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1. INTRODUCTION

In this paper we study the relation between admissiblity and optimality of experimental
designs. While it is standard decision theoretic reasoning that a statistical procedure
which is uniquely optimal will necessarily be admissible, we here prove a converse to
the effect that an admissible design is uniquely optimal with respect to the E-criterion
and a specific choice of the parameter system of interest. The general equivalence
theory may then be employed to obtain necessary conditions for admissibility.

As usual we choose the experimental conditions from a compact k-dimensional
experimental domain X c R*. We assume that under experimental conditions z € X
the real observation Y (z) follows a linear model

Y(z) = z'0 + oe(z)

with uncorrelated errors e(z) of unit variance. A design £ is a probability distribu-
tion with finite support on the experimental domain X, determining allocation and
proportion of the experimental conditions.

The performance of a design ¢ is determined through its k x k moment matrix

M(&) = /I zz'd€.

Let M be the feasible set of moment matrices, assumed to be a convex and compact
subset of nonnegative definite k X k matrices.

We shall study admissibility of a candidate matrix M in the set M. It is illuminat-
ing to first discuss the case when the full parameter 6 is of interest (Section 2). Before
turning to the more general case of an s-dimensional parameter system K'6 (Section
4) we derive some intermediate results on information matrices (Section 3).

2. ADMISSIBILITY FOR THE FULL PARAMETER SET

Suppose M € M is a moment matrix whose admissibility properties we wish to in-
vestigate. We call M admissible for § in M when no moment matrix A € M satisfies
A>Mand A# M, relative to the Lowner ordering 2. To avoid trivialities we assume
M #0.
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We shall show that every admissible moment matrix is E-optimal, i.e. it maximizes
the minimum eigenvalue of an appropriate information matrix. However, the parameter
system for which E-optimality is obtained is related to the candidate matrix M in an
intrinsic manner: We choose the system H’6 from a full rank decomposition

M =HH'

where with r = rank M the k x r matrix H has full column rank r. An E-optimal
moment matrix for H'6 in M is one which maximizes Amin(CH(A)) over A € MNA(H),
where A(H) is the convex cone of all nonnegative definite k x k matrices whose range
contains the range of H, and

11

Cu(A)=(H'A"H)™' for A€ A(K).

We need an auxiliary lemma before turning to admissibility.

Lemma 1. Let A € M be a competing moment matrix. If A is E-optimal for H'6
in M then A > M.

Proof. By construction the range of M contains (actually coincides with) the range
of H, and we have

Cu(M)=(H'M-H)™' = (H'(HH')"H)~' = I,.

Optimality of A yields 1 = Apiy(Cy(M)) < Amin(CH(A)). Therefore I, < Cy(A),
and pre- and postmultiplication with H and H’ gives

M= HH' < HCy(A)H' < 4,

where the last inequality may be found for instance in Pukelsheim & Styan (1983, p.
147). g

We are now in a position to establish the relation between admissibility and unique
E-optimality as announced above.

Theorem 1. The moment matrix M is admissible for § in M if and only if M is
uniquely E-optimal for H'6 in M.

Proof. Suppose M is admissible. From Theorem 2 in Pukelsheim (1980, p. 344) we
know that there exists an E-optimal moment matrix A for H'6 in M. By Lemma
1 we have A > M, and admissibility of M forces A = M. This establishes unique
E-optimality of M.

Conversely suppose M is uniquely E-optimal. Let A be a competing moment
matrix satisfying A > M. Due to monotonicity A will also be E-optimal. But then
uniqueness forces 4 = M, i.e. admissibility of M. a

Lemma 1 and Theorem 1 are closely related to Corollary 8.4 of Pukelsheim (1980,
p- 359). Next we turn to the classical Theorem 7.1 on admissibility of Karlin & Studden
(1966, p. 808), investigating the existence of a nonnegative definite matrix N # 0 or a
positive definite matrix N satisfying the system of normality inequalities

trace (AN) < trace(MN) forall A € M.

Employing customary notions of convex analysis we shall call a matrix N which satisfies
this system of inequalities to be normal to M at M.
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Theorem 2. (i) IfMis admissible for § in M then there exists a nonnegative definite
k x k matrix N # 0 which is normal to M at M.

(ii) If there exists a positive definite k % k matrix N which is normal to M at M then
M is admissible for § in M.

Proof. (i) From Theorem 1 we know that M is E-optimal for H ' in M. The general
equivalence theory provides a necessary and sufficient condition of optimality in the
following form, see Theorem 8 of Pukelsheim (1980, p. 356). Optimality holds if and
only if for all A€ M

trace (H'GAG'HE) < Amax(H'M™H) = 1/Amin(CH (M),

for some generalized inverse G of M and some matrix E € convS. Here convS
denotes the convex hull of all r x r matrices of the form zz' such that zisa normalized
eigenvector of C (M) corresponding to Amin(CH (M)). However, we have seen above
that CH(M)fi I,,and so E actually is an arbitrary nonnegative definite r X r matrix
with trace equal to 1.

Define the nonnegative definite matrix N = G'HEH'G. Then

trace AN < 1 = trace MN forall Ae M.

Hence N cannot be 0, and it satisfies the normality inequalities.

(ii) Let A be a competing moment matrix satisfying A > M. Then 0 < trace {(A—M)
N}. On the other hand the normality inequalities yield trace {(A - M)N} < 0. There-
fore trace {(A — M)N} =0, and positive definiteness of N forces A = M. Thus
admissibility is established. 0

Our proof provides the additional information that in Theorem 2(i) we can choose
N so as to satisfy 1 < rank N < r = rank M.

Note that rank 1 matrices M = cc’ may well be admissible for the k-dimensional
parameter 6. By Theorem 1 admissibility then holds if and only if M is uniquely
optimal for ¢'6 in M, and then Theorem 2(i) admits a rank 1 choice N = dd'.

Admissibility for a subset of the full parameter system admits a similar develop-
ment, with slightly more technical input concerning information matrices.

3. INFORMATION MATRICES

Consider a fixed s-dimensional parameter system K'§ given by some k x s matrix K
of full comlumn rank s. Admissibility for K'8 concentrates on the s X's information
matrix for K'8 which, if A€ A(K) with A(K) defined as in the preceeding section, is
given by

Ck(A) = (K'A'K)“.

Recall that for the full parameter case a rank deficient moment matrix M may be
admissible. Similarly a rank deficient information matrix Ck (A) may prove admissible
for K'9, provided we exercise some care when extending the matrix function Ck from
A(K) to the convex cone NND(k) of all nonnegative definite k x k matrices. The
appropriate definition for an arbitrary matrix A € NND(k) is

Cx(4) = lim(K'(4 + )1 K)L
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Then Ck(A) is nonsingular if and only if A € A(K) and in this case
Ck(A)=(K'A"K)™',

see Lemma 2 in Miiller-Funk, Pukelsheim & Witting (1985, p. 23). Another represen-
tation of the extended matrix function Cx was used in Gaffke (1987), namely

Ck(A) = min Lx ALY,
Lk

where the minimum is taken over all left inverses Lyx of K (i.e. Lx K = I,) and is
carried out relative to the Lowner matrix ordering. That the minimum exists is a
consequence of the Theorem in Krafft (1983). It can also be seen using the Gauss-
Markov Theorem, as follows.

Consider a linear model with expectation K3 and dispersion matrix A, where
B € R* is the unknown parameter vector. The set {Lk} of left inverses of K defines
the set of linear unbiased estimators for §, and the BLUE for § corresponds to a
particular member Lk such that Lx AL} is a minimum. We will call such a matrix
Ly aleft inverse of K minimizing for A, i.e.

LKK = I, and CK(A) = LKAL’K

Equivalently one could say that L’ is a minimum A-seminorm generalized inverse of
K', see Rao & Mitra (1971, p. 46).
Both expressions for Ck(A) coincide, as shown next.

Lemma 2. For all nonnegative definite k X k matrices A we have

lim(K'(A+ €el)"§)~' = min Lx ALY
€lo L

Proof. Since for ¢ > 0 the matrix A + €l is positive definite, we know from the
Gauss-Markov Theorem that

n[}in Lx(A+eDLy = (K'(A+el)'K)~ 1.
K
Let L} be a left inverse of K minimizing for A. Then

rgin LgALYy < r{lin Lg(A+ el)Ly < Ly (A+ el)L¥,
K K

and letting € — O the assertion follows. U
With the extended definition of Cx a moment matrix M € M is called admis-
sible for K'6 in M when no moment matrix A € M satisfies Cx(A) > Ck(M) and
Ck(A) # Ck(M).
Again we wish to study a fixed moment matrix M € M. However, we now choose
a full rank decomposition of its information matrix (which we assume to be nonzero)

Cx(M) = HH',

where with t = rank Cx (M) the s x t matrix H has full column rank ¢.

We shall have to investigate the parameter system H’'K'6. The information ma-
trices relative to the representations (K H)'8 and H'(K'8) satisfy the following decom-
position rule. The matrix functions Cxy and Cy are defined as above with KH and
H instead of K and with domains NN D(k) and NN D(s), respectively.
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Lemma 3. For all nonnegative definite k X k matrices A we have
Ci(A) = Cu(Cx(4)):
Proof. When A is positive definite then
Cxul(A)= (H’K’A"KH)‘l = CH((K'A“K)“‘) = Cx(Ck(A))-

Now take a nonnegative definite matrix A. Fore >0 then Ck(A) < Ck(A+el). Since
A + €l is positive definite we obtain Cx (Ck(A)) < Ciu(A+el). The right hand side
becomes Cx n(A) when € = 0.

For the converse inequality let Ly be a left inverse of H minimizing for Ck(A),

and Lk be a left inverse of K minimizing for A. Obviously Ly Lk 182 left inverse of
K H, and by Lemma 2

Cxu(A) < LyLxALxLy = LuCk(A) Ly = Cy(Ck(A))-

The two inequalities force equality, and the proof is complete.
An analoguous decomposition rule holds for left inverses of K H minimizing for A.

Lemma4. A left inverse Lk H of K H is minimizing for A if and only if Ly = Lu Lk
for some left inverse Ly of K minimizing for A and some left inverse Ly of H mini-
mizing for Ck (A)-

Proof. We first note that if Lk is a given left inverse of K, then the set of all left
inverses of K is the linear manifold Lk + B where B may be any § X k matrix with
BK = 0. From this it is easy to see that Lk is minimizing for A if and only if
LxAQk = 0, where Qx denotes the orthogonal projector onto the nullspace of K'.
Similarly a left inverse Lxg of KH s minimizing for A if and only if Lxx AQku =0,
where Qi i is the orthogonal projector onto the nullspace of (KH)'.

To prove the direct part of the lemma let Ly u be a left inverse of K H minimizing
for A. Consider the matrix equations

LKHKXZLKH, and X[K, AQK]Z[I,,O].
Obvioulsy each of them separately has a solution. Moreover they have a common
solution for X, by Theorem 2.3.3 in Rao & Mitra (1971, p- 25). In order to apply this
theorem we must verify Lk H K(I1,,0] = LxulK, AQk]|, but this holds true in view of
LxyAQKkH = 0 and Qx = QruQk- Setting Lx = X and Ly = Lxnu K, we have a

left inverse Lk of K minimizing for A, a left inverse Ly of H,and LyLkx = LkH- In
fact, Ly 18 minimizing for Ck (A) since by Lemma 3
LuyCk(A) Ly = LHLKAL'KL'H = LxnALlxny = Cxu(A) = Cu(Ck(A))-
The converse part is immediate: Evidently Ly Lk is 2 left inverse of KH, and
LuLx ALk Ly = LyCk(A) Ly = Cu(Ck(A)) = Cxu(A).
We shall now use these intermediate results for our discussion of admissibility and

optimality.

4. ADMISSIBILITY FOR PARAMETER SUBSETS

Let M € M bea fixed moment matrix. We resume the discussion of M being admis-
sible for K'6 in M. Assume that Cx(M) #0 and choose a full rank decomposition
Cx(M)=HH' as in Section 3. We first present a result similar to Lemma 1.
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Lemma 5. Let Ac M bea competing moment matrix. If A is E-optimal for H'K'9
in M then CK(A) 2 CK(M)

Proof. By construction the range of Ck (M) contains the range of H. Applying
Lemma 3 we obtain

Cxn(M) = (H'Cx(M)"H)™' = (H'(HH')-H)~' = I,

Optimality of 4 yields 1 = Amin (Cxr(M)) < Amin(Ck 1 (A)). Therefore I, < Cku(A),
and pre- and postmultiplication with H and H' yields

Cx(M) = HH' < HCy(Ck(A))H' < Ck(A).

Note that Cy(Ck (A)) = Cky(A) is nonsingular and hence Cx(A) € A(H). 0
The following theorem on admissibility and E-optimality parallels Theorem 1.

Theorem 3. The moment matrix M is admissible for K'6 in M if and only if M
is E-optimal for H'K'6 in M and for any other E-optimal moment matrix A € M for
H'K'0 in M we have Ci(A) = Ck(M).

Proof. Follow the proof of Theorem 1, with Lemma 1 replaced by Lemma 5. Use
Lemma 3 for the converse part. O

We are now in a position to present our main result: A proof based on E-optimality
of Theorem 2 of Gaffke (1987).

Theorem 4. (i) If M is admissible for K'6 in M then there exists a nonnegative
definite s X s matrix D # 0 and there exists a left inverse Ly of K minimizing for M
such that Ly DLy is normal to M at M.

(ii) If there exists a positive definite s x s matrix D and a left inverse Ly of K
minimizing for M such that Ly DLy is normal to M at M then M is admissible for
K'0 in M.

Proof. (i) By Theorem 3 the moment matrix M is E-optimal for H'K'6 in M, and
as shown above Cx g (M) = I,. The general equivalence theory tells us that

trace(H'K'GAG'KHE) <1 forall Ac M,

for some generalized inverse G of M and some nonnegative definite ¢ x t matrix E with
trace equal to 1. Define the matrix N = G'’KHEH'K'G. Then

trace (AN) <1 =trace(MN) forall A M,

and 1 < rank N < t. The matrix Lxy = H'K'G satisfies Lyy KH = H'K'GKH
= (Cxku(M))~! = I and LxgMLyy = HK'GMG'KH = I, = Ckr(M), and thus
is a left inverse of KH minimizing for M. Lemma 4 then ensures that Ly = Ly Lk
where Ly is a left inverse of K minimizing for M. Setting D = L'y ELy we obtain
the desired representation

N=LyyELxy = Ly Ly ELy Ly = L' DLg.
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(ii) Let A be a competing moment matrix satisfying Cx (4) > Ck(M). Then

0 < trace {(Ck (4) — Ck (M))D}
< trace {(Lx AL'x — LxMLYy)D}
= trace {(A— M)Lx DLk} <0,

and because of positive definiteness of D therefore Ck(A) = Cx(M). 0
The proof gives the aditional information that in Theorem 4(i) we can choose the
s x s matrix D so as to satisfy 1 <rankD <t = rank Cx (M).
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