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 Information Increasing Orderings in
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 Friedrich Pukelsheim
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 Germany

 Summary

 A survey is given on recent results to identify order relations for experimental designs which
 appropriately describe when one design is more informative than another one. The technique is to
 augment the usual Loewner ordering of information matrices through group majorization where the
 group is such that it reflects the symmetries inherent in the underlying problem. Information
 increasing orderings appear to be a helpful tool to systematically improve on a given design, they
 may also be used to motivate special criteria such as the classical determinant criterion, and they
 sometimes aid in identifying optimal designs or at least complete classes.

 Key words: Continuous and discrete design theory; D-, A-, E-optimality; General equivalence
 theory; Generalized means; Group majorization; Information functionals and their polars; Loewner
 ordering; Moment and information matrices; Simple block designs; Treatment and block relabelling
 group; Universal and simultaneous optimality.

 1 Introduction

 Experimental designs aim at providing ways and means for efficient data collection. To
 this end it is essential that we are able to decide whether one design is better than another
 one. Orthogonality or a high degree of symmetry are some features which have an
 immediate appeal; another possibility is to specify an optimality criterion and to compare
 two designs through the values which they achieve under this criterion.

 Given a particular design for an experimental study the question arises whether we can
 do better, i.e. whether we can improve upon the given design in order to get closer to
 orthogonality, to obtain more symmetry, or to improve upon the value of the optimality
 criterion. A rule of thumb is that a design with more symmetry performs better.
 Information increasing orderings provide a means to make this idea more precise.

 There also transpires some kind of reconciliation between the more aesthetic features
 of a design, such as orthogonality or symmetry, and the more formal approach through
 optimality criteria. Kiefer's (1975) notion of 'universal optimality' illustrates this point:
 complete symmetry of information matrices, i.e. equal on-diagonal elements and equal
 off-diagonal elements, appears side by side with optimality under a wide class of criteria.
 Universal optimality and simultaneous optimality, as introduced below, will throw more
 light on this point.

 Information increasing orderings will be introduced in ? 3. They are determined by a
 group under which the design problem remains invariant. In order to see how the group
 acts on the model parameterization and on the parameters of interest it is helpful to
 distinguish the various stages of the experimental design problem; this is done in ? 2.
 Section 4 uses information increasing orderings to obtain far-reaching optimality
 properties of block designs, without taking any recourse to the general equivalence
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 204 F. PUKELSHEIM

 theory. The situation is not quite so favourable for quadratic regression over the
 experimental region [-1, +1]; here information increasing orderings lead to a complete
 class only. This example, and a brief review of the appropriate general equivalence
 theory, is presented in ?? 5 and 6. Section 7 concludes the paper with a survey of the
 relevant literature.

 2 Continuous designs in the classical linear model

 In the discrete design theory, a design ?, for n observations determines in an
 experimental domain X a finite number of points x, (i = 1,... , 1) and assigns to these

 points weights ?,(xi) of the form ni/n which sum to 1. Then ,,(xi) = ni/n directs the experimenter to make ni observations under experimental condition xi, in a sample of
 size n.

 In the continuous design theory, a design on X is taken to be a probability
 distribution with finite support. While its support points xi (i = 1,... , 1), say, still
 determine a finite number of experimental conditions for experimentation, the weights
 ?(xi) need not be rational and may attain any value between 0 and 1, specifying the
 proportion of observations under condition xi. In general, then, a continuous design $
 only provides an approximation to a discrete design -, which is realizable.

 In order to be able to decide which of two given designs is better we must detail the
 underlying statistical model. As usual we shall assume a classical linear model

 Y(x) =f(x)' p + ae,

 where Y(x) is the observed yield, or response, under experimental condition x, and
 linearly decomposes into a fixed effects term and a random error term. The fixed effects
 term f(x)'p depends on the Rk-valued regression function f which determines the effect of
 the experimental condition x on the expected yield, while f is a real k-dimensional vector
 of unknown parameters. A prime denotes transposition. The error term e is random with
 zero mean and unit variance, scaled with an unknown factor a > 0.

 2.1 Moment matrices

 In a classical linear model a natural measure for the performance of an experimental
 design ? is its moment matrix

 M() = f(x)f(x)' d = (xi)f(xi)f(x)'.
 i=1

 Fisher information of an exact design ?, for the full parameter vector f is equal to
 (n/o2)M(,n) provided M(5,) is nonsingular, where n is the sample size and a2 is the
 model variance. The k x k matrix M(5) is nonnegative-definite, and depends linearly
 on 5.

 The set of moment matrices obtained from all designs is well known to be convex, due
 to the passage from discrete to continuous designs, and compact. However, in many cases
 we are not interested in all designs, but may wish to prescribe the marginals or delimit the
 support. Thus let t be the set of moment matrices of those designs which in a given
 situation are taken to compete for optimality; we assume that the set 4 is convex and
 compact.
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 Information Increasing Orderings in Experimental Design 205

 2.2 Information matrices

 Often we are interested, not in the full parameter vector 3, but in an s-dimensional
 subsystem K'fl where K is a given k x s matrix of rank s. For instance, the full parameter
 vector P may decompose into s components of interest and k - s nuisance parameters.
 The information matrix for K'fl

 J(M) = (K'M-IK)-1

 is best explained using covariance matrices. The simple least-squares estimator for P has
 covariance matrix (o2/n)M-1, that is Fisher information and the covariance matrix are
 inverse to each other. Similarly, since the simple least-squares estimator for K'P has
 covariance matrix (o2/n)K'M-'K, the information matrix for K'fl is (n/u2)J(M).

 As is well known an optimal design ? for an s-dimensional parameter system may have
 a moment matrix M(?) which is singular. It is easy to see why this may happen. At times
 we may increase the information on the parameters of interest at the cost of decreasing
 information on the nuisance parameters. In some instances this is pushed to a point where
 the nuisance parameters are no longer identifiable (estimable, testable) in which case
 M(?) becomes singular. Of course, the parameters of interest always must stay
 identifiable.

 More formally, a parameter set K'P is identifiable under a design ? if and only if the
 moment matrix M(?) is such that its range (column space) contains the range of K.
 Denoting by

 Dd(K) = {A E NND(k) I range A z range K}
 the set of all nonnegative-definite k x k matrices A whose range contains the range of K,
 we extend the definition of J according to

 J(A) = (K'A K)1 for AEs (K), t for A 0 di(K).
 Thus identifiability leads to a reduced s x s positive-definite matrix (K'A-K)-1, while
 nonidentifiability leads to 0. We shall assume that d(K) meets A, that is the feasible set
 A# contains at least one moment matrix M under which K'fl is identifiable.

 2.3 Information functionals

 The most popular optimality criteria are D-, A- and E-optimality, given by

 det C (Determinant optimality),
 trace C-' (Average-variance optimality),
 Amin(C) (Eigenvalue optimality).

 They correspond to the three particular cases p = 0, -1, -oo of the one-parameter family

 po(C) = (det C)x/" p = 0,

 p(C) = (trace Cp/s)/P O p < 1,
 (P_0(C) = Amin(C) p = -oo

 This family constitutes the generalized means of order p E [-o, +1] of the eigenvalues
 of information matrices. When we inquire into which properties make these means
 appropiate for measuring information, we come up with (a) nonnegativity, (b) positive
 homogeneity, and (c) concavity. We shall call a real function 4 on the set NND(S) Of
 nonnegative-definite matrices an information functional provided it satisfies properties
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 206 F. PUKELSHEIM

 (a), (b) and (c). The class of all information functionals will be denoted by (Q. It may
 seem worthwhile to pause and comment on these properties in somewhat greater detail.
 To be precise, property (a) requires an information functional q5 to be nonnegative on

 the set NND(S) of nonnegative-definite matrices, and to be positive on its subset PD(S) Of
 positive-definite matrices. This is in line with the fact that information is bounded from
 below by null, and that a positive-definite information matrix indicates positive
 information.

 Property (b) is essential in view of the proportionality factor n/o2, since then

 0((n /a2)J)= (n/a2)qp(J).
 Hence the factor n/a2, being common to all designs under question, does not aid in
 comparing any two given designs. Positive homogeneity thus passes on to information
 functionals the appealing feature of Fisher information of being additive on independent
 replications, and inversely proportional to the model variance. However, this also means
 that our considerations account neither for sample size n nor for the model variance a2;
 all they do is to distribute the proportions of observations over the feasible experimental
 sites in F.

 The third property (c), concavity, reflects the natural requirement that information
 cannot be increased through interpolation. Lack of concavity is fatal if a functional is to
 serve as a measure of information.

 In view of positive homogeneity, property (c) is the same as superadditivity, that is
 4(C + D) > (C) + 0(D). If C > D then superadditivity and nonnegativity give

 O(C) = O(C - D + D) > 0(C - D) + O(D) > O(D).
 Therefore every information functional q is increasing in the Loewner ordering.

 All in all the defining properties (a), (b), (c) form a minimum set of requirements
 which optimality criteria for experimental designs ought to satisfy. On the other hand
 they are so weak that they result in abundancy of information functionals. The question is
 whether such a bewildering variety is desirable.

 I think the situation is best compared with loss functions. Although squared error loss is
 the one used most commonly, other loss functions do exist, and awareness of other loss
 functions helps distinguish squared error loss. Some procedures may even be optimal with
 respect to a wide class of loss functions, delimited for instance by convexity or
 boundedness. Knowning such properties is reassuring, even though it may not become
 visible when the task is to solve a practical problem.

 Quite similarly the discussion of general information functionals provides proper
 evidence of the consequences which the choice of a particular criterion entails. Two
 points are worth mentioning. First we may be able to identify designs which perform well
 under a wide class of criteria. For instance an information matrix is maximal in the

 Loewner ordering if and only if it is optimal with respect to all information functionals.
 This is further elaborated in the following section on invariance where we shall distinguish
 between universal optimality and simultaneous optimality.

 Secondly we do obtain further insight that the traditional criterion of determinant
 optimality rightly plays such a distinguished role, quite similarly to squared error loss.
 The determinant criterion is distinguished through the general theory in that it is the only
 one which is self-polar (see ? 5 for details), and that it is the last criterion to be left over
 when the class of information functionals is narrowed down through invariance as set out
 in 3.

 3 Information increasing orderings
 Designs which show more symmetry tend to be more informative. The mathematical

 expression of symmetry is invariance under a suitable group of transformations. The

This content downloaded from 137.250.161.163 on Thu, 31 Aug 2017 12:35:41 UTC
All use subject to http://about.jstor.org/terms



 Information Increasing Orderings in Experimental Design 207

 essence of the argument is as follows. Suppose 6 is a group of transformations g acting on
 the s x s information matrices C. Assume that 0 is an information functional which is
 a-invariant, that is q(gC)= 4(C). Then symmetrization increases information since

 0 (Zj aiiiC) > : Z 4(giC) = 0(C)
 whenever min ai ' 0 and i = 1. The inequality follows from concavity, and equality
 from invariance.

 Unfortunately details of this are somewhat more laborious. First we start with a group
 G acting on the experimental domain X, and then we deal with the induced group 6
 which acts on the model parameterization, and 6 which acts on the parameters of
 interest. Invariance considerations for estimation and testing problems require the same
 detour.

 3. 1 Invariance

 The starting point is a group G which acts on the experimental domain X. Since
 the experimental conditions x enter into the fixed effects through the k-dimensional
 regression function f, we assume that there is a group G on Rk such that the actions
 translate according to

 f(gx) = gf(x),

 i.e. the regression function f is G-G-equivariant. We are dealing with linear models, and
 hence our essential assumption is that the group G is a group of linear transformations,
 i.e. a subgroup of the general linear group GL(k). It is convenient to denote the members
 of G by Q rather than by g whence the action on Rk is y -> Qy as usual. For moment
 matrices M this induces the congruence transformation

 M()- f Qf(x)(Qf(x))' d?(x) = QM(?)Q'.

 Next we make sure that the quantities which enter into the optimal design problem
 remain invariant under the group G. Firstly we require that the set /M of competing
 moment matrices is invariant, i.e.

 Q-AQ' = A for all Q e~G.

 When the parameter system of interest is K'P we secondly demand that the range
 (column space) of K is invariant, i.e.

 Q(range K) = range K for all Q e G.

 This invariance property is well known from hypothesis testing. For since expected

 yield is f(x)'l, the action f(x) - Qf(x) on the regressors induces the action /3--> Q'/f on
 the parameters. Thus a linear hypothesis K'P = 0 is invariant if and only if the null spaces
 of K' and of K'Q' are equal, that is K and QK have the same range.

 Since we measure information through information matrices J(M) we need to evaluate

 terms like J(QMQ'). Now range invariance of K guarantees that for every Q e there
 exists some s x s matrix & such that QK = KO, namely & = (K'K)-1K'QK. The set

 0 = { OE GL(S) I  e}
 forms a subgroup of GL(S). It is not hard to show that

 J(QMQ') = (J(M)O' for all Q e G.
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 208 F. PUKELSHEIM

 In other words: the congruence action of the group G on the set of moment matrices
 induces a congruence action of the group 6 on the set of information matrices, and the
 mapping J is G -0-equivariant.
 As a final invariance property we shall use information functionals q5 which are

 invariant under 6, that is

 5(OCO5') = p(C) for all E .
 We now resume our original theme of studying the increase in information due to
 symmetrization.

 3.2 Information preorderings

 Suppose that the moment matrix M lies in the convex hull of the orbit CA =
 {QAQ' I e G6} of another moment matrix A, that is

 M = Z oQ~ AQ;,

 with min ai > 0 and E a = 1. We shall then say that M is more centered under G than A.
 Being reflexive and transitive this relation is a preordering, known as group majorization.
 By concavity of J we get

 J(M) = J(> aiQiAQa>-) > :, oiiJ(A) Of.

 Now consider an information functional 4 which is c-invariant. By monotonicity,
 concavity, and invariance of q we finally obtain

 O(J(M)) >- :)(E qiJ(A)OC) > ~ Z qj( iJ(A)CO)) = O(J(A)).

 This shows that group majorization increases 4)-information, for every 6(-invariant
 information functional q4.

 The strongest statistically meaningful information ordering is the Loewner ordering
 among moment matrices. Group majorization and Loewner ordering are complementary

 in that they never apply simultaneously, at least when all transformations Q e are
 orthogonal: if M = E aiQAQ' and either M > A or A > M then, having identical traces,
 M and A must coincide. This suggests an amalgamation into a two-stage information
 preordering, denoted by >>, as follows.

 Given two moment matrices M and A we define M to be at least as informative under 6, as A if M is larger in the Loewner ordering than some matrix B which is more centered
 under G than A. Formally:

 M >A <:A M > B cony GA for some BE NND(k).

 The set of information matrices is equipped with the corresponding preordering >
 relative to the induced group 4.

 If among moment matrices M is at least as informative as A then we have shown above
 that among information matrices J(M) is at least as informative as J(A), and that
 6-invariant information functionals preserve this order.

 Heritability from one stage down to the next fails to hold for the relation of being
 more centered: if M is more centered under G than A then it follows that J(M) is, not
 more centered, but more informative under 4 than J(A). This indicates that the
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 Information Increasing Orderings in Experimental Design 209

 information preordering is more natural for the underlying problem than mere group
 majorization, even though it is slightly more involved.

 3.3 Universal optimality versus simultaneous optimality

 Our next goal is to clarify the relation between maximizing the information preorder-
 ing, and optimality simultaneously for all invariant information functionals. Kiefer's
 (1975) result is the first in this direction. From that paper we borrow the notion of
 universal optimality, but confine it here to mean maximization in the information
 preordering.

 Thus a moment matrix Me is called universally optimal for K'fl in ~U if J(M) is
 invariant and most informative under 6, that is if

 oJ(M)o' = J(M) for all E j,
 J(M) >> J(A) for all Ae RU.

 The situation becomes particularly transparent in the case when 6 is a compact
 subgroup of the orthogonal group Orth (s). Then every information matrix C has
 in the convex hull of its orbit a unique invariant and hence most centered matrix C.
 Indeed, C may be obtained through the linear operation of centering with respect to Haar

 probability measure do,

 C = Oc d.

 For universal optimality it is then sufficient to study the restriction of the Loewner
 preordering to those information matrices which are invariant, and this often greatly
 facilitates the problem. In this case universal optimality coincides with simultaneous
 optimality with respect to all a-invariant information functionals; i.e. a moment matrix
 M E st is universally optimal for K'# in /t if and only if M has AR-maximal 4-information
 for K'/, for every information functional 0 which is a-invariant.

 The concept of universal optimality appears to be more restrictive than the concept of
 simultaneous optimality, in that the latter more easily extends to groups which are neither
 compact nor amenable. An example of a nonamenable group is the group Unim (s) =
 { e GL(s) Idet Q = ?1} of transformations which are unimodular, i.e. volume
 preserving.

 Here is a list of some known cases. As the group 6 grows, the class of invariant
 information functionals shrinks. The ultimate survivor is the determinant criterion.

 (i) When C = {I,) is trivial, then all information functionals are invariant, and the
 information preordering coincides with the Loewner preordering.

 (ii) When 6 = Perm (s) is the group of s x s permutation matrices, we are lead to
 Kiefer's original notion of universal optimality; no characterizations of the class of
 invariant information functionals nor of the information preordering is available.

 (iii) When i =Orth (s) is the orthogonal group, then an information functional is
 invariant if and only if it is a function of the ordered eigenvalues, and the
 information preordering is upper weak majorization of the ordered eigenvalues.

 (iv) When ? = Unim (s) is the group of unimodular transformations, then the unique,
 up to positive proportionality, invariant information functional is the determinant
 criterion 0o.

 (v) Little can be hoped for beyond this point; no information functional is invariant
 under the full general linear group GL(S).
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 210 F. PUKELSHEIM

 In summary we see that the centering operation yields more informative designs. In the
 classical block design setting it in fact leads to optimal designs. Section 4 will illustrate this
 approach.

 4 Optimality of simple block designs

 Our model is the fixed effects two-way classification

 Yijk = &i + y + oeijk

 with treatment effects a = (ae,..., aj,)' e R , and block effects y = (YI,..., Yb)' E b Thus the full parameter vector for the mean is

 L[X 3 = ERj v+b

 The regression function f takes the values f(i, j) which is a vector of dimension v + b
 consisting of zeroes except for the ith of the first v entries and the jth of the last b
 entries both of which are unity. Designs ? are identified with v x b weight matrices W with
 nonnegative entries summing to 1, an entry wi giving the proportion of observations to be
 allocated with the ith treatment in the jth block. In other words W = N/n is the
 continuous version of the incidence matrix N for n observations. The treatment

 replication vector r = Wlb and the block-size vector s = W'1, will be called treatment
 marginals and block marginals, respectively.

 4.1 Moment matrices

 Writing A, for the diagonal matrix with the vector r down the diagonal, the moment
 matrix of W turns out to be

 M (W ) = ' .

 We shall consider the sets of moment matrices #, U(r, .), U(., s) obtained from all
 designs, all designs with treatment marginals r, and all designs with block marginals s,
 respectively.

 Relabelling treatments or blocks should not matter. The treatment relabelling group is

 {[f 0-RePerm(v)},

 where Perm (v) is the group of v x v permutation matrices. The group action is easily
 seen to be

 O IbW'A M(RWIb ( ' A
 Hence the set l is invariant. The action on the set of all weight matrices is multivariate
 majorization from the left.

 Also of interest is the block relabelling group

 S[ SePerm(b)}.

 Since QM(W)Q' = M(WS') again l is invariant, and the action on the weight matrices is
 multivariate majorization from the right.
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 4.2 Treatment contrasts

 First we concentrate on the symmetrized treatment contrasts (ar - , . . . , a& - .)', that is K'P with

 K = , K, = I, - i,

 where J, is the v x v matrix with all entries equal to 1/v.
 For the treatment relabelling group we find QK = KR. Hence the induced group 6 is

 the permutation group Perm (v), and simultaneous optimality covers those information
 functionals which are permutationally invariant.

 A given weight matrix W may be improved upon through its centered version
 J~ W = 1is'. Designs of the form 1Ts' may be called equi-replicated product designs since
 the uniform treatment marginals 1, = (1/v)l1 indicate equal replication for each
 treatment, and since the joint distribution lvs' on all treatment block combinations is the
 product of the treatment marginals and the block marginals.

 The information matrix for the symmetrized treatment contrasts is often called the
 C-matrix, and equals

 C(W) = J(M(W)) = Ar - WASW'.

 In the special case of equi-replicated product designs ls' we obtain C(1,s') = (1/v)K,,
 independently of the block marginals s. Altogether we have proved the following result.

 RESULT 1. The equi-replicated product designs have .A-maximal 4q-information for the
 symmetrized treatment contrasts, for all those information functionals q5 which are
 permutationally invariant.

 For the block relabelling group we find that QK = K whence the induced group
 S= {I,) is trivial. Here simultaneous optimality covers all information functionals, and
 hence coincides with optimality in the Loewner ordering. Given a weight matrix W the
 centering operation WJb = rl' yields an improvement in the Loewner ordering of
 C-matrices, but stays in the class .A(r, .) corresponding to designs with given treatment
 marginals r.

 For the product designs W = rs' the C-matrix is found to be C(rs') = Ar - rr',
 independently of s. As for identifiability we must demand that all components of the
 treatment marginals r are positive. Hence we have shown Result 2.

 RESULT 2. Suppose r R" is a vector of positive treatment marginals. Then the product
 designs with treatment marginals r have At(r, . )-maximal 4q-information for the symmetr-
 ized treatment contrasts, for all information functionals q.

 4.3 A maximal parameter system

 Finally we discuss a parameter system of maximal dimension v + b - 1, namely K'f
 with

 K=[' ~].

 When G is the treatment relabelling group we easily see that QK = KQ, whence the
 induced group r = G does not differ from the original one. Again, a passage from W to

 the centered version .,,W = 1i,s' brings improvement, and identifiability necessitates
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 positive block marginals s. The information matrix is found to be

 J(M(1,s')) = [K1/v 0]

 and hence improvement is restricted to the class 4f(., s) of designs with given block
 marginals s. This yields Result 3.

 RESULT 3. Suppose s e b is a vector of positive block marginals. Then the equi-
 replicated product design 1,s' has 4(., s)-maximal 4-information for the maximal
 parameter system given above, for all those information functionals q5 which are invariant
 under the treatment relabelling group.

 A similar statement holds for the block relabelling group and is omitted. If as a direct
 sum we take the treatment block relabelling group

 [0 Re Perm (v), Se Perm (b) ,
 we obtain the final result.

 RESULT 4. The uniform design 1,j' has At-maximal 4-information for the maximal
 parameter system given above, for all those information functionals q which are invariant
 under the treatment block relabelling group.

 Results 1 and 2 and, restricted to the means p,, also Results 3 and 4 may be derived
 from the general equivalence theory as well. The present approach would seem to involve
 less technicalities, besides being more powerful conceptually. However, it remains an
 open question whether it also extends to improve upon or establish optimality of
 incomplete block designs, i.e. designs with a restricted support set.

 Comparing Results 1 and 2, or 3 and 4 it becomes obvious that a shrinking class of
 competing designs comes with a growing class of optimality criteria for simultaneous
 optimality. Anyway, when the experimental domain X fails to be finite one can no longer
 hope that centering is powerful enough to lead to optimality. The quadratic regression
 model will serve as an example.

 5 Optimality of quadratic regression designs

 Here we consider the regression function f(x) = (1, x, x2)' on the symmetric experi-
 mental domain X = [-1, + 1], with underlying linear model

 Y(x) = fo + 0fx + f2X2 + oe.

 All designs ? are taken to be feasible, i.e. the class A of moment matrices is as large as
 possible.

 5.1 Symmetric three-point designs

 By symmetry we feel that an optimal design will place mass 1 - a, say, at 0 and divide
 the remaining a mass equally on +1. Hence define the symmetric three-point design (
 through

 W h(-1) = s n(+1) = j/2, ,(0) = 1 - a, a [0, I].
 We shall now justify our feeling and explore its domain of validity.
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 Information Increasing Orderings in Experimental Design 213

 5.2 Sign-change groups

 Let G be the transformation group on T = [-1, + 1] consisting of the identity and the
 sign change gx = -x. Let

 (100 -1 00 G= 0 1 0 0 -1o0
 0 0 1o' 0 01)

 be the two-element group of linear transformations of R3 consisting of the identity, and of
 a sign change in the second component. Evidently the regression function f is
 G-G-equivariant, and the class iA of all moment matrices is G-invariant.

 All subsets of components of the parameter vector f are found to have a coefficient
 matrix K which is range invariant. For instance consider the constant-linear case

 1 =K'fl, with K = 0 1 .
 0 0

 The range of K consists of all 3-dimensional vectors whose third component is 0. Range
 invariance means that a sign change of the second component should not change the
 range, as is indeed the case. Furthermore the induced group 6 turns out to be

 Since

 (1 0 )(a b)(1 0) a -b b)
 0-1\b c/0 -1 -b c

 the 6-invariant information functionals q are such that they remain the same under an
 off-diagonal sign change. A similar discussion pertains to the other parameter subsets and
 is omitted.

 5.3 Design improvement

 A first improvement is made by passing from a given design ?(x) to the centered
 version &(x) = (?(x) + ?(-x))/2, with moment matrix

 o fx4Oda

 Since f x4 d~ < a?, any such matrix can be improved upon in the Loewner ordering by

 a 0a

 As it happens M, is the moment matrix of the symmetric three-point design ). Thus the
 intuitively appealing restriction to symmetric three-point designs is quite legitimate.
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 For every design ? there exists a symmetric three-point design ?, which is at least as
 informative as 5.

 When we are interested in orthogonally invariant criteria only, we may narrow down
 the class of designs even further. It is not hard to show that the three eigenvalues of

 the moment matrices M,, are increasing for aV e (0, 2), whence an optimal weight a
 must satisfy ar> i. The case a = 1 is not feasible since none of the parameter
 subsets is identifiable under 1. Of the remaining class of symmetric three-point designs

 { ,,2 1 a < 1} one can show that indeed each member appears as an optimal design, for
 some parameter subset and for some mean p,.
 In summary, quadratic regression provides an example for which invariance considera-
 tions lead to a considerable simplification of the problem, namely to the one-parameter
 subclass of all symmetric three-point designs. This reduces the problem to one of real
 analysis, namely to maximize the real concave function

 g(a) = Op(J(M,)), a E [0, 1].

 Cubic regression already behaves somewhat differently, and one has to take recourse to
 the general equivalence theory. We append an outline of the theory in such generality as
 is needed here.

 6 General equivalence theory

 An optimality criterion other than D-optimality but of similar statistical import is the
 globally oriented G-optimality which calls for minimization of maxxEgf(x)'M(f)-1f(x).
 Kiefer & Wolfowitz (1960) proved the Equivalence Theorem of the continuous theory,
 which says that the two criteria of D-optimality for the full parameter 3, and of
 G-optimality lead to the same class of optimal designs. The result was preceded by the
 special case of polynomial regression where the G-optimal designs of Guest (1958) and
 the D-optimal designs of Hoel (1958) were observed to coincide. This came as a surprise
 to the people working in the field, or as Kiefer put it: 'In fact the startling coincidence is
 that these two people have the same first two initials (P.G.) and you can compute the
 odds of that!!'.

 It is not longer the case that the general equivalence theory shows the equivalence of
 two criteria each of which being statistically appealing and important in its own right.
 Rather, the theory seeks to exhibit necessary and sufficient conditions for optimality
 which are easy to verify. We now outline some of the general results, for designs ? which
 maximize information for a parameter system K'P when information is measured by an
 information functional q. Since for a parameter system K'P the information matrix is
 J(M), we must maximize the composite function q(J(M(?))) when ? varies over a subset
 of designs E feasible for the problem under question. As in the block design setting, E
 may be the set of all designs, of all designs with given marginals, of all designs with
 prescribed support, etc.

 6.1 The General Equivalence Theorem

 A first step consists in singling out the matrix part of the problem. To this end let U be
 the set of feasible moment matrices M(E). Assume that U is convex and compact, and
 that it intersects d(K). For a given information functional 4 the matrix problem then
 reads:

 Maximize p(J(M)) subject to M e At.
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 An optimal solution to this problem is said to have M-maximal 4q-information for K'fl.
 In order to characterize optimality we need the polar functional given by

 o(D) = inf trace CD1/(C).
 CEPD(s)

 Very little can be said about its statistical meaning except that it, too, is an information
 functional. More can be said in special cases. The mean rp, has polar function
 proportional to q where p and q are conjugate over [-oo, +1]; that is p + q = pq. The
 unique self-polar member is the mean qPo thus providing another distinctive view of
 determinant optimality. Optimality may now be characterized as follows.

 GENERAL EQUIVALENCE THEOREM. Let ME e d be a moment matrix under which K'fl is
 identifiable, that is M e i(K). Abbreviate the information matrix J(M) = (K'M-K)-' by
 C. Then M has At-maximal q4-information for K'fl if and only if

 (i) there exists some matrix DE NND(S) solving

 q5(C)50o(D) = trace CD = 1,
 and

 (ii) there exists some k x k matrix G solving MGM = M such that, upon setting
 B = G'KCDCK'G, we have

 trace AB <1 for all AeA.
 The characterization of optimal moment matrices is thus split into two parts, according

 to the fact that the objective function is a composition of the functions 4 and J. The first
 part is in terms of the s x s matrices C and D, and involves the polar information
 functional 0o. In many cases condition (i) determines a unique and explicit solution D
 and hence simplifies drastically. For instance, for the generalized means q4, condition (i)
 has the unique solution D = CP-'/trace CP.

 Thus all the emphasis is on the second part of the theorem concerning the k x k
 matrices G, B and A. The key feature is that the competing moment matrices A enter
 condition (ii) linearly, while inversions and other more involved computations are
 required of the optimality candidate M and the associated matrix B only.

 6.2 Corollaries

 Of the many consequences of the General Equivalence Theorem we mention but three.
 The first corollary characterizes uniform optimality of M, that is in the Loewner ordering
 of information matrices we have J(M) 1J(A), for all Ae A. Again the competing
 moment matrices A enter the condition linearly.

 COROLLARY ON UNIFORM OPTIMALrTY. Let M E t be a moment matrix with maximal rank.
 Then M is uniformly optimal for K'fl in ft if and only if K'M-AM-K - K'M-K, for all
 AE ft.

 As pointed out before, uniform optimality is the same as simultaneous optimality with
 respect to all information functionals. Hence the corollary may be used to prove Result 2
 of ? 4.2, but the argument given there seems to be simpler.

 The second corollary gives a sufficient condition for the existence of an optimal
 information matrix, based on the polar information functional o0.

 COROLLARY ON EXISTENCE. Suppose the information functional 4 is such that its polar
 functional 4O is strictly isotonic. Then there exists a moment matrix M e d which has
 At-maximal 4-information for K'f.
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 As already mentioned the mean 4P has polar functional proportional to q, where
 p + q = pq. Hence when p < 1 then 4p has a strictly isotonic polar functional, and there
 exists a moment matrix with .A-maximal 4p-information for K'3.
 The polar function of q1 is #_- and fails to be strictly isotonic. The quadratic:

 regression model provides a simple example where no moment information matrix exists.

 For the full parameter vector 3 we must maximize 41(M,)=l traceMc. =2a. The
 maximal value would be a = 1 except that 3 is no longer identifiable under M1. Therefore
 no p1-optimal design for 3 exists.
 The third corollary shows that given a particular optimal moment matrix all other
 optimal moment matrices may be obtained as solutions of an inhomogeneous linear
 matrix equation.

 COROLLARY ON MULTIPLICrrY. Suppose the information functional 4 is strictly concave.

 Let M E  be a moment matrix which has sti-maximal q4-information for K'(, and let G be
 some k x k matrix as stipulated in the General Equivalence Theorem. Then any other

 moment matrix AE also has .t0-maximal 4)-information for K'P if and only if
 AG'K = K.

 This corollary was actually used to establish the multiplicities stated in Results 1-4 of
 ? 4, but again the straightforward argument given there seems to be more appealing. For
 the quadratic regression model uniqueness of the symmetric three-point designs ?, may
 be proved using the corollary, if one so desires.

 6.3 Conclusion

 In conclusion it may be appropriate to enumerate the various degrees of freedom
 obtained.

 (a) We must decide on the underlying statistical model, i.e. prescribe the regression
 function f.

 (b) We may choose the parameter system of interest, i.e. fix some k x s matrix K of
 rank s.

 (c) We need an optimality criterion, i.e. pick some information functional 4).
 (d) We must delimit the class of competing designs, i.e. decide on a convex and

 compact set A of moment matrices which are feasible.
 Given a practical problem these points will certainly vary in their importance, but all of
 them are supported by the general theory.

 Similar reservations apply to invariance considerations. If a problem shows symmetries
 and if the transformations of the induced group 0 are linear then the information
 preordering will be a helpful tool. But, of course, a problem need not show any
 symmetries, or it may fail to lead to linear transformations.

 Whether invariance applies to a particular problem is a matter of practical considera-
 tion as well. In the quadratic regression model the design variable x may be an indicator
 of location, varying from the 'left end' x = -1 through the 'midpoint' x = 0 towards the
 'right end' x = +1; invariance under a sign change will then be a reasonable requirement.
 In another practical application x may be time. Then a sign change would mean
 exchanging 'yesterday' and 'tomorrow' which is absurd.

 7 Notes and remarks

 The preceding sections leave out a number of important aspects: combinatorial designs,
 computational algorithms, sequential experimentation, Bayesian designs, practical con-
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 siderations. The reviews of Atkinson (1982) and Steinberg & Hunter (1984) provide
 information on these points.

 Section 2. The set-up is standard, see Kiefer (1959), Silvey (1980). The continuous
 theory, as the name indicates, emphasizes the theoretical part of the problem; for more
 practical considerations, see Box (1982), Hahn (1984). The import and role of reduced
 information is apparent from Kiefer (1974a), see also ? 16.E.7 of Marshall & Olkin
 (1979). The extension to singular information matrices which retain identifiability is given
 by Pukelsheim & Styan (1983); see also Gaffke & Krafft (1979). The means of order p are
 introduced on page 865 of Kiefer (1974a). A short proof of the concavity properties of
 these means is given by Gaffke & Krafft (1979). Information functionals were introduced
 by Pukelsheim (1980). The class of all information functionals is closed under forming
 averages and finite pointwise minima; its richness is visualized through convex sets by
 Pukelsheim (1983b). Relations of classical criteria with testing and estimation problems
 are discussed in the recent work of Fedorov & Khabarov (1986).

 Section 3. Invariance permeates the subject from its very beginning (Kiefer, 1959). Our
 presentation has been greatly influenced by Giovagnoli & Wynn (1985b), Giovagnoli,
 Pukelsheim & Wynn (1986), and by personal discussions with H.P. Wynn. The
 arrangement of starting with a group G and inducing the groups G and 6 is novel, as is
 the discussion of universal versus simultaneous optimality. The relevance of the Loewner
 ordering for the present problem follows from Theorem 3.1 of Kiefer (1959); it also fits
 into the wider context of comparison of experiments as shown by Hansen & Torgersen
 (1974). The notion of universal optimality was coined by Kiefer (1975).

 An example of a criterion which is permutationally invariant, but fails to be
 orthogonally invariant is 4(C) = min Cii, as already listed as (d) by Kiefer (1960, p. 383).
 An instant where authors on purpose choose a criterion which fails to be invariant is given
 by Conlisk & Watts (1979).

 That majorization relative to the orthogonal group leads to upper weak majorization of
 the ordered eigenvalues is proved by Karlin & Rinott (1981). Bondar & Milnes (1981,
 p. 115) mention that the special linear group is not amenable, i.e. that it does not have an
 invariant mean. The relevance of this group for D-optimality is clear from Kiefer (1959,
 ? 2.E). Other considerations concerning orderings are put forward by Gaffke (1981).

 Section 4. A discussion of simple block designs in the continuous theory was initiated
 by Kurotschka (1971); see also Krafft (1978). The investigations were continued
 independently by Giovagnoli & Wynn (1981, 1985a), and by Pukelsheim (1983a). The
 latter paper contains Results 1 and 2, while Results 3 and 4 are new. An instant of a
 trade-off between information on the parameters of interest versus information on the
 nuisance parameters is given by Pukelsheim & Titterington (1986).

 Section 5. The example of quadratic regression has been discussed at various places in
 the literature (Galil & Kiefer, 1977; Studden, 1980; Pukelsheim, 1980; Preitschopf &
 Pukelsheim, 1986).

 Section 6. The optimal design problem is here treated as a problem of maximizing
 information rather than minimizing risk, a similar point of view is taken by Silvey (1980).
 A fairly detailed presentation of the state of the art is given by Pazman (1986). The
 information point of view leads to a consistency of exposition which the present author
 failed to reach otherwise. The approach of minimizing a convex functional is employed in
 the recent report of Bandemer, Nather & Pilz (1986) who give a detailed review of
 Bayesian experimental design and experimental design in case of correlated observations.
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 On page 113 of Farrell, Kiefer & Walbran (1967) G-optimality is read as global
 optimality. The original Equivalence Theorem dates back to Kiefer & Wolfowitz (1960).
 The quotation on the initials 'P.G.' is from Kiefer (1974b). The General Equivalence
 Theorem, as presented here, is taken from Pukelsheim (1980); various proofs based on
 convex analysis are given by Pukelsheim & Titterington (1983). The corollary on
 existence using polar functionals is adapted from Miiller-Funk, Pukelsheim & Witting
 (1985). The corollaries on .uniform optimality and multiplicity are presented by
 Pukelsheim (1980). That paper also discusses cardinality, location, and weights of the
 support of an optimal design 5. Special criteria such as the means 4p, or the linear
 functionals QL(C) = trace CL are also treated as are simultaneous optimality with respect
 to all p-means, admissibility, and bounds for the optimal information.
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 Resume

 Cet article prdsente un rdsumd des rdsultats r6cents des relations d'ordre dans la thdorie de planification
 d'expriences. Ces relations d6crivent quand un plan d'expdrience est plus informatif qu'un autre, et elles se
 composent d'une combinaison de l'ordre de Loewner pour les matrices informationelles, et d'une G-
 majorization ofi le groupe G refltte les symmdtries du problbme. Ces ordres qui augmentent l'information
 peuvent 8tre utilisds pour am1liorer systdmatiquement un plan donnd, pour distinguer certains critdriums
 d'optimalitd comme le critdrium de d6terminant, et pour trouver des plans optimaux ou au moins des classes
 completes.
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