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 Convexity and Monotonicity Properties of Dispersion
 Matrices of Estimators in Linear Models

 FRIEDRICH PUKELSHEIM and GEORGE P. H. STYAN

 Universitat Freiburg im Breisgau and McGill University Montreal

 ABSTRACT. The function ftA)=(K'A- K)+ is shown to be concave and isotone and the
 function g(A)=K'A-K is shown to be convex and antitone, when A varies over the set of
 symmetric non-negative definite matrices whose range contains the range of the matrix K.
 The results are motivated and interpreted through best linear unbiased estimates and optimal
 experimental designs in linear model theory.

 Key words: Gauss-Markov Theorem, matrix convexity, monotone matrix functions, ma-
 trix inequalities, generalized inverses

 1. Introduction

 The dispersion matrices discussed in this paper arise in two different fields of linear model

 theory. First consider a random Rn-vector Y with mean vector X, and dispersion matrix

 o2V, denoted by Y-(Xp;oa2V) for short. As usual, the nxk matrix X and the symmetric
 non-negative definite nxn matrix V are assumed to be given while 0=(f,i.-/k)' and a2
 form the unknown parameters, where the prime denotes transposition. When X has full

 column rank k and V is positive definite, the minimum variance linear unbiased estimator

 (BLUE) for P is (X'V-'X)-'X'V-1Y, which has dispersion matrix proportional to

 (X,V-VX)-1 (1)

 Secondly, consider the simpler model Y-(Xp; a2In) and suppose that the function K'I is
 to be estimated, with K a given kxt matrix. When X has full column rank k, the BLUE for

 K'j is K'(X'X)-'X'Y, which has dispersion matrix proportional to

 K'A-'K, (2)

 where A=X'X. When K has full column rank t, the information matrix for K'f is
 proportional to (K'A- K)-' which has the same form as (1). The analogy between (1) and
 (2) does not seem to have been noticed before, and is very helpful in that it reconciles the

 two objectives of making (1) small when it is viewed as a dispersion matrix, or of making it
 large when it is taken to be an information matrix.

 We now dispose of the full rank assumptions. Define si(K) to be the set of all symmetric

 non-negative definite kxk matrices A whose range (column space) R(A) contains the range
 R(K):

 (K) = {A , ? | R(A) v 9(K)}. (3)

 The set d(K) is a convex cone, i.e., aA and A+B lie in i(K) for all A, B E i(K), a>O. Let

 A- denote an arbitrary generalized inverse of A, i.e., A- satisfies AA-A=A. For

 AE,4(K) the matrix K'A-K is invariant to the choice of A-, and K'A-K is symmetric

 non-negative definite, and has the same range and rank as K'. Let A+ denote the Moore-
 Penrose inverse of A, i.e., A' is the unique matrix satisfying AA+A=A, A+AA+=A+,
 AA+=(AA+)', and A+A=(A+A)'. For A Esd(K) we define
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 146 F. Pukelsheim and G. P. H. Styan Scand J Statist 10

 f(A) = (K'A- K)+, g(A) = K'A- K. (4)

 When A and K have full column rank then (4) reduces to (1) and (2). Notice that f is

 positively homogeneous, i.e., f(aA)=af(A) for all A E sl(K), a>O.

 In the context of estimating the regression coefficients in the linear model Y-(Xp; O2V),
 the condition R(X)=R(V) means that all of the estimation space sYt(X) lies in the subspace

 R(V) on which the distributions of Y are concentrated. When V=I then the condition
 R(K)cx7t(X'X) ensures estimability of K'j1, cf. Alalouf & Styan (1979, Th. 2). These range-
 inclusion conditions define a matrix pre-ordering which will be studied elsewhere. Notice

 that the cone s(K) is slightly bigger than the cone PD(k) of positive definite kxk matrices,

 in that sd(K) may include boundary points of PD(k). Inclusion of these boundary matrices

 is essential for a satisfactory solution in optimal design problems, cf. Pukelsheim (1980).

 For two symmetric matrices A, B of the same order the notation A <B, or equivalently,

 BWA, will mean that B-A is non-negative definite. Convexity statements refer to this
 (Loewner-)ordering, while isotone and antitone mean order-preserving and order-revers-

 ing, respectively. We shall repeatedly use the fact that, given 0SA<B, then B+aSA' if and
 only if rank A=rankB, cf. Milliken & Akdeniz (1977, Th. 3.1).

 2. Results

 We shall deduce the concavity of f from the following version of the Gauss-Markov

 Theorem describing which estimates LY are BLUE for K, in the model Y-(KO; o2A).

 Lemma 1. Suppose the symmetric kxk matrix AE (K)={ABOI$Y1t(A)D$7t(K)}, where K is
 kxt, and let L be some kxk matrix satisfying LK=K. Then LAL'BaK(K'A-K)+K', and
 equality holds if and only if LA=K(K'A-K)+K.

 Proof. The condition AEsf(K) implies K'A-A=K'; if B=L-K(K'A-K)+K'A- then

 O0BAB'=LAL'-K(K'A-K)+K'. Thus LAL'>K(K'A-K)+K', with equality if and only
 if BA=O, or equivalently, LA=K(K'A-K)+K'=LAL'. C]

 The equality condition in Lemma 1 shows that the estimator LY for K, is BLUE if and
 only if LY coincides on the space of random variation Y E 92(A) with the generalized least
 squares estimator K(K'A- K)+ K'A- Y.

 It is of interest to note that the matrix

 S = LAL'-K(K'A- K)+ K'

 is the Schur complement of K'A- K in the partitioned matrix

 K' K'A-K (KA /

 with LK=K=AA- K. Then

 rank (M) = rank (K)+ rank (S) = rank (AL', K),

 since rank is additive on the Schur complement, cf. Ouellette (1981, ?4.2). Hence S=O if

 and only if R(AL')c$/R(K). However, S:O implies that $7t(K)c&i(LA). Thus S=O if and only
 if $?i(AL')=2Zt(K). From Lemma 1 it follows that AL'=LA is symmetric.

 Simple least squares estimation corresponds to L=KK+ and entails K+AK+'>a
 (K'A-K)+, with equality if and only if $Yl(AK)=.(K), cf. Zyskind (1967, Th. 2), and
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 Gaffke & Krafft (1977, Lemma 1). The choice L=Ik yields A?aK(K'A-K)+K', with
 equality if and only if 1(A)=R(K), cf. Pukelsheim (1980, Cor. 8.4).

 Theorem 2. (i) Suppose A, B E sd(K). Then

 { K'(A+B)- K} + ?, (K'A- K)+ +(K'B- K)+, (5)

 and equality if and only if

 {K'(A+B)-K}+K'(A+B)-A = (K'A-K)+K',

 {K'(A+B)- K} + K'(A+B)-B = (K'B- K)+ K'; (6)

 a sufficient condition for equality in (5) is

 (K'A- K)+ K'A- = (K'B- K)+ K'B-, (7)

 and this is also necessary whenever AA-=BB-.

 (ii) Suppose A, B E s(K) and p, q>O, p+q= 1. Then

 K'(pA+qB)- K -pK'A- K+qK'B- K, (8)

 and equality holds if and only if

 K'(pA+qB)- K = K'A- K = K'B- K; (9)

 a sufficient condition for equality in (8) is

 A-K=B-K, (10)

 and this is also necessary whenever AA-=BB-.

 Proof. (i) Choose L=K{K'(A+B)-K}+K'(A+B)- in Lemma 1, and so LK=K. Thus
 LAL'BK(K'A- K)+ K' and LBL'BK(K'B- K)+ K. Summation yields L(A+B) L' =
 K{K'(A+B)-K}+K'BK(K'A-K)+K'+K(K'B-K)+K', and pre- and postmultiplication

 by K+ and K`' establish (5). Condition (6) is copied from Lemma 1, and, if AA-=BB-,
 implies (7). That (7) is always sufficient follows from the identity

 {(K'A- K)+ K'A--(K'B- K)+ K'B-} B(A+B)- K{K'(A+B)- K}+

 = {K'(A+B)-K}+-(K'A-K)+-(K'B-K)+.

 (ii) It follows from (i) that K'(pA+qB)-K-{p(K'A-K)++q(K'B-K)+}+. Now let s
 be the rank of K, and choose some kxs matrix F and some txs matrix G such that K=FG'

 and G'G=I,. Then (K'A-K)+=G(F'A-F)-'G', and convexity of non-singular
 inversion (Marshall & Olkin 1979, p. 469) gives {p(K'A-K)++q(K'B-K)}+=
 G{p(F'A-F-' + q(F'B-F)-1}'-G' - G(pF'A-F+qF'B+F)G' = pK'A-K+qK'B-K,
 with equality if and only if F'A-F=F'B-F, or equivalently, K'A-K=K'B-K. This
 establishes (8) and, in conjuction with (6), also (9). Since (10) is equivalent to
 K'A-K=K'B-K and (7), the proof is complete. O

 When the idempotent matrices AA- and BB- do not coincide then (7) is not necessary

 for equality to hold in (5), e.g., K=( ),A= 0 ), B= 1 ). Our proof decom-
 poses (8) into (5) and an inversion inequality whence equality in (8) requires more than
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 equality in (5), a simple example is K=() A(0 0), B(-2 6) p=q= 2
 does K'A-K=K'B-K alone imply equality in (8) even when AA- =BB-, as demonstrated

 by K=(o), A=(o I ), B=(2 2), p=3/4, q=114. Equality of AA-=BB- also appears

 in related problems: if Os0As-B and the generalized inverses A- and B- are reflexive (i.e.,

 A-AA-=A-,AA-A=A) and symmetric, then B->A- if and only if AA-=BB-, cf.
 Pukelsheim & Styan (1978, Th. 2.3), and Styan & Pukelsheim (1978). Next we turn to

 monotonicity properties.

 Theorem 3. Suppose A,BE,d(K) and A-B. Then (K'A-K)+-(K'B-K)+ and

 K'B-K-K'A-K, and in each case equality holds if and only if AB-K=K.

 Proof. The two inequalities are equivalent. The second inequality and the equality

 characterization follow from premultiplying the block matrix {(B-A)/2+ C,A1/2+ C} by
 its transpose, where C=(B-A) B- K=K-AB- K. C]

 The condition AB- K=K is also instrumental in discussing multiplicity of optimal

 experimental designs, cf. Pukelsheim (1980, Cor. 5.3). Concerning the functions in (4) we

 may summarize as follows.

 Corollary 4. On the convex cone si(K) the function f is concave and isotone, and the

 function g is convex and antitone.

 3. Discussion

 Theorem 2(i) has an appealing statistical interpretation. Consider two linear models

 Y-(Kp; A) and Z-(K,I; B), with A, B E i(K), and assume that the observation vectors Y
 and Z are uncorrelated. A first estimate for II is obtained from averaging the individual
 estimates of each model. Using weights p and q this leads to p(K'A-K)+K'A-Y+

 q(K'B-K)+K'B-Z, with dispersion matrix p2(K'A-K)++q2(K'B-K)+. A second

 estimate, based on averaging the observations rather than the estimates, is

 {K'(p2A+q2B)- K}+ K'(p2A+q2B)- (pY+qZ) with dispersion matrix {K'(p2A+q2B) K}+.
 Inequality (5) shows that the first course of action is strictly preferable, unless the second

 estimate, restricted to the relevant spaces of random variation, R?(A) or R9t(B), is equal to
 the individual estimates in the respective models.

 Theorem 2(ii) may be interpreted that the dispersion matrix K'(pA+qB)-K, associated
 with the non-randomized design pA+qB, is at most pK'A-K+qK'B-K, obtained from

 randomizing between A and B with weights p and q, cf. Kiefer (1961, p. 303).

 Notice that restricted to positive definite matrices the behaviour off and g is well known

 (Marshall & Olkin, 1979, pp. 468-473). By continuity this behaviour extends to all of d1(K),

 cf. Pukelsheim & Styan (1978, Sect. 3). Gaffke & Krafft (1982, Th. 4.8) deduce our

 inequalities (5) and (8) from more general results. Yet another proof is obtained from

 quasi-linear representations off and g, given by Sibson (1974, p. 682) and by Silvey (1980,

 p. 69). Namely, if P=Ik-KK' then for all kxt matrices H

 g(A) ? K'H+H'K-H'AH,

 f(A) -, (K + +H'P) A(K + + H'P)'

 with equality for H=A-K and H=-(PAP)+AK+', respectively. However, none of these

 approaches reveal that the Gauss-Markov Theorem is the common statistical denomina-
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 tor, nor do they exhibit that f plays a more primary role than g, nor do they lead to the

 equality characterizations obtained in our Theorems 2 and 3.
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