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ABSTRACT

The matrix inequality (*) A, — #'< A, — ' is considered, where ¢ and r are
positive stochastic vectors, and A, and A, are diagonal matrices with ¢ and r on their
diagonals. Necessary and sufficient conditions are established (1) for (%) to hold when
t and r are given, and (2) for the existence of some vector r satisfying (*) when ¢ is
given. The results have applications in various parts of statistics.

1. INTRODUCTION AND RESULTS

Several problems in statistics lead to the consideration of inequalities of
the form A, —tt'< A, —m’, where t =(t,...,t,) is a positive stochastic
vector in R" (i.e., t;> 0 and ¢, = 1), and r is a positive stochastic vector in
R", and A, and A, are diagonal matrices with ¢ and r on their diagonals. The
ordering < denotes the Loewner matrix ordering; see [4, Chapter 16.E).

The matrix A, — tt’ appears as a special case of a C-matrix in experimental
design theory, i.e. as the information matrix for the treatment contrasts of an
experimental design, with treatment replication vector f, in both the two-
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way-classification, fixed-effects model and the interblock model associated
with the two-way-classification, mixed-effects model. See [6, Theorem 4a] and
[2, Lemma 2] for more details. Also, A, —#t’ is the dispersion matrix of a
multinomial distribution with cell probability vector ¢.

In any case it is of interest to compare two matrices of the special form
given above through the Loewner matrix ordering, and to this end we shall
establish here the following results.

THEOREM 1.  Suppose t and r are positive stochastic vectors of dimension
n such that t # r. Then

A, —tt'<A, - (*)

if and only if there exists some subscript i such that

t,>r, (a)

t;<r forall j#i, (b)
r.t. r.t.

—> ¥ - (c)
L—r j;tirj—tj

TueoREM 2. Suppose t is a positive stochastic vector of dimension n.
Then there exists some positive stochastic vector r # t such that the inequality
(*) holds if and only if there exists some subscript i such that t,> }.

Theorem 1 says that the inequality ( *) is equivalent to the components of
t being strictly smaller than those of r, except for one where the inequality
t, > r, goes the wrong way round as compared to (*), and that altogether the
distances between the components of ¢ and r must be so as to satisfy the
quantitative property (c¢). Theorem 2 is somewhat swrprising in that the
condition ¢, >} does not depend on the dimensionality n.

For the statistical applications Theorem 1 provides an easy means to
compare the information matrices between the corresponding block designs
and to compare the dispersion matrices of two multinomial distributions, by
looking solely at the components of the stochastic vectors ¢ and r. Theorem 2
offers a very simple criterion for when a design with C-matrix A, —#' is
admissible, i.e. when A, —##’ is maximal among all C-matrices, and when a
multinomial distribution is maximally dispersed.
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The necessity of the properties (a) and (b) in Theorem 1, and the direct
part of Theorem 2, were established by Christof and Pukelsheim [2]. In the
present note we adjoin the property (c) and prove sufficiency. We shall give a
brief self-contained exposition of proofs in Section 2.

2. PROOFS

The following lemma is due to Farebrother [3, Appendix] and has been
generalized by Baksalary and Kala [1, Theorem 1]. It also follows from
Haynsworth’s inertia formula; cf. (1.28) in [7].

LemMA.  Suppose D is a positive definite n X n matrix, b is a nonzero
vector in R", and « is a positive scalar. Then

Dzabl < 1/azb'D7'b,

Proof. For the first part, premultiplying with b’D~! and postmultiplying
with its transpose yields b’D 'b > a(b’'D"'b)2, i.e. 1/a > b’D'b. For the
converse part, the Cauchy-Schwarz inequality leads to

a(b'x)’ = a(b’'D V2DY%)® < a(b'D~'b)(x'Dx)

for every vector x in R™. Hence 1/a = b'D b implies D > abb’. n

Proof of Theorem 1. Since t # r and Lt, = 1 = Lr,, there must exist some
subscript ¢ such that ¢, > r,. Without loss of generality we may take i =1, and
thus assume &, > r,. Define the matrix K, =1, — 1,1/, /n, where 1, is the
n-dimensional vector with all elements unity.

As all components of ¢ are assumed to be positive, we have

(Al - tt,)KnAtlen = Kn'

Hence K A, 'K, is seen to be the Moore-Penrose inverse of A, — tt’, and
rank(A, — tt)=n —1. It now follows from Theorem 3.1 in [5] that the
inequality (*) is equivalent to the converse ordering

K.A7'K, > K,AT'K,
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among the Moore-Penrose inverses. Premultiplying with (-1, _,iI,_,) and
postmultiplying with its transpose leads to another equivalent form of (*):

Dzal, I, |, (1)
where D is the (n—1)X(n — 1) diagonal matrix with «;=1/¢; —1/1,, for
j =2, on its diagonal, and a; =1/r,—1/¢,. By assumption &, > 0, and this
forces D to be positive definite. Thus (1) entails (b); and the Lemma implies

1 1
—> ) —,

Ay 19
i.e. (c). Conversely (a), (b), (¢) and the Lemma establish (1). |

Proof of Theorem 2. The inequalities ¢, —t> < r, — r%, obtained from

(*), and ¢, >r, given in (a), can hold simultaneously only if ¢, >} and
r, € [1 — ¢t; ¢;). This establishes the direct part. For the converse part, choose
some 1, € [1 —t;;t,), and for j # i define

-1, t,—r,
= l—t.tj=tj+ 1 b

i i

Then r=(r,,...,r,) is a positive stochastic vector satisfying (a) and (b).
Because of
Tt 1-1 rt,
Z = (1 - ti) < >
j*ir»—tj t,—, =
it also fulfills (c). The inequality (* ) now follows from Theorem 1. [ ]
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