 
need not be exponential, even though it has been 
constructed as the union of exponential families. 

More important, conjugate densities are always 
log-concave, as mentioned before Lemma 2.1 and 
used in its proof. Another aspect of this property 

is that they admi t '  nice' integrable majorants based 
on the Euclidean norm 101. 

Lemma 3.1. For every weight w > 0 and for every 
vector c ~ int C there exist scalars a ~ R and fl > 0 
such that 

q(~W)(O) <~ e w~--wBl°l for 0 ~ R. 

Proof. See Barndorff-Nielsen (1973, p. 194; 1978, 
p. 93). 

The family ~tw) of conjugate distributions for 
weight w has the interior of the set C for its 
canonical parameter domain and hence is regular. 
No regularity assumption has been made for the 
family ~(n) of sampling distributions for sample 
size n, but the boundary behaviour of the con- 
jugate densities characterizes regularity, as fol- 
lows. Regularity of the sampling family means 
that the canonical parameter domain (9 is open. 

Lemma 3.2. For every wetght w > 0 and for every 
vector c ~ int C the conjugate density q~W) is fimte 
on the boundary of O; moreover tt vamshes on the 
boundary tf  and only if  0 ts open. 

Proof. Convergence to the boundary splits into the 
cases when 0 tends in norm to infinity or when it 
tends to a boundary point 7/of O, see Makelainen, 
Schmidt and Styan (1981, p. 759). In the first case 
Lemma 3.1 forces q~w)(o) to converge to zero. In 
second case we have that hm supo~q(~w)(o) is 
bounded by e . . . .  /~lnl and hence finite. 

More precisely the limit superior is propor- 
tional to (e"C-~(n)) w and hence vanishes if and 
only if x(~l) equals + oo. This prevents ,/ from 
being a member of (9. Therefore (9 does not 
include its boundary, that is, it must be open. 
Thus the proof is complete. 

This lemma is the basis for a short-cut proof of 
the following result due to Diaconis and Ylvisakar 
(1979, Theorem 2) who circumvent Lemmas 3.1 
and 3.2 by using direct arguments. Their result 
identifies the conjugate parameter c as the loca- 
tion of the sampling mean-value parameter ~(0) 
= Ep~n~[t] when it is averaged with respect to the 
conjugate distribution Q(W). 
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In fact, an analysis of their proof reveals that 
the result continues to hold when the conjugate 
densities are constant on the boundary. Their 
method carries over even to the most general case, 
resulting in a bias term based on the integral over 
the derivative Dq~(~)(0) with respect to 0. 

Theorem 3.3. For every conjugate wetght w > 0 and 
for every conjugate parameter c ~ int C one has 

EQW[~'(0)] = c  1 foDq~w)(o) dX(0) ;  

moreover i f  the conjugate denstttes are constant on 
the boundary then 

EoW[~'(0)]  = c. 

Proof. For the purposes of Lebesgue integration 
over O we need only look at the interior of this 
set. Recall that for interior parameter vectors O 
the first and second derivative of the cumulant 
transformation reproduces the mean-value param- 
eter and the Fisher information matrix, r ( O ) =  
Dx(O) and I(0)  = D2K(0). 

The gradient of the conjugate density is 

DqtcW)( O ) = w( c - "r( O ) ) q~ ) (  O ). 

Thus the two statements: 
- 'The gradient is integrable under Lebesgue 

measure.' 
- 'The  mean-value parameter has finite expec- 

tation under the conjugate distribution.' 
imply each other and entail the first formula in 
the theorem. We establish Lebesgue integrability 
of the gradient. Without loss of generality con- 
sider its first component, Dlqt~W)(O), which is the 
partial derivative with respect to the component 

01 . 
Fix the components 02 . . . . .  O k . The partial 

function 

h ( 01) = Dlq~W) ( O ) = W ( Cl - "rl ( O ) ) q(~w) ( o ) 

has 01 varying over an interval from a 1 to b 1, say. 
Furthermore h(Oa) is the derivative of H(01)= 
q(~w)(o). But the vector 0 with first component 
O a = a  1 or 0 l = b  1 lies on the boundary of O. 
Therefore Lernma 3.2 shows that the values H(aa)  
and H(bl)  are finite. 

The second partial derivative D12r(0) is the 
diagonal element Ila(0) of the information matrix 

and hence positive. Thus the first partial deriva- 
tive D a r ( O ) =  za(0) is increasing in 01 and the 
function h(81) changes sign at most once, and if 
so the sign change is from positive to negative. In 
case there is no sign change one has 

f b ' l h ( O i ) l d O  1 = I H ( b l )  - H ( a l )  [ 
121 

<~H(al )+ H(b l ) .  

In case there is one change of sign in the point cl, 
one has 

= 2 H ( q ) .  

In either case the function h is integrable. 
Now allow the components 02 . . . . .  O k to vary. 

Lemma 3.1 provides, the bounds 

H ( a l  ) + H ( b l  ) < eW,-W#l/a~+a~+ +e~ 

+eW,-W~x/b~+O~+ +of 
2 ~< 2eW~-waV/0+0~+ +0~, 

2H(Cl)  ~< 2e w"-w¢~/d+°~+ +o~ 

<~ 2eW,-W/3x/o+o~+ +o~ 

The common majorant is integrable with respect 
to 0 2 . . . . .  Ok, showing that Daq(~w)(o) is integrable 
with respect to 0. Tins establishes integrability 
and the first formula. 

Moreover the Fubini Theorem applies and 
yields 

foDlq~W'(O) dX(0)  

= f " "  f ( f a i ~ h ( O ~ ) d O ~ ) d O z ' " d O k  • 

Since we have already verified integrability of h 
the inner integral equals H ( b l ) - H ( a l )  and 
vanishes when the conjugate densities are constant 
on the boundary. This establishes the second for- 
mula. Thus the proof is complete. 

We are now in a position to provide a complete 
discussion of what can happen in the one-dimen- 
sional case. Here O is an interval wtth endpoints a 
and b, say. The bias term becomes 

1 fabDqtW)(O)dO= l ( q ~ W ) ( a ) - q 1 ~ ) ( b ) ) .  
w 
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In view of Lemma 3.2 three cases are possible: 
If 0 is open then the bias term vanishes. 
If O is half-open then the bias term is nonzero. 
If O is compact then the bias term vanishes if 

and only if constancy on the boundary obtains. 
The monograph of Barndorff-Nielsen (1978) 

provides a wealth of exponential families falling 
under the first two cases. The third case is also 
nonvacuous, since every compact convex set O 
appears as the canonical parameter domain of 
some exponential family (Brown, 1986, p. 26) 

The third case has q(~)(a)  = q(W)(b) and there- 
fore can hold only when the conjugate parameter 
has value 

K ( a ) - - x ( b )  
C = 

a - b  

Thus the bias term vanishes for precisely one 
value of c and is nonzero otherwise. 

Example 3.4. The exponential family generated by 
the Laplace density e - I t  I//2 has canonical parame- 
ter domain O = ( - 1 ,  + 1), see Barndorff-Nielsen 
(1978, p. 168). Removing some mass from the tails 
of the densities, according to e - l t l / ( l + t 2 ) ,  
creates an exponential family with compact 
parameter domain O = [ - 1, + 1]. Due to symme- 
try one has K ( - 1 )  = r ( +  1), so that here we have 
Eo~w)['r(0)] = C if and only if c = 0. 

The approach of integrating over the derivative 
of the conjugate density is put forward in Morgan 
(1970) as well. It clearly suggests to also look at 
the integrals over second (and higher) order de- 
rivatives, and to this we turn next. 

4. Sample size interpretation of the conjugate 
weight 

The Diaconis and Ylvisakar result is remarkable 
in that it covers all regular exponential families, 
which is an important and easily recognized class. 
This transparency gets lost when higher orders are 
considered. The Hesse matrix of the conjugate 
density q~W)(O) is 

DEq~(W)(0) = w2(.r(  O ) - c)(I"( 0 ) - c ) 'q}~) (  O ) 

- w I ( O ) q } ~ ) ( O ) .  

Integrability is no longer self-evident, and the 
analogue of Theorem 3.3 is burdened by the nec- 
essary provisos (leaving hardly anything to prove). 

Theorem 4.1. For every weight w > 0 and for  every 
vector c ~ int C any two o f  the fol lowmg three state- 
ments tmply the third: 

- 'The Hesse  matr tx  is integrable under Le- 
besgue measure.'  

- 'The mean-value parameter  has finite vart- 
ance-covartance matr tx  under the conJugate 
dtstrtbution.' 

- 'The Fisher mformation matrtx  has f inite ex- 
pectation under the conjugate distribution.' 

I f  these mtegrabdity conditions are fulfilled then 

Ve~. , [ r (0)  ] = 1 E o ~ , [ I ( O ) I  
W 

+-~T fo D2q~W)(O) dX(O); 
moreover i f  the gradient Dq~W)(O) is constant on 
the boundary o f  @ then 

VQ~.,[r(0)] = 1 EQ~. , [ I (O)] .  
W 

Proof. Compare the proof of Theorem 3.3. 

Integrability of the Hesse matrix holds if and 
only if the gradient stays finite on the boundary. 
This may fail even for regular exponential fami- 
lies. 

Counterexample 4.2. The univariate logarithmic 
family (Barndorff-Nielsen, 1978, p. 118) has sam- 
pling density 

p(ol)(t) _ ~ r '  1 1 eOt_~(o) 
t - log(1 - ~r) t 

for t = l ,  2 . . . . .  

The parameter domains are (0, 1) for ~r, and 
( -  oo, 0) for 0 = log it. The cumulant transforma- 
tion is x(O) = log log(I/7/), with 

v/= 1 - e ° =  1 - ~ r  ~ (0, 1). 

The mean-value parameter 

~-(0) = (1 - 7 / ) / ( - ~ / l o g  7/) 
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increases from 1 to oo as 0 runs from - o o  to 0. 
The conjugate family has parameter domain 

int C = int c ony ( l ,  2 . . . .  } = (1, oo), 

the density with weight w > 0 and parameter c > 1 
being 

q~W'(O) = d(w,  c)(e°C-~t°)) w 
(a - n ) w c  

= d ( w ,  c) ( - ~ o g  ~-)- for 0 < 0 .  

The limit of the gradient for 0 = - o 0  is 
"r(- oo)q~W)(- oo) = 1 . 0  = 0. At 0 = 0 we obtain 
the undetermined expression oo. 0, but a closer 
analysis leads to 

"r(O)q~w)(O) 

= d ( w , c )  ( l - n )  wc+l 
* / ( - log  7/) w+l 

d(w,  c) 

( w + l )  w+l 

X( (1--*l)(w___ c+l)/(w_______~+ l__) ) w+l 
- -  n l / ( w  + 1) log(  71/(w + 1) ) 

As 0 and hence 71 tend to 0 these terms are 
positive except for the numerator which converges 
to - 0  log 0 = 0. In summary we obtain 

f_0 D2q~W) (0)  dO= Dq~W)(0)]°_~ 

= -w~'(O)q~w)(o)l°_~ 
- -  0 0 .  

Therefore in the logarithmic family the second 
derivative of the conjugate density fails to be 
Lebesgue integrable, implying that expected Fisher 
information under the conjugate distribution must 
be infinite. 

In general we conjecture that there exists a 
mimmum weight w I ~ [0, oo] intrinsic to a given 
family so that for weights w > w 1 Theorem 4.1 
applies successfully. This is reminiscent of the role 
played by the sample size: generally some mini- 
mum sample size must be exceeded before state- 
ments on higher order moments become feasible. 
We have no proof of our conjecture, but demon- 

strate it with the following set of examples. 
Instances where the minimum weight is zero 

are met when the sampling family ~(1) is the 
normal location family, the binomial family, or 
the Poisson family. 

Instances where the minimum weight is positive 
are the following. The gamma scale family with 
fixed shape parameter )% has minimum weight 
w 1 = 1/)%; in particular the normal scale family 
has minimum weight w 1 = 2. In the negative bi- 
nomial family with fixed shape parameter X0 the 
minimum weight is w I = 1/X o. The exponential 
family generated by the Laplace distribution has 
minimum weight w 1 = 1. Of course, when w = oo 
then Theorem 4.1 is of no use at all, as is il- 
lustrated by the counterexample. 

The correspondence between conjugate weight 
and sample size also suggests to consider the 
limiting behaviour as w tends to infinity. If the 
conjugate densities are constant on the boundary 
then under Q~W) the distribution of 

is centered at zero; moreover its variance-covari- 
ance matrix is expected Fisher information, 

Ee,:,[I(O)l = d(w,  c)foI(O)(e°'C-"(°')w dX(0)  

when Theorem 4.1 applies successfully. By the 
Laplace asymptotic method the behaviour of the 
integral as w tends to infinity is determined by the 
mode of the density, that is by 

sup (O'c - K(O)) = ~* (c ) .  

The value 0(c) that attains this supremum is the 
maximum hkelihood estimate for 0 when the ob- 
served response is c. In the limit we then obtain a 
k-variate normal distribution with mean zero and 
variance-covariance matrix I(~(c)). 

The discussion evidently hinges on the regular- 
ity properties of conjugate densities and their de- 
rivatives, in the sense of whether they are constant 
on the boundary and whether they are Lebesgue 
integrable. The exact domain of validity for this 
type of reasoning remains to be determined. 
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