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Abstract. We present an overview of certain two-stage orderings
of experimental desigus which are such that they reflect an increase
in information. These orderings use group majorization, in addi-
tion to the Loewner ordering of nonnegative definite inatrices. The
groups act through congruence on the moment matrices and infor-
mation matrices of the problem, and a table of known results and
open problems depending on the particular group is presented. The
examples of quadratic regression on the symmetrized unit interval
and of linear regression over the unit cube are discussed in some
detail.
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1 Introduction

Experimental design orderings which reflect an increase in information are use-
fulic that they allow to discriminate between competing designs. For a detailed
technical derivation the reader is referred +~ Giovagnoli et al. (1986). A survey
of the present state of experimental design theory will be found in Atkinson
(1986) and Pukelsheim (1986) and the references given there.
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2 Maximizing information

As usual in experimental design theory we consider a classical linear model
Y(z)=z'f+oe

assuming uncorrelated observations with unit variance. The vectors z € R¥
represent the experimental conditions, and in their totality are assumed to
form a compact set X C R, the experimental domain. A design { then is a
discreie probability distribution on the mxvolsm.uﬁ& domain X, determining

allocations and frequencies of the observations.

2.1 Moment matrices

The essential quantity associated with the design ¢ is its k X k moment matrix

!
M(e) = [ axtde = 3 laidaasl.
i=1
The set of all moment matrices forms a convex compact subset of nonnegative
definite matrices. Since in some problems it is desirable to distinguish between
feasible and non-feasible moment matrices, we simply assume to start from a
set M of moment matrices which is convex and compact. This covers the case
which is often dealt with that the set M consists of all moment matrices, as well

as allowing for the possibility of M being a genuine subset of moment matrices.

2.2 Information matrices

We shall assume that an s-dimensional parameter system K’@ is of interest,
where the k x s matrix K has rank s. Here the momeni matrix may degener-
ate, with its rank varying between s and k, depending on whether the nuisance
parameters remain identifiable or not. For ihe parameter system K'f identi-
fiability obtains if and only if the range of M contains the range of K. Thus

the ¢ x s information matrix for K'f is defined to be

A\A?DH A :ﬁzrxvl_munumoo:am::muvzxw
0 otherwise.
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._<m shall tacitly assume that the parameter system K'f is identifiable under
at least one moment matrix in the set M, in order to deal with a non-void

problem.

As an example consider quadratic regression
Y(z:) = Bo + Byt + Bat® +oe = 1,8 + oe.

We allow ¢ to vary over the symmetrized unit interval, resulting in the experi-

mental domain
1
X = T. =1t :m_lri;

u.m

Thus X essentially looks like a parabola in three-dimensional space. The pa-
rameter systems of interest here may be the set of all parameters, the subsets

of any two parameters, or any single parameter, i. e.

m“, (B (B (A

Qn ] QJ ] Qm ] Qf .Q__ mm.
B2 -
2.3 Information functionals

The proper information matrix for the parameter system of interest actually is

Z.

being directly proportional to sample size n and inversely proportional to the
model variance ¢2. In a last step we need some real-valued functionals which

appropriately preserve the properties of information matrices.

To this end we define an information functional ¢ to be a real-valued

function on the set of nonnegative definite s x s matrices such that ¢ is
(a) nonnegative, since information ought to be a nonnegative quantity,
(b) positively homogeneous, whence we can dispose of the scalar facior n/o?,

(c) concave, because information cannot possibly be increased by interpola-

tion, and

(d) increasing in the Loewner ordering, which actually is implied by (a) = (¢).

This set of properties forms a minimal set of requirements for any specific
application, while at the same time being sufficiently strong to.build a general
theory.

As an example we mention the p-means, with p € [—o00,+1], i. e. the

generalized means of order p of the eigenvalues of the information matrices.
They are defined through

$o(C) = (detC)'/*, i.e.p=0,
$,(C) = ?—,wnan\mvim. for0#£p<1,
&IOOAQVH v.::uﬁqw. 1. e. p = —00.

In classical terms ¢o is D-optimality, ¢_; is A-optimality, and ¢_o is E-
optimality.

3 Ordering information matrices

Group majorization appears to be the right tool to model increasing symmetry
or increasing balance of a design. This is closely related to the Fﬁﬁiwnm prop-
erties of the underlying problem. A comprehensive treatment is presented in
Giovagnoli et al. (1986), and we here outline only such details as are necessary
to sketch the development.

Let G be a subgroup of the general linear group GL(k), and assume that

G acts linearly on the experimental conditions z, i. e.

z — Qz, with Q € G C GL(k). -

We give two simple examples. For quadratic regression over the sym-
metrized unit interval [—1,+1] a natural candidate is the sign-change group

which consists of the identity and of

Ty = .= | -t |.

~
(==
!
(=T =)
-0 O



Here the group consists of two transformations only. As a second example
consider linear regression over the unit cube [0, 1]*. In this case the permutation

group is appropriate to catch the apparent symmetry, according to

z Tx(1)
P = m —_— 1z = : .
Tk Zr(k)

3.1 Induced group actions

Since our problem formulation heavily depends on moment and information
matrices it is important to recognize that the linear group action on the exper-

imental conditions z translates into congruence action on matrices:
M) = [stas — [Qurque = em)e,

C(M) — (K'(QMQ")”K)™' = gC(M)§'.

In order for this to work out we must verify the following assumptions:

~ The experimental domain X must be invariant.

The set M of feasible moment matrices must be invariant.

The reduction C from moment matrices to information matrices must be
equivariant.

|

The information functionals ¢ to be considered must be invariant.

We mention in passing that the matrices @ which act on the informaticn ma-
trices C form a subgroup G of the s x s general linear group, and that the

passage from G to G is a group homomorphism.

3.2 Information increasing orderings

Assume from now on that the problem is invariant under a group G as just
outlined. We shall call a moment matrix B more centered than another moment

matrix A when

B = MUQEOE\nO“. € convex hull of the orbit of A.
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This is the usual concept of group majorization; our terminclogy of ¥being

more centered” is tailored to the design problem.

The strongest reasonable ordering of moment matrices and-of information
matrices is, of course, the Loewner ordering defined by M > B when M — B

is nonnegative definite.

The superposition of group majorization and Loewner ordering produces
the information increasing ordering which has been found to be appropriate
for the design vnoEmB.. as follows. A moment matrix M is called at least as
informative as another moment matrix A, denoted by M > A, when M is

larger in the Loewner ordering than some matrix B which is more centered

than A. Formally:

M > B € convex hull of the orbit of A, for some B.

The corresponding information increasing ordering for information matrices
will also be denoted by >>. That these information preorderings nicely agree

with the various levels of our problem is shown by the following.

Theorem. (Giovagnoli et al. (1986) )

M> A
= C(M) > C(A)
= ¢(C(M)) > ¢(C(AN, for all invariant .

3.3 Universal optimality vs. simultaneous optimality

The preceeding theorem suggests to discriminate between the notions of uni-

versal optimality wheunever
C > D, for al! competing D,
and of simultaneous optimality whenever
¢(C) > ¢(D), for all competing D and for all iuvariant ¢.

Frequently these notions will coincide according to the fol'owing.
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Theorem. (Giovagnoli et al. (1986) ) If the underlying group is compact

and the information matrix C is invariant then
C is universally optimal <=> C is simultaneously optimal.
When the group fails to be compact or the matrix C is not invariant it

scoms that the notion of simultaneous optimality is of a greater bearing. The

following table gives an overview of some known results and open problems.

group ordering invariant functionals

(1.} Loewner all ¢

Perm(s) ? ?

Orth(s) upper weak majorization symmetric functions of
of ordered eigenvalues ordered eigenvalues

Unim(s) ? determinant

reflection groups 7 ?

7 ? p-means

As an outstanding result we mention that this provides a further justifica-
tion for the most popular criterion of D-optimality as being the sole invariant
information functional under the group of unimodular linear transformations
(i. e. those with determinant +1). On the other hand it would be of interest to
study finite reflection groups as they also arise in other aspects of multivariate
analysis, or to find a group such that the invariant functionals are determined

b, the p-means.

4 Quadratic regression; regression over the unit cube

As mentioned above the model for quadratic regression ¢ er the symmetrized

unit interval _H_. +1] is

<AHQV “mo +mnh+\w&~u + oe.
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A design ¢ is invariant under the sign-change group if and only if  is symmetric
about 0. This reduces the corresponding moment matrices to a two-parameter
subset. If we augment this with an improvement in the Loewner ordering

we obtain a reduction to the one-parameter family of symmetric three-points

designs €, given by

| ﬁ
N

-1 0

This approach yields the following results, cf. Preitschopf and Pukelsheim
(1986): (a) For every ¢ there exists some a cach that £, > . (b) For ev-

ery p there exists some a(p) such that £4(;) is p-optimal.

Another very instructive example is linear regression over the unit cube
which has recently been resolved in a brilliant paper by Cheng (1986). With
experimental conditions z varying over the k-dimensional unit cube [0, 1J* the
model

Y(z)=z'f+0e
is invariant under the permutation group. Now an invariant design £ has a mo-
ment matrix M(¢) which belongs to the two-parameter family of completely
symmetric matrices (i. e. having identical on-diagonal elements and identical
off-diagonal elements). At this stage the General Equivalence ‘Theorem is in-
voked to obtain a further reduction to the one-parameter family of uniform
vertex designs ¢, defined as follows.

A vertex z of the unii cube will be called a c-vertex if z has ¢ components
equal to unity and n — ¢ components equal to zero. The unique permutation
invariant design which is supported by the c-vertices is the uniform distribution
on the c-vertices and will be denoted by £.. In addition we also need mixture

designs as defined by

Ee=(1—-(t—c))é+(t—c)cs1, witht € (c,c+1),



which are the permutation invariant designs supported by the c-vertices and
the (c + 1)-vertices and hence are convex combinations of §. and {c4,. The
parameterization chosen evidently is continuous. The family of uniform vertex

designs now is given by € with ¢ varying continuously between 0 and k.

Cheng (1986) proves the following result: For all p there ex’:ts some t(p)
such that & (,) is p-optimal. Mereover he derivzs an explicil formula for t(p).
A monotone behaviour emerges, in that as p increases from —oo towards 1 one
has that ¢(p) increases from th. .z‘eg-r part of (k 4 1)/2 towards k. More
precisely t(p) is constantly equal to an integer value ¢ over closed intervals of p,
and strictly increasing in-between. Almost all of the variation of ¢(p) occurs for
positive values of p, a qualitative feature which is also encountered in quadratic

regression.
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