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Best Estimation of Variance Components from Balanced Data,
with Arbitrary Kurtosis*

R.D. AxpERSON I, H. V. HENDERSON 2, F. PukeLsneiM3 and S. R. SEARLEA

Summary: Properties are well known for analysis of variance estimators of variance
components obtained from balanced data under assumptions either of normality or of
zero kurtosis. We show here that even with non-zero kurtosis, these estimators still have
uniformly minimum variance among all unbiased, translation invariant, quadratic esti-
mators.

Examples of balanced data models with succinet matrix representations are given.
An algorithm is presented for deriving from XX’ the matrix M =T — XX+, where X is the
incidence matrix for the fixed effects and X+ denotes its MOORE-PENROSE inverse. The
algorithm involves only the KroNECKER product operation and requires no explicit caleu -
lation of generalized inverses.

1. Introduction

Variance components estimators obtained from balanced data (having equal
numbers of observations in the subclasses) by equating analvsis of variance mean
squares to their expected values are known as ANOVA (analysis of variance)
estimators. SEBLY [1971] proposes a comprehensive theory for optimality proper-
ties of ANOVA estimators, introducing the notion of a quadratic subspace of
symmetric matrices. For ANOVA models with balanced data his results show
that the ANOVA estimators are the same as MINQUE [Rao. 1971] and are
UMVUIQ (Uniformly Minimum Variance Unbiased translation-Invariant Qua-
dratic) when fourth moments are the same as under normality. i.e.,

ANOVA =UMVUIQ, under zero kurtosis . (1.1)

Our main result is that for ANOVA models with balanced data the uniformly
minimum variance property extends beyvond normality and zero kurtosis to
distributions with non-zero kurtosis:

ANOVA =UMVUIQ, under arbitrary kurtosis . (1.2)
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This extends partial results earlier obtained by Hsu [1938, p. 100] and ATiQuLLAH
[1962, p. 85] for the residual error variance in fixed effects models, by GRAYBILL
[1954], GrayBiLL and WorrHAM [1956], and GRAYBILL and HurrQurst [1961,
Theorem 7] for random effects models satisfying certain assumptions, and by
TAN [1979] for nested classification, random models.

A special case of the zero kurtosis of (1.1) is the assumption of normality.
Under this assumption, restriction to quadratic estimators is irrelevant :

ANOVA =UMVUI, under normality . (1.3)

[n this case, restricted maximum likelihood (REML) estimators (e.g., see PATTER-
soN and THOMPSON [1971], CORBEIL and SEARLE [1976] and SeaArLE [1979a])
also coincide with UMVUI estimators (see ANDERSON [1978] and PUukBLSHEIM
and STYAN [1979]). so that

ANOVA =REML, under normality, (1.4)

as noted by HARvILLE [1977, p. 325].

Section 2 starts with several examples of ANOVA models with balanced data
and discusses succinct matrix representation of them. For calculating M=
=I—-X(X'X)"X', where X is the incidence matrix for the fixed effects, this
representation provides (in Section 3) an algorithm that does not explicitly need
any generalized inverse (X'X)~ of X’X; this leads to a detailed knowledge of the
structure of M necessary to establish (1.2). Section 3 also discusses translation
invariance, and in Section 4 we review the normal and zero-kurtosis case. And
the condition of Hsu’s and ATiQULLAR’S results, that a certain matrix has equal
diagonal elements, is reflected by a scalar invariance in our proof of (1.2) in
Section 5.

Not only is our result more general than results presently available but our
method of proof differs from that of earlier proofs, which explicitly involve calcu-
lating the variance that is to be minimized. Rather. we embed the problem in
a general linear model for variance components and then view it as a special
case of the question “When is least-squares estimation also minimum variance?’”.
This approach is essentially due to SEELY [1970] and has also heen applied to
similar problems by Drvcas [1980], KLEFFE [1977] and Browx [1978].

2. Notation and examples

2.1. The general linear model

A representation of the general linear model that includes fixed and random
effects is

Yy=XB+Zu=Xp+ ) Zu, (2.1)

1=1
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where y is an N X1 vector of observations. B is a vector of p parameters, X is
a known N X p incidence matrix, u’ — {w;}, Z = {Z} and u; is a vector of ¢; random
effects and Z; is a known N X ¢, incidence matrix. with u, =€ being the vector of
residual error terms and Z,=1Iy. The means, variances and covariances of the
uyvectors are defined by E(w;) =0, var (u,)= E(u,u)) :a';'lqi and cov (u;, u;) =
= E(uu)) =0 for i =j=1,....c. With these definitions. the dispersion (variance-
covariance) matrix of y is

i=1
Each vector of random effects. u;. has elements w;, ..., w;, which are assumed
1

to be independent, all with the same coefficient of kurtosis Vit

4 (s 4 & . o «
E(ui) = (y;+3) o}, for J=1,..9;. (2.3)
In saying “zero kurtosis” in (1.1), we mean yp,=...=y,=0. This occurs, for

example, when each u; follows a normal distribution. Non-zero kurtosis in this
context was first considered by Hsu [1938]. so that (2.1) and (2.3) are called
Hsu’s model by Pukersuem [1977].

2.2, ANOVA models with balanced data

SEARLE and HENDERSON [1979] develop properties of V., for balanced data. from
noting that each Z,Z’ of (2.2) can be expressed as a KRONECKER product of
I- and J-matrices where, in general, I, is the a < «a identity matrix, and J, is the
@ X« matrix with every element unity. Similarly, X and each Z; of (2.1) can be
expressed in terms of Kronecker products of I-matrices and I-vectors where 1, is
the «>1 vector with every element unity. Then J,=1,1,. We also define the
symmetric idempotent (projection) matrices J,=J,Ja and K,=1,—.J,. Products
of J,, J, and K, commute, and K, J,=K.J,=0. For @ being the KRONECKER
product operator, the equality T,2T,=T,, holds for T representing I, 1, .J or.J
but not K:

K,=K,®K,+K,®J,+J,0 K,+ K,® K, . (2.4)
The reader will recognize that K, is a special case of the projection matrix
associated with the general incidence matrix X of the model (2.1):
M=I-X(X'X)"X'=I-XX+ (2.5)
where (X'X)~ is a generalized inverse of X'X, and X+ is the MOORE — PENROSE
inverse of X (e.g.. SEARLE [1971. p. 20]). M is symmetric, idempotent and. for
given X, invariant to the choice of (X'.X)~, and MX =0.



166 ANDERSON, R. D.; HExpERSON, H. V.; Pukensaeim, F.; Searie, S. R.
2.3. Examples: 3-way classifications

Numerous examples could bhe considered ; we offer three that illustrate a variety
of features. In each of them, u is a general mean and &-terms are random errors
with zero mean and dispersion matrix .. Other terms are defined as random
or fixed. Variances are denoted by ¢? with subscript corresponding to the term
concerned. The subscript ranges are i=1, ... 4. J=1. .0, k=1,..., ¢ and
=1, .. n.

(1) A mixed effects model
Consider a 3-way classification with two of the three possible first-order inter-
actions and without the second-order interaction :

Yisir=H + o+ B+ v+ (@B)i; + (By)ji + iy -
With o’s. f’s, and (23)’s fixed, but y’s and (By)’s random
X= [ltt®~1(:® lu® 1;1 Ia®’b® 1c®1n ]u ®Il)® ll®111 [a® ’b ® ’r® In-l
ZI :1!1®'ll;® I;® ln- Z'_’ :',a®lb®lu® 1u' Z:l “Lapen
V=0, (J,@J,01,®J,) +5%, (J, 1, L,8J,) + 0 (I,RL,RI,QI,) .

(2) A fixed effects model with a nested factor
Consider the case of having Vie s nested within the s:

Yijir =+ i+ B4 (08) 5+ vjre + (0 s + €452 -
The X matrix is

X=[1,8®1,01,81, I,81,81,81, 1,01,81,81,

la®’h®"«®’n 1a®lb®lc®’n Ia®lb®l(®lu] S

(3) A fixed effects model with a nested factor and a missing interaction
Now consider having §,;’s nested within (2. B;) cells but with the (o), interac-
tions absent:

Yijer =t + o+ B+ Oy + €55 -
The matrix X is

X= [la®]ll®1(w®—1n Ia® lh®-1(~®~1n ’u®1h® ’t‘®1‘)1 I‘l®l[‘(& I"@)’”’-] :

2.4, Comments on a general m-way classification model with balanced data
m
Suppose we write a general m-way classification model as y= 3} & ), +e€ where
=
9, represents in turn u, o, f. y. ..., (2f), («y), ... appropriate to any particular
model. Then evidently &, is a KRONECKER product of m +1 matrices each of
which is either an I-matrix or a I-vector. To be more specific. suppose N, ..., N,
are the numbers of levels of the m (main or nested) effects . B, 7, ..., and n is the
number of observations in each of the smallest subclasses. Then G; can be written,
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similar to SurrerT [1979, p. 238], as
Gi=Fy® ... QFy ®1,, (2.6)

where, for =1, ..., m, the matrix Fy equals I if the r'th effect is represented
in &; and equals .lA\-r otherwise. Thus, in example (1), the (By)’s are represented
by & for which Gy=1,01, I,©1,. In all models the KRoNECKER product of all
I’s (which is a 1-vector) appears as G for u; and the KRONECKER product of all
I's (itself an I) corresponds to the error term e.

The distinction hetween interaction effects and nested effects in this description
is that a term which, from the nature of its G could be either, is an interaction
if and only if all the corresponding main effects are present (whether they are
effects due to crossed classifications. as is usual, or to nested classifications)
otherwise it is a nested effect. This is evident. for instance, for the G-matrix
1,1,01,1, which in example (1) is associated with the (fy) interaction terms.
In contrast, if the y,’s were omitted from example (1) the effect in question would
be nested within the f,’s, as in example 2 of SEIFERT [1979].

The classifying of an effect as fixed or random determines whether its G, beco-
mes, in terms of the general linear model Y=XB+ >Zu; in (2.1), a submatrix
of XorisaZ, For a 9, representing fixed effects, G; becomes a submatrix of X,
whereas for a 8, representing random effects its G; becomes a Z,. In any case,
the product GG} appears as a term either in XX’ orin I — SoiZ 2, and from (2.6)
is 2 KRONECKER product of I’s and .J’s. Indeed, both XX’ and V — Soi 4.7 are
weighted sums of GjG;- matrices, as dealt with by SEarLE and HEN DERSON [1979].

3. Translation Invariance

Estimation of variance components is usually confined to estimators that are
based on quadratic functions of the observation vector y of the form y'Ay with A
being symmetric. Since the ANOVA table is set up after an initial least squares
fitfor B, ANOVA estimators of variance components have the property of depend-
ing on the observations yonly through the residual statistic My =y - X(X'X)"XY.
SEELY [1971, p. 717] points out that My is a maximal translation-invariant
statistic, whence every estimator for variance components which depends on y
only through My is called a (translation) invariant estimator.

The invariance requirement plays an ambiguous role in the theory. For a vari-
ance component estimator y’ Ay there are at least three situations when invariance
arises automatically: (i) When A is non-negative definite, then unbiasedness
necessitates invariance (see ATIQULLAH [1962, Lemma 2]). (ii) When the variance
of y'Ay is assumed not to depend on B. then this necessitates invariance (see
Hsu [1938, page 95] and DryGas [1972]). (iii) When SerLy’s [1971, p. T15] set of
assumptions for the existence of a uniformly minimum variance unbiased estima-
tor are satisfied, then that estimator is invariant. There are, however, instances



168 ANDERSON, R. D.; He~NprrsoN, H. V.; PukeLsHEIM, F.; SEARLE, S. R.

when invariance does not arise automatically. In these cases the invariance

requirement means a genuine restriction from the larger class of all unhiased

quadratic estimators to the proper subclass of those estimators which, in addition.
are invariant.

A quadratic estimator Y'Ay is invariant, if and only if it remains unaltered
when y is replaced by y — X8 for every 8. and for this, a necessary and sufficient
condition is AX =0 (see Rao [1971, p. 267]). Since it is easily verified that 4 X =0
if and only if 4 =MAM, it follows that y'Ay is invariant if and only if it has the
form y’MAMy. A general form of M in ANOVA models with balanced data can
be derived by first writing £, as the KRONECKER product I,® ... ®I‘\~m®l,l
and replacing each Iy by -]—‘\-/AJ,-I\"V’.._',]‘his gives Iy as a sum of 27*! termg.
Each term is a KroNnEckER product of J’s and K’s and hence a projection matrix.
The product of any two of these terms is null because it involves the product of
a«J and a K which is null, and so the representation thus obtained corresponds to
the orthogonal partitioning traditional to the ANOVA of balanced data. As
a consequence, M is a sum of KRONECKER products of I’s, J’s and K’s. This is the
property of M required in Section 5 for our proof concerning non-zero kurtosis.

For certain ANOVA models with balanced data we suggest the following algo-
rithm for deriving M of (2.5) without having to calculate a generalized inverse
(X'X)~ or the MooRE — PENROSE inverse X'*. First recall that XX’ is a sum of
terms G}-G; that, from (2.6) are each KroNECKER products of I's and J’s, as
described at the end of Section 2. Then the algorithm is as follows.

(i) In Gj(};- corresponding to each main effect or interaction factor. replace
each Jy by Jy . and each Iy ])yl\"\-r.

(i) In G,G; corresponding to a factor (represented by ;) nested in some other
(main effect or interaction) factor which is specifically represented in the
model as & for k+j, proceed as in (i) except leave unchanged all those I's
for the factors within which 9 is nested.

Then XX is the sum of the changed GG terms and M=I— XX+,

We use the examples of Section 2 to illustrate the algorithm. For example (1),

XX'=d,0J,3J, Q@ +1,3J,@J,Q.J, + J.1,J,2J, +1,I,.J, @,

and the algorithm converts this to

XX+ =d,0J,00,0J, + K,oJ, &J, 0, +7,8 K,0J,8.J, + K, o K,2J,%.J,
=Jut KO W, + K) @, 0, =1y 0. .

Example (2) has the y-factor nested within the p-factor. Keeping this in mind,
the algorithm converts

XX’ :Ju ®’]h ®’Ir®'ln i lu ®"h ®"1‘®"‘)L +J«z X II; ®']r ®"u
+1,1,8J.@J,+J,I,R1, Qd,+1,1,81,.3J,
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into
XX+ :’I_u ®']_l/ ®';(' ®']—)1 + I(a ®’I—b ®'l—« ®J_n ”:"l_a & l‘yh ®J_r 8"1—11
+KE,0K,0J @J,+J,0L,0 K,0J, + K,® LOK,cJ,
= gpe ®"—n "

Example (3) is not covered by the algorithm because the 0 effects are nested
within the (a,, Bj)-cells for which the model contains no specific (interaction)
effects. The latter are needed in the model in order for part (ii) of the algorithm
to be effective; if (af3);; effects were part of the model they would act as 9, of the
algorithm. The inability of the algorithm to deal with a model of this nature is
of no consequence hecause models with factors nested within factors that are
represented in the model in less than a fully parameterized manner are unlikely
to be met with in practice.

The algorithm utilizes structural features inherent in any model, arising out
of its statistical meaning: e.g., interactions cannot he fixed effects if their asso-
ciated main effects are random, nor can fixed effects be nested within random
effects. Formalization of these features and rigorous proof of the algorithm
would, as CorNFIELD and TUKkgey [1956] so rightly say in a situation of similar
repetitive algebraic complexity, involve “systematic algebra (which) can take us
deep into the forest of notation. But the detailed manipulation will, sooner or
later, blot out any understanding we may have started with.”

4. Estimation under zero kurtosis

Minimum variance properties of ANOVA estimators of variance components
from balanced data are summarized in (1.1). The variances of these estimators

¢

do, of course, depend on var @) =V= 3o}V, of (2.2). More than that. existence
i=1

o ¥ . 9 - > > . . .
of UMVUQ estimators of the o;’s comes from ¥ and the 1 /s having a certain
structure. To be precise, let .

‘B;«{Z’[L-l',-lf,. ....f,.ER}. (4.1)
i=1

.
be the set of all matrices that are linear combinations 2 LV, of the Vs, for the
i=1
t/s being any real scalars. Then ¥ is defined by SEELY [1971] as a quadratic
subspace of symmetric matrices when every member B of O has B2 also in 9.
SEELY’S [1971, p. 715] results on uniform minimum variance unbiased esti-
mation are established on the hasis of two assumptions:
(a) that B is a quadratic subspace of svmmetric matrices,
and
(b) that matrices I, exist such that 1 "X=XH, fori=1,.. c.
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These assumptions certainly hold in a fixed effects model, as in AriQuLLAl [1962].
wherein the only ¥ matrix is L. They also hold for the random effects model in
Theorem 7 of GravpiLL and Hurrquist [1961], since their requirement that an
analysis of variance exists leads to SEELY’S assumption (a), while their assumption
(iv) is SEELY’s assumption (b). Since SprLy [1971, p. 717] shows that his assump-
tions (a) and (b) necessitate invariance of the resulting estimator, neither
ATIQULLAH [1962] nor GrAYBILL and Hurrqurst [1961] need a restriction to
invariant quadratic estimates.

In general, however, an ANOVA model with balanced data does not necessarily
satisfy SepLy’s assumption (a) for the same kind of reasons that SeeLy’s [1971,
P- 719] example of the halanced incomplete hlock design does not, and as further
evidenced in example 1 of Kiiprg and PiNcus [1974, p. 53]. Another demonst ra-
tion that ¥ is not aly ‘aysa quadratic subspace is given by SEARLE and HENDERSON
[1979] for the 2-way crossed classification where both the inverse V=1 and 1
include a term in J . whereas I/ itself does not. But the Vs of V, together with
Jy do form a quadratic subspace and ¥ is a member of it. Indeed, there are typi-
cally two distinet situations:

(1) For some modelg (e.g.. crossed classification modelg having no nested factors),
the 1", do not define a quadratic subspace. This is because. by the crossed
nature of the factors, there is s product of two F,'s that vields Jy. and J
has to be included in 9.

(2) For other models (e.g.. completely nested models. and mixed models having
random factors that are. within themselves, effectively nested) the Vs
define a quadratic subspace and no product V3V, vields J ., and so there is no
need to include .J .

In contrast to I’ =var (y) consider the variance of My from which the invariant
quadratic form Y MAMy of Section 3 is formed -

var (My)=MVM =} c:MV,M . (4.2)

=1

The analogous form of ¥ for matrices MV,M is then

*BM—_A{Z EMVDM [ ¢y, ... e R l . (4.3)
< J
Concerning B 5, Theorem 6 of K1 FFE and PiNcus [1974, p. 52] shows that in any
linear model the quadratic subspace property that is not always evident in 1" is
needed only of By For balanced data this is always the case, i.e., B, defines
a quadratic subspace, resulting from the fact that M and the Vs are all linear
combinations of KroNkcKER products of I's, J’s and K’s. No matrix such as
Jy ever has to be included with the MV, M’s. This is so because M.J - is null.
(Note that the analogue of Sgrny’s assumption (b) is trivially satisfied, since
My has expectation zero.)

Theorems 1 and 3 of Skpny [1971] assert that for balanced data with zero
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kurtosis there exists an unbiased invariant quadratic estimator of the variance
components which has uniformly minimum variance in its class (UMVUIQ).
Under normality this estimator retains the UMV property among all unbiased
invariant estimators. whether they are quadratic or not (UMVUI). We now show
that this estimator also coincides with the ANOVA estimator, thus justifving
(1.1) and (1.3).

The general linear model for y is y = XB + Zu of (2.1). For M of (2.5) the model
for My is My=MZu. SgrrLy [1970, 1971], PURELSHEIM [1976, 1977, 1979].
Browx [1978, 1979] and ANDERSON [1978, 1979] show how this model for My
can be converted into a linear model for 62= (o7, .... 07)". To this end we set out
some notation.

For a matrix A we denote by vec A the vector formed by stacking the columns
of A one under the other to form a single column vector. Its history, properties,
and uses in statistics are extensively reviewed in HENDERSON and SEARLE [1979].
An important result connecting vec with KroNeckER products is

vec (ABC)=(("® A) vec B; (4.4)
and an important matrix is Iy ;- defined, for A4 of order N X N, by

vee (Ayyy) =1y yvec (A), (4.5)
as discussed in HENDERSON and SEARLE [1979, 1981], where it is called a vec
permutation matrix. We also need ¢= Yg, for ¢; of (2.3), and introduce the
q%> g matrix

D,=[e;®@e, ... e,Qe], (4.6)
where e; is the i’th column of 1.

Using these terms we then define

Y =My My (4.7)
X=[vec (MVM ... vec (MV,M)] (4.8)
W, =MaM)(VeV) (Iy.+Iyy) (MoM) (4.9)
A= rr'f;',»lqA =block diagonal (rr?‘;ql,“. rrf‘.y,,lq.) (4.10)
i=1 ! ‘
W,=(MoM)(ZoZ) DAD, (ZoZ) (MoM) . (4.11)

Then the derived, or dispersion-mean, model for 62 can be expressed as
E(y) =Xo? and var (y)=W, + W, . (4.12)
Ordinary least squares on (4.12) leads, as is not hard to show, to equations
{tr (MV,MV))} o= {y’ MV .My . (4.13)
Then, since Wy, of (4.3) is a quadratic subspace of symmetric matrices, the result

of SeeLy [1971] discussed in the first paragraph of this section shows that the
estimators 62 of (4.13) are UMVU(Q — and because they are also translation
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invariant thev are thus UMVUIQ; and, under normality, they are UMVUT.
Furthermore, hecause in ANOVA models with balanced data, ANOVA estimators
have these same properties, as discussed in Section I, the estimators in (4.13)
are the ANOVA estimators.

(4.13) is also the generalized least Squares solution for (4.12) when 0i=g =1
(or more generally, any value whatever) and ¢}= .. =g, 1=y =.. =9,=0.
For this reason, equations (4.13) have recently bheen called MIVQUE-0 by
GoobpNrauT [1979] and MINQUEO by SEARLE [1979a, b].

A necessary and sufficient condition under which ordinary least squares
estimation of B in the model E(y)=XB. var (¥)=Vis the same as best linear
unbiased estimation s VX=X, for some matrix I1. ZYSKIND [1967] and Segpry
and ZyskiNp [1971] give a broad presentation of this result which, under nor-
mality, leads to the quadratic subspace condition of SEELY [1971]. While (1.1)
and (1.3) thus follow from SEELY’S [1971] general theory, the V"X = X7 require-
ment for the model (4.12) with zero kurtosis (i.e., with A and Wonull)is W, x = X1,
for some I,. Direct verification of this may be found in ANDERSON [1978]. Under
normality, ANprRSON [1979] also establishes (1.4), i.e.. equality of REML and
UMVUI, as do Pukersne and STYAN [1979]. We now turn to the case where the
kurtosis need not he zero.

5. Estimation under non-zero kurtosis

For ANOVA models with halanced data we now verify (1.2) by exhibiting a matrix
I, that satisfies

WX =x11,. (5.1)

where ¥ and W, are defined in (4.8) and (4.11). Then, since W, X =XH,, we have
(W, +W.,) X =%H for I — H, +H,, and so the condition for ordinary least squares
estimation bheing the same as hest linear unbiased estimation is satisfied for the
non-zero kurtosis case. Theorem 4.5 of PukkLsuey | 1977], Theorem 6 of Krerrg
[1977] and Theorem 1.4 of Drycas [1980] point out the need for a matrix I, ; we
substantiate this by showing its existence for the non-zero kurtosis in ANOVA
estimation from halanced data,

It suffices to show that for every k=1, ..., ¢ there exists some cX 1 vector
hy. such that
W, veec (MV, M) =Xh, . (5.2)

We now use (4.4) and (4.11), and also l),IAl)q, vec (A) =vec (A diag A) from
PukeLsueiv (1977, p- 326], where diag 4 is the diagonal matrix with diagonal
elements heing those of A. The left-hand side of (5.2) then hecomes
W, veec (MV,M)= (MeoM) (ZoZ) D,IAI),; vec (Z' MV, MZ)
=(MM) (ZQZ) vec {A diag (Z'MV,MZ) . (5.3)
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Now suppose there exist numbers Alfs -y A, such that

diag (Z'MV .MZ) = @l Ay, =N say. (5.4)
Then .
W, vec (MV,M)=vec (MZANZ'M)
=vec ‘LT oty MZ L. M=%h, (5.5)
with h, = (oiy Ay ..., oiyia) - This establishes (5.2), and therefore (5.1).

Thus for (5.5) to hold, it remains to exhibit numhbers Ay satisfying (5.4). To this
end partition Z, into its columns Z; for g=1, ..., ¢, and define

hije =2 MZZ Mz ; (5.6)
=z (I-XX*) 2 Z;, (I- XX*) 2, (5.7)
=2l 22— 2 XX 2, 22, — 2yl XXz,

+2; XX 2,2 XXz, . (5.8)

We show that 2, does not depend on j.

First observe from Section 2.4 that any Z; is a KRONECKER product (KP) of
I's and 1’s of the form (2.6). Hence, through partitioning the I’s into their columns.
denoted as e-vectors, each

Z; isaKPof e€s and TI's. (5.9)

Along with this, we also have from (2.10) and the algorithm in Section 3.1 that

77, isaKPof I's and J’s (5.10)
and
XX dsasumof KP’sof I's,JJ’s and K’s. (5.11)

All KP’s in (5.9), (5.10) and (5.11) are conformable. whereupon each term in
(5.8) is a KP. We use e; to represent the dependence on j of an e referred to in
(5.9). Then any position ¢ in the KP that is a term of (5.8) is a scalar that has,
for some matrix Q,. one of the following forms:

(’}Q,P}- =7 th diagonal element of Q,,
or

’ .y ~

€;0,1 =j5th row sum of Q,. (5.12)
or

1'Q,1 =sum of all elements in Q, .

Therefore each term in (5.8) is a product of scalars like (5.12), where Q, is either
the matrix in position ¢ of Z,Z, or is a product of matrices in position ¢ of Z,Z;
and XX*. Hence, from (5.10) and (5.11) and using Section 2.2,

O, iseitheran I.J J or K. (5.13)
Hence, from (5.13), the scalars in (5.12) are all independent of j and so this is
also true of each term in (5.8), and thus of A itself.
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Zusammenfassung

Unter der Annahme der Normalitit oder cines verschwindenden Exzesses sind die Eigen-
schaften fiir die Varianzanalyse-Schiitzungen der Varianzkomponenten, die man fiir
balancierte Daten erhilt, gut bekannt. Wir zeigen hier, dafl auch im Falle cines nicht ver-
schwindenden Exzesses diese Schiitzungen noch gleichmiiflig minimale Varianz unter allen
erwartungstreuen, translationsinvarianten, quadratischen Schiitzungen haben.
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Iis werden Beispiele balancierter Modelle mit kurzer Matrixdarstellung angegeben.
Jin Algorithmus zur Ableitung der Matrix M —1 _ XX+ aus XX wird vorgestellt, wobei
X die Inzidenzmatrix fiir die fosten Effekte ist und X+ jhre MoorE-PENROSE-Inverse be-
zeichnet. Der Algorithmus enthiilt nur die KRONECKER—Produkt-Operat ion und erfordert
keine explizite Berechnung von verallgemeinerten Inversen.

Pesome

Masecrunr cBoucrna AUCHEPCHONHIIO  aHAIN3a A OleHOK AUCIEPCHOHHBIX  KOMITOHEHT
B caydae cOalancupoBamnbiX JanmbnX i HPEATIOIOsRe HITS JI100 HOPMAABHOCTH 160 HYJIEBOTO
Konphduimenta BRUIYRIOCTIL Mbl yBUAUM 3jech, uTo HpIL 1e HyJaeBeiM Koo duumenTon
BBILYRJIOCTH HTH OIE@HKU UMeoT PABHOMEPHO MIHUMALLHYIO J{ICIepCHio Cpejn Beex mec-
MEIIEHHLIN, HHBAPHANTHIX MPOTHR IMEPeHoca KBaJIpATHYHBIX OIeHOK.

Haioresn HPUMEPDH cOATAHCHPOBAHNBIX MOJIeJN B MATpuIHOM mpepcrasienum. [ pemgmaraercs
AAPOPUTM - st mostydenus Marpuist M =1 — XX+ 1 marpunet XX, rae X ssisercs
MHIMACHTHON MaTPUIBI A [0CTOSHHBIX parropos u X+ smpasercs odparnoii marpumieit
Moora — Ilenroca. B AAHHOM  alITOPUTME IOJB3AETCH TOAbKO OIEPALIAMIT TIPOUBBE/LEH 1M
RronERKEPA 1 HE HAZ0 BEMHCINTE 00001enty 1o odparuyio Mmarpusy.
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