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'SUMMARY. The theory of two-sided tests is much less developed
‘than that of their one-sided counterparts. This paper comprises
several aspects of two-sided testing problems that are largely
independent of each other but are linked by the idea to make

them amenable to optimization techniques by linearizations around
the null-hypothesis. More precisely we strive to prove the
axistence of locally most powerful (LMP) unbiased two-sided tests

and to exhibit their form.

Section 1 derives an extension of the Neyman—-Pearson funcamental
lemma for certain non-linear objective functions under linear
side conditions. In particular necessary and sufficient condi-
stions for local optimality are given. This generalizes a result
of Isaacson (1951). Here we heavily rely on the methods of

convex programming.

In section 2 the simplest two-sided sequential testing problem
is discussed. But unlike the one-sided case, cf. Berk (1975),

it becomes difficult to determine explicit expressions.

Section 3 shows that for the most important two-sided nonpara-

netric problems the LMP unbiased rank test is asymptotically
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equivalent to the intuitively obvious rank test, namely to that
one based on the squared one-sided rank statistic. To this end
several results on one-sided linear rank tests, cf. Hajek (1962),

Hajek-Sidak (1967), are extended to the two-sided case.

In Section 0 basic facts of the theory of LMP two-sided tests,
cf. Schmetterer (1966), are reviewed. This justifies the intro-
duction of I; ~differentiable classes of distributions, which
seem for these kinds of problems more adequate than the

IL> ~differentiable classes, discussed, among others, by Hajek

(1962) and Le Cam (1966).

Notaticn:*l = {PO:GECﬁ denotes a k-parametric class of dis-
tributions on the sample space (%,%), ieo and ieo the first and
second ILs6o)-derivative of § as defined below. The point 6, is
always assumed to be an interior point of © and U(6,) is taken

to be an open and convex neighbourhood of 6,.

IL, (80) denotes the set of all Peo—integrable real valued func-
tions on the sample space (%,8#); here, functions which are
Peo—a.e. identical, are identified. ]L&(eo) and Ika(eo) are

the set of k-vectors or kxk-matrices, whose elements are members
of I, (6o). Derivatives with respect to the parameter 6 at 8,

are denoted by V, f.i. Vf(x,80) or VE9°®i7 correspondingly, deriva-
tives with respect to the i-th component of 6 are designated by
Vi. k-vectors are considered to be column vectors; the trans-
posed vector of Vf(x,8,) is denoted as VTf(x,eo) instead of

(Vf(x,eo))T, The determinant and the trace of a kxk-matrix H

are abbreviated as det H and tr H , respectively.
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0. Introduction: Locally oEtimal tests and 1L —differentiable
classes of distributions. Let £ = {pe:edj} pe a one-parameter
class of distributions and 6o be an interior point of ©. suppose
the power function of any test Ped be twice differentiable at

8, and let @a a pe the set of all tests ped which are locally
!

unbiased and of level o at 0o, 1i-€-

a,0 Uiy

) i= {PEG:EG P = O ve. o =03
o
Then a test ®*€¢a & is called a LMP unbiased level o test for
g
the hypothesesZH:8=60 againstﬁm:8+eo, if ¢* maximizes the
curvature of the power function at fo among all tests wE@a,o,

1€

* m .
pred, , ¢ VVEg ¥ sup VVEq4 ¢ . (0.1)
PED

r
e

An important feature for the theory of LMP tests is the property
that the derivative of an arbitrary power function can be taken
under the integral sign, i.e. that there exists functions

ie (x) and ie (x) such that
o [¢]

VEeow = Eeo(wLeo), vaedm = Eeo(¢Leo)
In this case (0.1) is equivalent to
. *o s
p*ed .E. (pL, )= su E. (PLy ) - (0.2)
a,0 e0 eo |p€¢i o eo 90
4

For this optimization problem we are going to use the following

short-hand notation

Eeo¢ = a (0.3)
Eeo(wLeo) =0 (0.4)
Eeo(WLeo) = sup. (0.5)
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A solution always exists and can be given by the fundamental

lemma with constants co, c4€IR in the form

1 if L (x) > cqL, (X) + co
60 6O

p*(x) = 0ol (0.6)
(x) + co 0

| o

(0 if Leo(x) < 4Ly
o

provided o€(0,1).

The notion of a LMP test and its programming approach along the

lines of (0.3-6) is not restricted to one-parameter classes, and

therefore we shall develope from the very beginning the following

theory for k-parameter classes.

To introduce an appropriate concept of differentiation let

Leo(-,e) denote the likelihood ratio of Pe with respect to

P, , i.e. L, (-,6)<® P, -a.e. and L, (-,6) solves the Lebesgue-
Bo 6o 0o eo

decomposition

Pe(B) = é Le (x,e)dpe +Pe(Bn{Le (-,06) = «})VBE B .

(o} o o
Such a function Leo(x,e) always exists, is Peo+Pe-unique and an
element of IL4(0o). In the special case of a dominated ClaSS‘R
with densities f(x,0), 6€9, the likelihood ratio can be chosen

as

_ £(x,8) o
Lo, (%:0) = Fx180) Le£(+,00)500 F)* V(- ,00)=01 ) [Pg *Pel -

)

Definition. Let.ﬂ,={Pe:969} be a k-parameter class of distribu-
tions, 6o an interior point of 6 ana Le (+,0)EL,(6o) the

o

likelihood ratio of Pe relative to Pe .

o

1) ?: is said to beIL,(6o)-differentiable with derivative

g (+) if ie (-)ELE(GO) such that
o o

L

IlLeo(.le) = 1.5 (6-80) LGO(')II]L (eo)

1

=0(|06-80|) for 6-+0o. (0.7)
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2) L is said to be twice L+6o)-differentiable with second

derivative Ly (), if £ is L4(0)-differentiable for all

o]
8eU(8,) and if Ly (-) € I X=k

o

(Bo) such that

Ly ()L (+,0)-L, (+)-(6-80) L, ()11 gk y =0 (18=80l) for 6=6o (0.8)

¢} o o

and

/ ILg(x)1dPy =0 (16-001) for 6~Bo (0.9)
{Le (+,0)==}

Remark.

1) It can be shown that (0.7) implies the following behavior of

the singular parts

Po({Lg (-,8) = «}) = o(16-60l) for 6-6o (0.10)

o

On the contrary the behavior of the singular parts is demanded
separately in condition (0.9).
2) Notice that we did not assume that P, dominates Pe nor even

o

that Pe and Pe are absolutely continuous.
o

We now formulate some basic facts on I, (0o)-differentiable classes,

the proofs of which can be found in Witting (1985), section 1.8.

Theorem 1: Let § ={Pe:669} be a k-parameter class of distribu-

tions.

a) If £ is IL.0o)-differentiable with derivative Ly , then
o

vp € &: VEe n = Ee (q)Le ) =

b) If R is twice L.6o)-differentiable with second derivative

L , then
e0

vp € &: VV'E, » = E
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Theorem 2: Let # = {Peze €0} be dominated by a o-finite measure
W with p-densities f£(x,60)
a) If there exists a u-null set NE&B such that for all 6€U(6o)
1) f(x,06)>0 and Vf(x,0) exists and is continuous in 6 for all
xENc,
k
2) Vf('re)G]L‘t(U)l
3) f|Vif(x,6)Idu*flvif(x,eo)Idu for 6-6, and i=1,...,k,

then,P is I, (0o )-differentiable with derivative

L, (x) = VE(x,600)/£(x,00) = Vliogf(x,00) [P, ]
8o 0o

b) If the conditions of a) are fulfilled for all 6€U(6,) and
if in addition for all 6€U(6,)

4) VV'f(x,0) exists and is continuous in 6 for all xeNC,

5) wWE(-,0)ery (n),

6) fIViij(x,e)Idu+flvivjf(x,60)|du for -6, and i,j=1,...,k,

then £ is twice IL+«6o)-differentiable with second derivative

ieo(x) = VW' f(x,00)/f(x,00) = VVW'log £(x,00) +

+ (Vlog £(x,80)) (V'log £(x,60)) [Py ]

o

Theorem 3: For i=1,...,n let#i = {P :0€0} be k-parameter

i,6
classes of distributions with the same parameter set 3. Then

Q:{ = Pi e:66[9} is twice differentiable with first and second

i=1 '’
derivative
. n
L = L P 0.11
eo(x) i§1 1,60(X1) [ eol, ( )
. n . & ¥
L, (x) = 2 L, (x.)+ DY (x.)L. (x.)[P. 1,(0.12)
6, 1:1 I P 1<i#j<n i,6,°71773,6,°77 6o

36



provided the factor classes are once or twice TL.(6o)-differentiable

. . . b . ¥ { . . R
with derivatives Ll,eo(xi) or Li,eo xl), respectively

A prominent example is a k-parameter exponential family in

9 and T(x) with derivatives

=
@
b
I
=)
b
|
=
=]
d

|
@

b

I

(T(x) - EGOT)(T(X)—EGOT)T - Covg T [Peo],

where Cove T denotes the covariance-matrix of T under Pe ‘
o [e]

Similarly, a translation family L is twice IL,(8p)-differen-

tiable with derivatives

f’(X_eo)

_ f"(X‘eo)[
f(x-60)

o Ve T ()= TFxmo)(Po,)

o o o

ie (x)= -

o

[P

if p is generated by a Lebesgue-density f such that f>0, f twice
differentiable with first and second derivative £’ and £ ;

respectively, and [If’(x)ldr<e and [|f"(x)dA<=.

For the nonparametric testproblems we are particularly interested

n
in regression families§2={i?1Feo+ndi: n€u(0) ¢ R} , where
§=={Fe:869} is a one-parameter class and d1,...,dn are given

regression coefficients. LE ?-is twice IL4(6o)-differentiable with

derivatives ie (x) and ie
o

ferentiable with derivatives

(x), then P,is also twice T4(0)-dif-
o

n
fo(x) = © da,L, (x.) [Pg 1,
i=1 Y% 1 % (0.13)
L T a’i L (x )Ly (x2) [Py ]
Io(x) = ¥ d,L, (x,) + L L d.,d; x.) X. P
o jo1 1 8o 1<ij<n iTjve, 1 6, "3 9,
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For the asymptotic theory the following transformation of Lo(x)

turns out to be useful

. n 2l .2 n . 2
Lyx) = L di[Lo(x.l) - L (x.)] +[ % d.LO(Xi)] [Py | (0.14)
i=1 i=

Under Noether-type conditions on the regression coefficients the
second term in (0.14) asymptotically dominates the first. This
is the reason why the two-sided test (0.6) has a test statistic

2
which is asymptotically x -distributed, provided the Fisher

2

information Ej (ie ) is positive and finite.

o o

1. Locally optimal test in k-parameter classes for two-sided

nypotheses. Let P ={P@:669} be a k-parameter class of

distributions, which is twice IL4(6o)-differentiable with first

and second derivative ie and ie respectively. Then an arbitrary

o o
powerfunction is twice differentiable, and so an LMP unbiased

level o test $* for H: 6=60_, against XK : 6#6, is defined as a

[e] o

solution of

Eeo¢ = «, (1.1)
Eeo(wieo) =0, (1.2)
H(¥) := E_ (¥L >0, 1.3
(¢) 0, (¥1g,) 2 (1.3)
det H(¢) = sup. (1.4)

The determinant here serves as a scalar measure of curvature and
is related to the GauB curvature of the powerfunction, cf
Isaacson (1951). The condition (1.3) means that H(®) is non-

-negative definite and sccures that the curvature "goes upwards".
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Theorem 4: There always exists a LMP unbiased level o test »*.

Proof: This is the usual weak compactness argument. &

Theorem 4 also follows from the following typical two step

argument. The set of matrices

@a,0'2:={¢€®:E P=a, Ee (‘PLe

o o [e]

6 )y=0, H(»)=0}

can easily seen to be convex and compact. Hence the continuous
. . *
function H-det H assumes a maximum On 5 at H, say, and so we

can find a test ®* with H(#»*) = H*

We now turn to the problem of determining the form of a LMP
unbiased test. The idea is to replace the given optimization
problem with the non-linear objective function H-det H by a

quasi-linear optimization problem.

The matrix part of our original problem is of the form

det1/kH* = sup det1/kH,

HG%

where 6 is a convex and compact set of non-negative definite

(1.5)

kxk-matrices. The dual problem turns out to be of the form

1 1

_— = inf —————— (1.6)
k dek 4 5¢° Geq k det ' /%g '

where ? is the set of all non-negative definite kxk-matrices

G satisfying

tr(GH) < 1 VH € é . (1.7)
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Theorem 5: If H € % and G € 3, then

det1/kH < 11/k (1.8)
k det G

and equality holds if and only if

-1
E positive definite and G =H [k. (1.9)

1/k

Proof: a) det (GH) is the geometric mean of the eigenvalues

of GH, and therefore less than or equal to the arithmetic mean

1/k(GH) < 1 tr(GH) <

det X

(1.10)

~l=

The last inequality follows from the definition of g. The con-
ditions on equality are based on the fact that all eigenvalues

be equal. O

It is a simple consequence from (1.8) that

max det1/kH < min ]

Heg Geg k det1/k

G
However, we even have equality.

Theorem 6: (Duality) If there exists a test » with Eg P=q,
o

E, (vL, ) = 0, E, (»L, )>0 , then

0, "o, " Fe, e, '
max det1/kH = min ———~lT7E~ 5 (1.11)
He{} GeJ k det "G

This is a special case of Theorem 4 in Pukelsheim (1980). Indeed,

as in the experimental design context, we can choose functions

j on 6 other than det as a scalar measure of curvature. The

duality theorem stated above will carry over provided

a) j is positive on the set of positive definite kxk-matrices
and upper semicontinuous on the set of non-negative definite
kxk-matrices,
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b) j is positive homogeneous,

c) j is concave.

In particular, the generalized means of order p, given by

1/p’ lead to the dual objective function

* p
g tr(E)]
1/[qu(G)], where p,q€(-»,1) and pq = p + g. If HG% and GE%,

then

1

j_(H) € ==
p qu(G)

with equality if and only if
H positive definite and G = Hp_1/k . (1.12)

For the sake of clarity we continue with the simple case of

1/k

D-optimality, i.e. with j(H) = det H, which is the limiting

case of jp(H) for p-0. The duality theorem 6 implies the

following linearization of our original problem:

Theorem 7: (Equivalence) If there exists a test ¢ with L2 b=g,
(o]
E, (9L

o

0 ) )>0, then:

o o] o

a) The following two statements are equivalent:

1/k

1) H*Eg, maximizes H-det H for HE%} .

2) H*Eg/is positive definite and H* maximizes H-tr (H H*" ")

for HE% 5
b) The following three statements are equivalent:
1) ved naximizes ¢*det1/kH(¢) for veo

o,0,> 0,0,2"

2) H(¢*) is positive definite and ¢* maximizes
9~E, [9tr(L, H(e*)"")].
6, 0,
3) H(#»*) is positive definite and there exist Co€R, CER™

such that
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1 if trlly (x)H(p*)™ '] > cTLe (x) + co
Ppx(x) = o _ .o [PB 1,
0 if tr[L, (x)H(?*) ] <c'Ly (x) +c, °
o o]
E, P* = q E, [v*L_. ] = 0.
0, 4 0, e,

Proof: a) H*EE%is optimal if and only if there exists some
1/k 1/k

G*}~'. By Theorem 5

matrix G*E<}such that det '"H* = {k det

this is equivalent to the positive definiteness of H* and
-1

G* = H* [k. According to the definition of‘% thus

=
tr(H H* )< k VH eﬁ.

b) The equivalence of 1) and 2) follows from part a). Since 2)
involves the maximization of a linear functional an appropriate
form of the Neyman Pearson lemma yields the equivalence of 2)
and 3). Notice, that initially we have Lagrange multipliers
Co€EIR, cEHik and a non-negative definite kxk-matrix C; however,

it turns out that for an optimal test 9»* we can choose C=0.0

Sufficiency of Condition b3) in families with differentiable

densities is due to Isaacson (1951).

As an example consider a k-parameter exponential family in 6
and T(x). Then »* is LMP unbiased level a if and only if there

exist co€IR and aEE{k such that

(1 if (T(x)-a)TH(P*)  (T(x)-a) > c
'P*(X) = - - [Pe ]I
0 if (T(x)=-a) H(P*) (T(x)-a) < c °
Eeo‘P* = q, Eeo((p*ieo) = 0.
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2. Locally optimal two-sided sequential tests in one-parametric

classes. The by far most important test in sequential analysis

is the Sequential Probability Ratio Test (SPRT). Though basically
a test for two simple hypotheses, it is usually applied to com-
posite hypotheses. To treat this type of testing problems right
from the beginning one can take recourse to a local approach.

For one-parameter families and for one-sided hypotheses Berk
(1975) has shown that a LMP-test exists and takes on the form

of a SPRT. Therefore the question arises whether also a two-sided
LMP unbiased test exists and to what extent it can be made ex-
plicit. To be more precise let us assume an i.i.d. sequence of
basic observations the common distribution of which belongs to

a one-parametric family {Pezeeecnu. Suppose that this class is
twice L(6o)-differentiable and that 0<I:=Ey (L )<=,

o o

J:=Ee Iie |<w. We are going to look for a solution of the
o o

following problem

Eeo(‘PN LN) = sup, (2.1)
Eeo(tpN L.) =20, (2.2)
Eeo(mN) = Oy (2:3)
B, (N°) < v, (2.4)

o

where k>1 is some fixed constant. As before the local character
of the problem is indicated by the fact that all conditions only
involve the parameter point 6o. Display (2.1-3) are exactly those
of the corresponding non-sequential problem (0.3-5). (We shall
not enter into a discussion of the regularity conditions required
for the twice differentiability of the power curve of any sequen-
tial test under the expectation.) As for (2.4) it is intuitively
clear that some restriction on the size of the stopping time N
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is needed in order to prevent the optimal procedure from sampling
infinitely long. Note, that Wald’'s equations show that the supre-

mum appearing in (2.1) lies between 0 and Y(2I+J).

If we allow for randomized stopping rules then we can ensure the
mere existence of an optimal solution by a simple compactness
argument. In order to get a clue of what an optimal test might
look like, it is near at hand to turn the above problem into an
unconstrained optimal stopping problem and to trv standard tech-
niques. The natural way to do this is to write down a correspon-
ding dual problem. Formally this can be done by introducing La-
grange multipliers c4, c26€IR, c3>0. (The case c3=0 can ke imme-
diately excluded from our considerations.) According to that,

we proceed from the primal to the dual objective function by the

following chain of inequalities:

o . . K
t l - - - E h
EGO(PNLN) < Eeo(PN{LN C1LN Cz}) C3.aeoL\T +ca+Cay
.. - + K
< Eeo[ {LN"C1LN_C2} -caN ]+C2U+C3Y (2.5)
< sup E, Z, tcaotCcay ,
" 80 M
where for all nelN
& . + 2 + K
z_={L -cil_-ca) -can® = (Sn1+Snz2-c1Sn1-c2)” =-can",
. no n . .2
Snq = Ln= Y L, (X.), Snz = L {L; (x.) - L, (x.,)} .
i=1 80 i 121 60 i 60 i

Therefore the new objective function essentially consists of

the value v of the optimal stopping problem

sup Eg Zy = v,
M o

where the supremum is taken over the class ®C of all stopping
variables M such that P, (M<») = 1 and Eg

(Z)<w.
o [o] M

S
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It is implicit in our approach that we can restrict attention
to the terminal decision rules
1 if in‘C1Ln-Cz>0

], neEW., (2.6)
0 i .I.:n—C1]:_|n—C2<0

Now, if there is an optimal M*=M; whith EeoM:<°°, c = (c1,c2,c3),
we can try to determine c in such a way that the side conditions
(2.2-4) are fulfilled. The ensueing sequential test (M:, (m;c))
will solve the original problem (2.1-4). The reason is that once
we fix a stopping rule M: and restrict attention to the o-algebra
of events prior to M;, then we are essentially back in the non-
sequential case and can discuss the equality of the objective
functions in the usual way (cf WwWitting (1984), section 2.4).

(It is common practice in sequential optimization problems,
however, not to bother about the way in which c is to be deter-
mined but rather go the other way round, i.e. to make o etc.

depend on c.)

Next let us enter into the above stopping problem.

Lemma 8. a) If «k = 1 then v = » irrespective of c€R” x(0,).
b) Suppose that El(i,e (x))1 2K/(K—1)<°°, k>1. Then
o
v < Ee (sup Z;) < VeceR? X (0,) . (2.7)
° m>1

-1
Proof: a) It can be drawn from Rootzén (1976) that m Zm lies
dense in [-I-cs,») and hence that M(a) = inf{m21:Zm2a} is a

finite stopping time for every a>0. As E, Z_

8, M(a)

= 0 and

> 1 =00
EGOZM(a)_a it follows that v=w,
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b) This assertion is a consequence of well known results. In fact

for every 0<b<cs

2

+ +
Ey (sup Z ) > Ey (sup(S_; - o)) + Ey (sup(

+
CS1) )+ 'Czl.
o m>1 o m>1 ° m>1

Sm2 ~ €15
The second term on the RHS is finite, cf Chow-Robbins-Siegmund
(1971), p. 92. As for the first one we apply Lemma 1 in Chow-

Teicher (1978), p. 364, with p = («x+1)/k, which yields

2 -
Ey (sup(s), ) )spe2® T o 1“’9 (max h >R n<12y 4
o m>1 n>1 o 1smen ™

+ Py (max (-8, s gnn/2)}
o 1<m<n

Employing a Baum-Katz-type inequality, cf Chow-Teicher (1978),

p. 362, we immediately arrive at the result. O

(2.7) is the basic condition underlying the theory of optimal
stopping. We shall indicate below how to go around the difficul-

ties in case k = 1, where this assumption is apparently violated.

To get near the optimal solution it is fortunate that the reward

sequence (Zm) allows for a stationary Markov representation.

m=>1

2
To realize this put d = c,/4 + c2 and

2 + K 2
f(s1,82,83) = (s7 + s = d) - cas3, (s1,52,53)ERxN.

The sequence (Sni, Snz2, n) together with some starting point

neN

(s1, s2, sa3) forms a homogeneous Markov chain and

f(Sn1 = ¢4/2, Sn2 + 0, n + 0) = 2n, neEW .

To solve the stopping problem we have to compute the smallest
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regular excessive majorant g of f and to look at the stopping

variable

M!

1nf{m21:f(sm1+s1, Sm +s m+s

275 3) =

= g(Sq* Sqs Spp * Sy mtsy)}l .

Because the reward sequence tends to -« it is well known that
M* is finite Peo—a.s. and hence optimal for «k>1, cf Chow-Robbins-
Siegmund (1971), theorem 4.5., p. 70 and chapter 5.1 or Shiryayev
(1978), theorem 8, p. 74. Moreover, Ee M* is finite, too, as can
be seen with the help of Lemma 8. Evenoin the case of an expo-

nential family, however, it seems very unlikely that one can

obtain a concise formula describing the stopping region.

Remark: In the case k=1 the above representation can be somewhat
simplified. In fact it suffices to look at the chain (Sn1,Sn2)

2
and the function f1(51,sz)=(s1+sz—d)+, respectively. Here we get

the representation
f1(Sn1 = C1/2, Sn2 + 0) - Can = 2n, nelN ,

and we have to get hold of the smallest regular c-excessive

majorant g, instead. Of course the stopping rule takes on the

form

* = 4 . =
M 1nf{m21.f1(sm1+s1, Spo t 52) g.l(Sm1 +S,, S 5 t sz)}.

Clearly
sup {Ey (f1(SM1+s1,SM2+sz)Aa - c3M):M€#G+v if ate
o 1

It can be shown that the family of smallest c-excessive majorants
a9 corresponding to fiAa converges towards a function g4 which
is the smallest regular c-excessive majorant of f,. Unfortunately
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we can not show that the stopping variables aM*‘E solving the

truncated problem tend to M*, but in any case E6 (aM*)*v.
]

3. Locally optimal two-sided rank-tests. Let Xi,...Xn be real

valued independent random variables with continuous distribution
functions Fq1,...,Fn and let us consider the problem of testing

randomness against non-randomness

H:F, = Fj vi # 3, K:F, + Fj 3i o+ 3. (3.1

A rank test is defined as a test which factorizes with respect
to the rank statistic Rn(x)=(Rn41(x),...,Rnn(x)), where
X=(Xq,...,%Xn) and Rni(x) denotes the number of Xy F=1 o w w0 My

which are less than or equal to X, -

According to the theory of one-sided rank tests, cf Hajek

(1962), Hajek-Sidak (1967), Witting-No6lle (1970), one is interested
in a rank test ¢*(x)=$*(Rn(x)), which is LMP unbiased along a
one-parameter class of regression alternatives

n

[ =J = Feo+ndrl

n € U(0) R
(=1

i
n

among all rank tests. Here P _ = B Fe +rid._,

i=1 o ni

distribution of X4,...,Xn such that Pnellif and only if n=0.

(n)
Hence, P, = Fe where Fe is a continuous distribution function.
o o

is the joint

The determination of ¢* is equivalent with that of y* as a LMP
unbiased test for:ﬁ:n=0 against:&:n#o underlying

R R

" = {Pnn: n € U(0) €IR}. Therefore, according to (0.1-3) we

R
need the first and the second IL,(0)-derivative of ?‘n_

Theorem 9: Let ? = {Pe:SEQ} be a k-parameter class of distribu-

tions on (%,&) which is twice IL,(6,)-differentiable with deri-
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vatives ie (x) and ﬂe (x), and let R:(%,%) - (R,¥) be an arbi-
o [e]
trary statistic. Then, the class of distributions FB={P§:668}

is twice I4(0o) ~differentiable with derivatives

(3.2)

The proof of this theorem can also be found in Witting (1985),

section 1.8.
For deriving y* by means of Theorem 9 it is convenient to replace

Xqree-sX by F"(U1),...,F“1(Un), where F~' is the ceneralized

inverse of F = Fe and Uq,...,Un are independent rectangular
o
(0,1)-distributed random variables. Let Unf1""’Unfn denote
the corresponding ordered random variables,
a(u) == Ly (F~'(u)), b(u) := Ly (F~"(u)),
o o] (3.3>
B(u,v) := b(u)b(v)
the score generating functions,
a_. := Ea(Uu_,.), b . := Eb(U_,.),
ni nti ni nti (3.4)
Bnij = Eb(Unfl’ Unfj)

the corresponding scores and

n n
R iz, 0 T e g
(3.5)
n n ( )
B (u,v) := L. L B_..1 r._ ; . : u,v
i =1 [ 4 [

the step functions defined by these scores.
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Eence, all rank statistics, in particular those of the form

n n
S (r)= Zd_.a + 2L d.d.B +tci 1d.b _ +co (3.6)
P i MM qgiggen Mminrr = PR,

with fixed constants c,, ¢, € R, are distribution free on H.
Theorem 10: Let %—={Fe:665} be a one-parameter class of distribu-

tions, which is twice IL,(9,)-differentiable with derivativesf,e

(o}
and ie - Let dp,,...,dp, be given regression coefficients and
o

a€(0,1). Then there exists a level o rank test ?* which is LMP

unbiased along the one-parameter subclass

n
@:{E Fo +ng ':nEU(O)CIR}. It holds
i=1 o ni

1 if S.tr) > 0
w*(x)=w*(Rn<x)), Y*(r)= (3.7)
0 if s (r) < o0
n
with Sn according to (3.6), where c4,co€IR are determined such

that

E, ¥* = a , E. (y*1_ ) =0 (3.8)

.

and 2, is given by (3.2).
o R
Proof: According to Theorem 9 and (0.11) the class F " is twice

IL.(0)-differentiable with derivatives (3.2). We recall that for
i.i.d. random variables X4,...,Xn with continuous distribution
function F it holds true that:

(n)

1) Xi = anR (X) F -a.s., i=1,...,n.
ni
2) The order statistic M _(X) = (X 75 05 IR ) and the rank
n ntl ntn
statistic Rn(X) = fRn1(X),...,Rnn(X)) are indzpendent,
-1 -1
. . \
3) Xn’1,...,ann are distributed as F (Unf1,“..,F (Unfn)'

Therefore we can simplify the derivatives (3.2) in the following

way I
‘r .)IRn=r) = 7 d..b

. n -
Ly (r) = T a.E, (L, (X
eo j= i 60 60 n - j=q ni nrni

r
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s 5
% (r) Ld Eg{Lg (X ' _)th=r) +
o i=1 o ni
+ Y a.d.E, (L, (x i, (x YR =r) =
1<ifj<n ninj 80 60 nfrni eo nfrrlJ n
n 2
=L dnianr + LY dnidn'Bnr r
i=1 ni 1<ifj<n ] nj

Thus according to the fundamental lemma (0.6) the optimal test
is of the form (3.6-8).0H
According to Theorem 10 there always exists a rank test which is

LMP unbiased level a for any one-parameter subclass

n
£ ={= :n € U(0)-TR} .

F
i 6°+ndni

1

However, this test is distinct from the test which is based on
n
the square of the corresponding linear rank statistik . d_.b

jrip S5 HEa g
On the other hand both are asymptotically equivalent under
sequences of distributions which are contiguous to the hypothe-
sis. To prove this we need some further regularity assumption

on the class Eias well as on the regression coefficients.

Theorem 11: Let a, b:(0,1)-IR be real-valued functions with
fa2(u)dl<e and fb%(u)di<e and let B:(0,1)x(0,1)-1R be defined

by B(u,v)=b(u)b(v). Then with a , b and B; according to (3.4-5)

* = i =

and Rni' Rni/(n+1), =9 5 w5 5 ;1
a) a, E; a, bn ﬁ; b, Bn I; B, (3.9)
b) an(R;11)ILTza(U1)’ bn(R;1 ]L"z b(U1)r

(3.10)

*
* —
Bn(Rn.l,an)]I12 B(U4,U2).
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Proof: a) The first two statements, both in a) and in b), are
well known from the theory of one-sided rank tests. The third
statement in case a) follows similarly to the second one using
that fBz(u,u)dA = fb“(u)dx<w; in case b) it can be proved by

a standard (martingale-) argument. {J

Theorem 12: Let the assumptions of Theorem 11 be fulfilled and

let dni’ i=1,...,n, nEN, be a system of regression coefficients

which satisfies the Noether type condition

n 2 n 2
L d_., =0 max d_.-0 L d =T | (3.11)
i=1 ™7 9gia ©oasp m
Then under the hypothesis H
n 5 5 n
a) Y d_.a - fad\x, L d.(b -b(U,)).~ 0,
j=1 ni ani > j=1 ni ani i’ "ILo
(3.12)
z .d_.(B -B(U,,U.)) .~ O
1<i#j<n 01 nJ anian i3 Lx '
5 2
b) L L a b ) =¥o,/p7ar),
i=1 ni
L d_.d_.B ) ~fb ar[x 1]
L . . = X = ’
1<i#j<n 1 DI NR R

c) The test (3.6-8) is asymptotically equivalent to the asymp-

totically unbiased level o rank test

n 5 %
) ) 1 for |i§1 dnibnrnil>(fb daxr) U2
p(x) = w(Rn(x)), U(x) =
n 2 Y2
0 for |i§1 dnibnrnil<(fb dx) Uy /2
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2
Proof: a) Obviously, Ea is independent of i=1,...,n; because

nR. .
ni
of Theorem 11a,
5 1 2 2 2 2
Ea =1 2 By = fandk - fa d) .
nR n i=1
n4
Analogously, EanR a R is independent of 1<i#j<n
ni nj
Ear . %nr . = L X asa.
n1 n2 n(n-1 1<i#j<n ninj
_1 n: 2 1 E )2
N = L e ( a_.) -
n(n-1) ;Z; “ni * n(n-T) jop ni
(fadr)™  with Jad\x = [LAF = 0
Therefore, because of
5 oa a>. T4 -0
o . < max b . - 0,
i=1 ™ qgjen M g=q B
(n_z 2 n o, 2 "VZ 2<_Lt 2
B .% dnianR .) - .§ dniEanR +[“Jjni) _Ldni]EanR anR ~fa ar .
i=1 ni i=1 nl n1i n2

The second statement again follows from the theory of one-sided

rank tests.

The third one can be proved by similar arguments: For i<j and
k<2

Pi,3:k, 07 7B

- “B(U;,U))(Bp g =B(U,U))

ni nj nk nf

can take th ibl 1 1 1

n take ree possible values only, namely p1,2;3,4, 01'2;2,3

and P1 2.1.2° Since, according to the Cauchy-Schwarz inequality
’ ’ ’

and Theorem 10b, for all i<j and k<2

2
Ipl,j;k,ll < E(Ban1Rn2—B(U1,U2)) o 0!
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for proving (3.12) it is sufficient to verify that the coeffi-
cients of these three possible values are 0(1) for n-~. This can
be done by an elementary but somewhat lengthy computation.
n 2
b) Since £( . d_.b(U_.)) =% (0,/b d\) follows from the Linde-
j=1 ni ni’’ p
berg-Feller theorem, the first assertion is an immediate conse-
quence of a) and the Slutsky theorem. Similarly, the second one
n 2 2 2
can be proved by taking into account that E [ dnib (Ui)*fb dax

i=1
according to the Noether condition (3.12).

c) Let Wn := ). d_.b . Then from a) and b) follows

2 2 2
Sn = Wn + c1wrl + fa dX - [b d)x + Cigl op(1)

Therefore, the test (3.6-8) is asymptotically equivalent with

the test
2
1 for (W +S1) >c
n 2 27 5
5 = i= [k - faar + St -
|pn = R Ca = a 4 Co .
c
0 for (W + 5+ < oz,

But it can easily be proved that the only test of this form,
which is an asymptotically unbiased level a test for H against

K, is the test (3.12). LI

Notice, that the tests (3.6-8) and (3.12) are asymptotically

unbiased in all directions and not only in the direction of R.

The above discussion is not restricted to testing problem of
randomness but also extends to the problems of testing symmetry

and of independence.
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If one is interested in sequential tests that are asymptotically
locally optimal one has to guarantee the validity of the func-
tional limit theorem, too. For that purpose it is convenient
that the rank statistic Sn(r) together with the o-algebra
generated by the ranks form a martingale in the two-sample case

with equal sample sizes (as well as in the other cases mentioned

above). In fact

Eg (Sn+4(Rnyq)IRy) = Eg (Ee (i‘n+1|Rn+1)'Rn) = Ej (:.r-.’n+‘||Rn)=
o o o

<]

= Eeo(in|Rn) + 2E9°(ieo(xn+1)in!Rn) -
- - o'
= ZEGO(LGO(Y““ Ly, IR,) + EGO(LGO(X““)IR“) +

+ Ey (Lgo(y,m)|Rn)—zEeo(r:eo(>»,l+1)‘Leo<yn+,)|Rn>+

o

. .2
i Ee (Leo(xn+1) B Leo(xn+1)|Rn) £

o}

3 Eeo(ieo(yn“) - iZO(me'M =

In the presence of the martingale property it suffices under
H as well as under contiguous alternatives to establish the

convergence of the finite dimensional marginals.
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