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PREDICTABLE CRITERIA FOR ABSOLUTE CONTINUITY AND
SINGULARITY OF TWO PROBABILITY MEASURES
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Abstract. Predictable criteria for absolute continuity and singularity
are established based on the multiplicative increments of the likelihood
ratio process of the hypothesis relative to the alternative and not, as
is usual, of the alternative relative to the hypothesis. This approach
avoids any change of probability measures, disposes of an assumption on
local absolute continuity, and allows for an arbitrary root of the 1ike-
Tihood ratio process rather than distinuguishing the square root case.

1. Introduction

The Kakutani [5] dichotomy for product measures was generalized to
spaces with discrete filtrations by Kabanov, Liptser and Shiryayev [4].
Their result is stated in terms of probabilities under the alternative
of an event given through conditional expectations under the hypothesis.
The passage from hypothesis to alternative means a change of the under-
lying probability measure, and a careful treatment of what then happens
to conditional expectations is essential. Here we circumvent such
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changes, the one and only probability measure under which all computa-
tions are carried out being the alternative. This approach deviates
notably from the usual statistical habit of preferring the hypothesis.

Thus our exposition is based on the likelihood ratio L of the hypo-
thesis P relative to the alternative P. Theorem 1 of Section 2 charac-
terizes absolute continuity and singularity through the P-probability of
the set where L is positive. In the presence of a discrete filtration,

L may be represented as the product of its multiplicative increments
V[j. According to Lemma 1 the Tatter are on the average bounded by 1, as
are their p-th roots. Theorem 2 of Section 3 contains our main result:
Whatever the choice of pe(1,), we have

P Pe=sP(s. Ell - V[Jl-/plFJ-_ll < )
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Three corollaries show the relation with the results available in
the Titerature all of which focus on the square root case p=2. The
extension to p-th roots is made feasible through inequalities given in
Section 4.

2. Likelihood Ratio Processes

On a sample space © with sigmaalgebra F let P and P be two proba-
bility measures, called hypothesis and alternative, respectively. The
Lebesgue decomposition of the hypothesis P relative to the alternative
P determines P- and P-uniquely an F-measurable function L, called 1ike-
Tihood ratio, with values in [0,~] such that

P(F) = Jp LdP + P(FIL = =}), for all FeF.

As an example illustrating the relevance of [ we may characterize
equality of P and P through

P=PeP(L=1)= 1.

Absolute continuity and singularity may be described similarly
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through the P-measure of the set where the likelihood ratio remains
positive. We take the following theorem as our starting point, as to
Chatterji and Mandrekar [1], page 171.

THEOREM 1.
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Proof. By passing to the complement we must study the zeroes of L,
i.e. whether P(L=0) equals 0 or 1. The Lebesgue decomposition entails
P(L=0) = 0, and this yields the direct part of a) and the converse
part of b). Further a P-nullset must be contained in the set {L=0} P-

almost surely, implying P(F) < P(L=0). This establishes the converse
part of a) and the direct part of b). o

Now suppose that (Fk)keN is a discrete filtration of F, i.e. an
increasing family of subsigmaalgebras starting from FO = {p,0} and
generating F. Let Pk and Pk be the restrictions of P and P to the
smaller sigmaalgebra Fk, with Lk being the corresponding Tikelihood
ratio of Pk relative to Pk' The 1ikelihood ratio process (Lk)kEN then
is a P-supermartingale and a P-submartingale. Thus P- and P-almost sure-
1y the states 0 and « are absorbing and the Timit 1imkEk exists and
satisfies 1ikak = L.

The criteria we aim at are expressed through the likelihood ratio
process using its muZtip%icative increments V[j = [j([j_l)_, where
Z =1/7 for Z€(0,0), Z =0 for Z =0, and Z~ = = for Z = . The
absorption property of the states 0 and = justifies the equality

[k = HjskvLj' Multiplicative increments very much behave 1ike condition-
al Tikelihood ratios; however, all we need is the following.

LEMMA 1. E[V[j|Fj_1] <1, P-almost surely.

Proof. Finiteness of L. under P, the definition of V[j, and the
supermartingale inequality E[[lej_l] < [j-l yield, P-almost surely,
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We are now ready to turn to predictable criteria for equality,
absolute continuity, and singularity.

3. Predictable Criteria

We shall consider roots of order p, for some arbitrary pe (1l,o). The
notation V[§/p is unambiguous since (V[J.)l/p = V([;/p). Lemma 1 and
Jensen's inequality show that the predictable process

Er1 - vil/p
ngkE[l VL |FJ._1], keN,

is nonnegative and increasing and hence converges in [0,») or diverges
to «, P-almost surely. Following Vostrikova [9] it is not difficult to
establish by direct arguments that equality is characterized by

_ Er1 - oil/p = -

P=P«= P(ZjeNE[l VLj le_ll =0) = 1.

The convergence set of the series actually coincides with the set where
the terminal Tikelihood ratio L is positive and hence characterizes

absolute continuity and singularity, as we shall now show in Theorem 2.

THEOREM 2.
p P Er1 - vii/p i =
a) P Pe P(zjeNE[l \7LJ. |Fj_1] < w) =1,
P P E[1 - v[ /P o =
b) PLPe P(2jELL - VI IFJ-_I] <) = 0.

Proof. It is convenient to introduce the nonpositive decreasing
process

R, =1 Ep(VIY/P - 1)|F

k= Lig §F - j1ls ke

We shall prove that {L>0} = {A > -}, P-almost surely. Assertions a)
and b) then follow immediately from Theorem 1. The argument is broken
up into the three steps of (I) truncation, using with some cut-off point
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c>0 the function uc(x) = x1(|x|=sc) + sign(x)cl(|x|zc), (II) compensa-
tion, based on the predictable characterization of the convergence set
of submartingales with bounded additive increments, and (III) transfor-
mation into the desired terms, employing appropriate inequalities.-

I. Since P(L<») = 1 we have, P-almost surely,
{L>0} = {Zlog V[j > -w} = {Zup(log V[j)>-°°}.

Because of u_(Tog x) < x -1, Lemma 1 leads to Elu (log V[J.
E[VLJ. - 1]Fj_1]g 0. Thus Ck = stk up(1og VLJ.) defines a P:supermartm-
gale whose additive increments are bounded by p. Moreover {L>0} =
{Cp>-}, P-almost surely.

)le-l] <

IT. Theorem 5 of Kabanov, Liptser and Shiryayev [4], i.e. Theorem VII.5.5
of Shiryayev [8], now applies to the P-submartingale ('Ck)kEN' Therefore
the convergence set of (Ck)keN P-almost surely coincides with the set

{B_>-=1} where the nonpositive decreasing predictable process (B

is given by

k) keN

_ _ _ ) B
=Z._E VL.) - VL) |F. .
B, Jng[uong LJ) up(]og LJ)IFJ_I], ke N

Thus {C,>-=}= {B_>- =}, P-almost surely.

ITI. According to Lemma 4 of Section 4 we can find some constant b> 1
such that, for all xz=0,

bp(x!/P-1) - (b-1)(x-1) = up(Tog x) - Ugﬂog x) s p(x¥/P-1),

Inserting Ej for x and taking conditional expectations, Lemma 1 entails,
P-almost surely, bf\k < Ek < 'Z\k' Hence {B_>-w} = {A >-=}, P-almost
surely, and the proof is complete. o

COROLLARY 2.1.

a) PL P e l'D(H.E

=rorl/p
] NE[VLj le_1]> 0)

1}
—
.

b) PLPe P(n

I
o

Erorl/p _
jﬂuv% |G-ﬂ>0)

Proof. For x€ [0,1] we have bp(xl/p- 1) < up(]og X) < p(xl/p- 1) < 0.
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Define VE. = E V[%/p|r. 1]- Inserting Vﬁ? for x, we obtain

bA,, Xup(]og va) < A,. Then P-almost surely, {A > -} =
{zu,(Tog vop) > -oo}- {Zlog VDp > -w} = {HVD >0}. o

Introduce the processes

e gvil/e - .
(= Jgk vL (E VLJ. |FJ._1]) > keN;

E[v[;/plrj_l], keN.

Then (§k)keN is a P-supermartingale, and (ﬁk)keN is a decreasing non-
negative predictable process, cf. Lemma 11 of Liptser, Pukelsheim and
Shiryayev [6]. We have the multiplicative decomposition L 1/p . Ska,
and since all terms converge individually this extends to L /p = 8.D,
Thus when D becomes zero so does L. Moreover, it follows from the proof
of Corollary 2.1 that the zeroes of L and D, in fact coincide P-almost

surely, cf. Eagleson and Gundy [2].

We single out some special cases. In the case of product measures
we have ¢ = XQJ’ F= @BJ, P = ®Q P = @Q , and F = (® SkBJ) ( J>ij)’
where Q and Q. are probability measures on the measurab1e space
(Q B ). The marginal likelihood ratios QJ of Q relative to Q may
atta1n the values 0 and « independently of each other, whence the1r

product may not be defined on all of Q. However, we have
il/p

Erorl/pF - 1T I3 J
ELVES/PIFS 1) = (T _q> 0)E EUB|Fj‘1

- T --l/p
= 1(Lj_1 0)E(2 ; 1.

Therefore we also consider the set {ﬂL >0} where the measure P does
not separate from P in finite time.

COROLLARY 2.2. In the product case of P

1

@Qj and P = ®Qj we have:

P 5 X . =]
a) P« P« P(njeN{Lj:>o}) =1 and ZjENE[l _ Qj/P] 2 o

- _ _l/p -
[ 25 ] .

b) PLP < ﬁ(njEN{[j> 0}) =0 or ZiepEL]
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ooFr - /P - -
Proof. We obtain ZE[1 Lj | G_l] = zl(Lj_1 =0) +
_1>0)E(L - i;/p]- Put F = {ﬂ[j >0}. As 0 is absorbing, the series
= 0) has value 0 on F, and « on Q- F. Thus 5(ZE[1- VE;{?I j—l] < )

= P(F{zE[1 - i;/p]<:w}), whence follow a) and b). o

The property ﬁ(nkEN[k >0) =1 is equivalent to P, « P, for all keN,
i.e. P is locally absolutely continuous relative to P. Imposing this
property, Corollary 2.2 simply turns into the dichotomy of Kakutani [5].
More generally, a change of the underlying probability measure becomes
feasible and leads to Theorem 1 of Kabanov, Liptser and Shiryayev [4],

as follows.

COROLLARY 2.3. In the general case of Theorem 2, when P is locally
absolutely continuous relative to P, we have:

a) P P e P(z, E[1 - VL;/D|Fj_1]<:m) = 1.

jen
b) P LP e Pz, Ell - WLYPIF. ]
jen 3 15

0.

Proof. Lemma 7 of Kabanov, Liptser and Shiryayev [4] provides the
formula E[n]Fj_l] = E[n/V[lej_l], P-almost surely. In order to apply

Theorem 2 we insert n = V[}/p and get n/V[j = V[}l/q = VL;/q, where
1/p + 1/q = 1 and VLj = l/v[j is the multiplicative increment of the
likeTihood ratio process Lk = 1/[k, ke N, of the alternative P relative

to the hypothesis P. o

The conditional expectations E[V[;/ple_l] may be written as condi-
tional Hellinger integrals of order 1/p. For when relative to some
probability measure y the probability measures P and P are absolutely
continuous with densities Z and Z, respectively, then we have the
equality, P-almost surely,

- _l/p B l/p _1_1/p
VL P|F, = . . Fo mls
ELVE;7PIF 4] E vz P vz T RIE, ]

Hellinger integrals are employed by Memin and Shiryayev [7], and Jacod
[3]. Those authors also study inequalities which are related to the ones
to be established in the final Section 4, cf. § 2.3 and § 5.4 of Memin
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and Shiryayev (7], and equation (3.4) and Theorem 4.1 of Jacod [31].

4. Some Inequalities

In Lemma 2 we shall make no appeal to any truncation.
LEMMA 2. Suppose p>1 and b>1. Then the function
g(x) = log x- (log x)2- bp(xl/p- 1)+ (b-1)(x-1)

has a zero X0 in the open intervall (0,1) if and only if b>3p/(p-1);
and in this case g(x)>0 = g(xo) = g(1), for all x> Xgs X # 1.

Proof. I. The second derivative g"(x) = {2(1og x) -3+b(p-1)xl/p/p}/x2
vanishes at the unique solution x"e (0,) of 2 Tog x=3-b(p- 1)x1/p/p.
The behaviour of this equation in x=1 leads to

<1

IT. The first derivative g'(x) = b-1- {2(0g x) - 1+—bx1/p}/x thus is
strictly decreasing for xs x" and strictly increasing for x=x", with

nyv

1.=.b{

3p/(p-1); a"(x) { 0= x {

A Vv
vV oA
A IV

A

values +wo, 0, b-1 at x = 0,1,0, respectively. Since x" is the only
critical point of g', the zero x = 1 of g' must be paired by a second
zero x' € (0,») whose location x'< x", x'" = x", or x'>x" is determined
through x" <1, x" =1, or x"> 1, respectively. Hence g' is negative
between x' and 1, vanishes in these two points, and is positive other-
wise.

ITI. In case x'<x"<1 the function g then increases strictly from -
through a zero Xo € (0,x") to a positive Tocal maximum at x', falls
through the point of inflection x" down to a local minimum at 1 where
it vanishes, and strictly increases to +» . In case x">x">1 the
behaviour of g is similar, in case x' = x" = 1 we find that 1 is a
saddle point of g. o

We now determine b for prescribed zero Xy = e P of g. As it turns
out this works for an arbitrary cut-off point c> 0, rather than just
c=p. To this end define for pe (1,») and ce (0,) the number
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2 -C
b _ c+c +e -1

csp g == p(e_C/p- 1)

In the course of the following proof we show that bc p> 3p/(p-1).

LEMMA 3. When p>1, ¢>0, and b= bC b we have, for all xz0,

bp(x'/P-1) - (b= 1)(x-1) 5 u_(log x) - u’(log x).

Proof. I. The factor p(xl/p- 1) - (x-1) accompanying b is negative,

and so it suffices to choose b = bC D’ We claim that bC p> 1. Indeed,

the denominator N(c) = e ©-1- p(e-c/p- 1) strictly increases from

N(0) = 0 to N(») = p- 1. Hence bc >1 if and only if the difference
D(c) c+-c2+-p(e'c/p- 1) between’numerator and denominator is positive.
But D(0) = 0, and D'(c) = 1+2¢c-e /P50,

II. By construnction, Xg = e © is a zero of g. Lemma 2 gives

b ,>3p/(p-1) and, for all xz g o

P

2

b p(x*P-1) - (b. _-1)(x-1) = Tog x - (log x)°.

C,p c,p

As the left-hand side is increasing for x< 1, truncation to

uc(log X) - ui(]og x) extends the inequality to the interval [0,e 1,
while on the intervall [ec,m] the existing inequality is made even
"bigger". o

The complementary inequality uc(log X) - ui(]og X) € p(xl/p- 1) is

determined through the behaviour at x = 0, and holds true when ps<c+ cz.
Thus we may summarize as follows.

LEMMA 4. When p>1, c 2 (v4p+1 - 1)/2, and b= bC D we have, for
all x=0,

bp(x/P-1) - (b-1)(x-1) < u (log x) - ui(]og x) < p(x1/P-1).
In the square root case p = 2 we may choose ¢ = 1, the factor

(x-1) - 2(x1/2— 1) accompanying -b turns into (1- /Y)Z, cf. Kabanov,
Liptser and Shiryayev [4], and we may take b = 9. In general, the



236

Pukelsheim

cut-off point ¢ depends on the order p of the root under consideration.

The feasible choice ¢ = p, as in the proof of Theorem 2, seems to be

the simplest way to make this dependence visible.
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