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Summary

A brief overview of total quality control is given. An essential part of it is data,
and statistical methods to evaluate these data. This ie exemplified by minimizing
process variability using analysis of variance. Signal-to-noise ratios applied to the un-
transformed data are contrasted with more classical methods applied to appropriately
transformed data. The points made are illustrated by example.

1. Introduction

The success of Japanese products in the Western world is proverbial. Much of this
success is due to Japanese products having the reputation of being high quality prod-
ucts, as a result of a total devotion to quality. Section 2 presents a brief overview of
ideas underlying this total quality control philosophy.

An essential part of this philosophy—or the essential part—is data. Hence statis-
tics, as a tool to evaluate the data, plays a prominent role. Following the writings
to G. Taguchi data should serve to bring a process onto a given target value, with
minimum variability. He utilizes signal-to-noise ratios to achieve this goal (Section 3).
An alternative approach proposed by G.E.P. Box is presented in Section 4, and is
illustrated by example in Section 5.

The paper concludes with a bibliography of recent publications on the subject,
ranging from more mathematically oriented papers, over case studies in various fields,
to publications that promote a comprehensive strategy based on a total quality control

concept.
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2. Total qaality control—the Japanese way

Many aspects of the Japanese approach to total quality control can be contrasted with
what seems to be customs in the Western world. Total quality control is an active
and permanent task; it starts as early as in the off-line stage when the product is
being conceived; it is factual, obsessed with data; it is an ongoing dynamic circle of
prediction, confirmation, and improvement.

Active versus passive

Western quality control wrongly concentrates on such things as acceptance sampling
and sampling schemes, and process control and control charts. This is a passive ap-
proach to quality, preventing the worst by screening out bad products. Total quality
control wants to build quality into the product from the very beginning, and starts as
early as in the product design stage or when the production process is being planned.
There is a heavy emphasis on the fact that bad products at the end of the proper
manufacturing process may very well originate from the product design or from the
way the production process has been set up.

Off-line versus on-line

In the on-line stage when the actual manufacturing is going on it is often too expensive,
or even too late, to make adjustments Decessary in order for improving quality. It is
much preferable to start in the off-line stage, i.e. prior to the on-line stage. Taguchi
(1985) makes a point to distinguish parameter design associated with the off-line stage,
from tolerance design associated with the on-line stage. That is to say, in the on-line
stage bad quality can often only be improved by tightening the tolerance specifications.
In contrast, parameter design in the off-line stage singles out parameters for the man-
ufacturing process that come from a set of equally feasible and equally costly values.
A sample run on every possible parameter combination is unnecessary and expensive,
and often impossible by the sheer number of parameter combinations. A well-planned
experiment provides sufficient information to choose appropriate parameter levels, as
advocated in many textbooks on industrial statistics.

Data versus words

Total quality control is obsessed with data. Even the textbook by Ishikawa (1982)
which addresses a wide audience emphasizes that data and diagrams are an absolute
necessity to pin down the strong and weak points of the production process under
discussion. Graves (1986, p. 7) reports from his career as a consultant that “...data
be brought to the meetings. Without data there can be endless discussions without
resolution of the issues.”

Data force us to face facts, they do not in the first place upset the hierarchy that
puts a company’s employees into a top-to-bottom order. Data activate what Hunter
(1986) calls the two untapped resources of western economies, potential information
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and employee creativity.
Without data a problem soon converts to a philosophical disput, instructions fail

to be operational, and commitment evaporates into verbal eloquence.

Dynamic versus static

Total quality control brings improvement, but nobody is perfect. Perpetual improve-
ment is an ongoing challenge, circling around analysis and experiment, prediction and
confirmation. This dynamic procedure can only bear fruits when total quality control
is part of a company-wide policy that involves all levels of management. Topmanage-
ment must lead all quality efforts, or else data are dumped rather than acted upon.
Garvin (1983), with his contraposition of the room airconditioner manufacturers in
Japan and the United States, has a story to tell.

Total quality control goes far beyond the statistical tasks of collecting and analysing
data. But it embraces these tasks as an integral part. For a statistician the message
is twofold: Statistical methods form a necessary prerequisite, but they are only a
technical tool in the strategic kit called total quality control.

3. Signal-to-noise ratios—the Taguchi method

Much of the statistical methods used in the Japanese approach to total quality control
is due to Professor Genichi Taguchi, engineer and statistician. There is no such thing
as “the Taguchi method,” instead Taguchi builds on a profound experience with a wide
variety of applied problems.

Box (1986, p. 20) singles out three characteristics: (a) Taguchi stresses that a
production process must be close to target, rather than merely being within specifica-
tion. (b) Process variance must be minimized, besides bringing the process mean to
the target value. Planned experiments are run to provide the necessary data. (c) The
resulting product must be “robust” not only relative to manufacturing imperfections
but also with respect to those noise factors as will be present in the user environment.
The necessary data are obtained from a planned experiment that artificially produces
variability by simulating the noise factors.

The idea of “design for design (experimental design for engineering design)”—as
Basso, Winterbottom and Wynn (1986, p. 73) call it—shifts the emphasis back to the
off-line design stage. Of its many facets we shall here discuss item (b), of minimizing
process variability while keeping the process mean on target.

Signal-to-noise statistics help analyse a process so that the signal is optimized
relative to noise. Taguchi uses a battery of such statistics, each tailored to a specific
situation. In his authoritative review Kackar (1985, pp. 183-184) distinguishes three
such situations: The smaller the better, the larger the better, and a specific target

value is best.
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The smaller the better, the larger the better

The three situations have in common that the observations ¥ take nonnegative values.
A target value zero, 7 = 0, then manifests the goal ‘the smaller the better.’ With
squared error as loss this leads to minimize the mean squared error,

MSE = E[Y?).

Taguchi prefers a decibel scale as being more easily understood by process engineers,
thus calling for the maximization of

—10log MSE.

The corresponding sampling quantities then lead to the signal-to-noise statistic

LY |
~10log (%),
n

The second situation, the larger the better, is reduced to the first by a transfor-
mation from Y to its reciprocal 1/Y. With this in mind the proposed signal-to-noise

statistic is
n

2
—10log Mu\s .

n

i=1

I oppose these extremes on two grounds, a practical and a theoretical one. On the
practical side, consider a company that produces a control device which under normal
operating conditions has to withstand a certain pressure, 20 bar, say. It is better if
the device withstands 25 bar, it is excellent if it withstands 30 bar, and the larger the
pressure the better. But it is ridiculous to require that the product withstands 1000
bar, or so. Setting the target at r = 40 bar would ensure an excellent performance,
setting the target at r = oo bar is thoughtless nonsense.

On a theoretical ground it is either ¥ or 1/Y that will have a tractable distribution.
Usually the observations Y, or a transformation thereof, are arranged so that they do
not too significantly deviate from a normal distribution. If such normality is achieved
there is no reason to give it up by a somewhat hasty transition to the reciprocal.

A specific target value is best

When practical situations allow to specify a target value it will be a finite and positive
value 7 = 7o. The mean squared error of the observation from the target value 7, is
the sum of the squared bias (n — 7,)? and the variance 02 of the observation Y,

MSE = (n—1)? 4+ 02,
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Taguchi recommends maximization of the signal-to-noise statistic

52
10 log ANAV.

the reason being that in many technical problems it is reasonable to allow for the
sample variance s to vary proportionally to the squared sample average 2.

The analysis is much simplified when mean n and variance 0? do not depend on
each other. Then the squared bias (7 — 75)? and the variance 02 could be minimized
without having to account for a functional dependence.

In any case signal-to-noise statistics are used to classify the experimental factors
into .

— control factors which in the first place account for process variability, and

— signal factors which in the first place affect the mean behaviour of the process.
For an individual factor the statistical analysis may show that it significantly con-
tributes to process variability (a control factor), or to the mean behaviour of the
process (a signal factor), or to neither of those (a nuisance factor), or to both. The
latter case makes it particularly clear that the classification into control factors and

signal factors is a data dependent decision of the experimenter.

4. Analysis of variability
With the classification into control factors and signal factors in mind Box (1986) pro-
poses an alternative approach based on monotonic data transformations: Find a trans-
formation Y = f(y) that allows easy separation into control factors and signal factors,
analyse the transformed data, and check whether the results have a reasonable inter-
pretation within the original data.

According to Box a transformation is successful if it achieves parsimony, that is
if it minimizes the number of parameters, and if it eliminates crosstalk, that is if it
permits a separation of location effects and dispersion effects and hence a classification

into signal factors and control factors.

Separation by transformation

We summarize the procedure for an experiment consisting of runs s = 1,...,£ where
in each run we observe independent replications y;; for j = 1,...,r. The first step
then is to find a transformation Y;; = \?&.v such that the transformed data can
be modelled with fewer parameters, that their location effects and dispersion effects
more clearly separate, and that they more closely conform with the classical linear
model assumptions in the sense expounded by Box and Cox (1964). This catalogue
of desiderata is quite demanding, and any particular case may well have to terminate

with compromise solutions.
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Suppose that run 1 is determined by a vector of experimental conditions z;, and
that the observations Y;; have mean n; and variance o7 independent of j. Further as-
sume that the transformation from y;; to Y:; has resulted in a functional independence

of mean and variance. Then the approach is to estimate o? by
r
St =2 Yy -T)",
J=1

and to regress log S; on z;. (The logarithmic transformation from 52 tolog S; accounts
for the functional dependence between normal second and fourth moments, namely o?
and 20}.)

Such an analysis of variability leads to a fractional factorial design with unrepli-
cated observations log S;, and the recent papers by Box and Meyer become relevant.
This has to be distinguished from the analysis of means, from regressing the replicated

observations Y;y,...,Y;, on z,.

Analysis of variability versus analysis of means

The two analyses entail divergent interests. For the mean analysis the transformation
Yi; = f(vi;) ought to result in constant variances 0? =07, in order to approach the as-
sumptions underlying a normal analysis of variance. For the variability analysis equal
variances are undesirable, since they carry no information on how the experimental
factors influence the process variability. The extreme of equal sample variances S?
prohibits an identification of noise factors. The other extreme, when the sample vari-
ances S? vary significantly from run to run, facilitates identification of noise factors
by an analysis of variability, but forces the analysis of means to be at least a weighted
regression.

5. Free height of leaf springs—the Pignatiello and Ramberg data

Pignatiello and Ramberg (1985) report an experiment to calibrate the free height of
leaf springs to eight inches, with experimental factors being (B) furnace temperature,
(C) beating time, (D) transfer time, and (E) hold down time. A ffth factor (0),
quench oil temperature, is included in the experiment with the understanding that
in large scale manufacturing it would appear as an uncontrollable noise factor. The
experiment was carried out with a Nw_ﬂ. fractional factorial design, in order to analyse
the four two-level main effects (B), (C), (D) and (E) and the three interaction effects
(BC), (BD), and (CD). In each of the eight runs six replicates were observed, half of
them at the low level of the noise factor, O, and half of them at the high level of the
noise factor, O+,
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Taguchi’s signal-to-noise statistic

In order to check the data for normality we center the six replicates of each run at the
run mean y,;. This removes from each run the conjectured mean effect, even though
it also introduces a slight dependence between the resulting six centered observations.
The remaining array of row-wise centered data is then referred to the corresponding 48
normal scores. The correlation is found to be 0.986, and does not indicate a significant
deviation from a normality assumption.

Next we study the assumption of homoscedastic variances. The row-wise sample
variances s?, as given by Pignatiello and Ramberg (1985, p. 200), are 0.01 times 9, 7,
0.1, 1,9, 5, 4, 2. They visibly deviate from an homoscedasticity assumption. Indeed,
Bartlett’s test statistic takes the value M = 26.29; and this lies in the significant tail
of a x?-distribution with seven degrees of freedcm.

Pignatiello and Ramberg (1985, p. 200) analyse the apparent variability using
Taguchi’s signal-to-noise statistic

v2
T; = 10log,, Awlwv
L]

Notice that numerator and denominator span quite different ranges,

=3 v} 2 .09
Ve _ 79 _ g5,  fme 009
Vo 137 2.~ 0.001
Finally an analysis of variance is carried out with responses T, ..., Ts. The percentage

of factor sums of squares relative to total sums of squares are tabulated in column 3

of Table 1.

Rank Source T A=0 Source T X=-266
1 C 53.80 54.00 B 40.76 33.91
2 CcD 16.86 17.16 DO 14.07 113.61
3 D 13.07 12.68 BCO 13.52 114.43
4 BD 7.46 7.51 cDo 8.31 0.53
5 E 5.42 5.27 CcD 5.13 ! 5.98
6 BC 3.32 3.32 co 4.08 ! 6.72
7 B 0.07 0.06 on 14.13 15.82

Table 1. Faktor ranking by percentage of SS(factor)/SS(total). Left por-
tion has quench oil as noise factor: Taguchi’s T and the log transformation
X = 0 induce identical rankings. Right portion includes main effect and seven
interaction effects from quench oil: Pignatiello and Ramberg’s T and the

~

power transformation A = —2.66 induce almost identical rankings.
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Box-Cox power transformatione, with quench oil as noise factor

We now try to find an appropriate transformation from the Box and Cox (1964) power
family, ¥ = y*, see also Box and Draper (1987, pp. 288-201). First we take quench
oil temperature O as a noise factor. Then we have six replicates for each of the eight
runs. The maximum likelihood estimate of the transformation is A= —0.034, calling
for a logarithmic transformation of the data,

Yij = lny,;.

The normal scores test and Bartlett’s test are very much the same as for the
untransformed data. The correlation of the row-wise centered data with the normal
scores is 0.984. Bartlett’s test statistic takes the value M = 26.18.

The analysis of variability, of regressing log S; on z;, produces virtually the same
relative size of factor sums of squares, and the ranking is identical with that from
Taguchi’s T. The percentage of factor sums of squares relative to total sums of squares
is listed in column 4 of Table 1.

Indeed, Box (1986, part I) makes a point that when the data call for a logarithmic
transformation then the analysis of the transformed data and the analysis based on
Taguchi’s signal-to-noise statistic T' are equivalent.

Box-Cox power transformation, with quench oil as controllable factor

When we carry out the analysis under the assumption that quench oil is a controllable
factor, following Pignatiello and Ramberg (1985, pp. 204-205), we expand the model
by a main effect for O and the seven interactions of O with all previous factors.

The maximum likelihood estimate of the power transformation is A = —2.66.
Again the normal scores test and Bartlett’s test remain unaffected. The correlation of
the row-wise centered data with the normal scores is 0.984 as before, and Bartlett’s
test statistic takes the value M = 26.31.

Finally an analysis of variance is carried out on log S;. Column 7 of Table 1
shows the relative size of factor sums of squares. Column 6 exhibits the corresponding
numbers from the analysis of Pignatiello and Ramberg who choose the signal-to-noise
statistic

T = 10log, 4 57
based on the untransformed data. Again we observe that the size of the factor sums
of squares virtually coincide, and induce almost the same factor ranking.

In either case we have not succeeded in transforming the data closer to normal
regression assumptions. An analysis of means based on homoscedastic variances should
therefore be taken with care.
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