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ABSTRACT

For two p-dimensional random vectors X and Y with dispersion matrices 3 11 and
249, respectively, we determine that covariance matrix ¥, of X and Y that minimizes
the Ly-distance between X and Y. There is a dual to this problem that is of interest in
another context.

1. INTRODUCTION

Consider two p-variate normal distributions witl, zero means and positive
definite dispersion matrices Z), and 2,,. In the theory of strong approxima-
tions it is of interest to construct p-dimensional random vectors X and Y
distributed according to N(0, 2,,) and N(0,Z,,), respectively, such that the
Lydistance between X and Y is minimal,

Let
2z v
=
vz,
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denote the dispersion matrix of (X,Y). Then the problem is to minimize
Etr(X=¥Y(X =Y)=te(Z), + 2, ~ 2¥). The restriction that £ be non-
negative definite is equivalent to requiring that the Schur complement
2 - ¥IL be nonncgative definite. Consequently, under the assumption
that X,, > 0, Z,, > 0, the extremal problem becomes

max tr2v, :mv
Iy -¥IR¥ >0

where the Loewner ordering A > B (A > B) means that A — B is nonnegative
(positive) definite.

As a consequence of Theorem 3 we show that the problem (1) has a
unique solution

—-1/2
é: = M:MKMAMKNM:MKNV M_\N. A&v

where A'72 denotes the unique positive definite square root of the positive
definite matrix A.

When p=1, ¥, = _\mﬂmw~ so that the correlation between X and Y is 1.
When 3, and =, are diagonal, ¥, is diagonal, so that (X,.Y, SO P Y)
are independent bivariate random vectors that are perfectly correlated.

When X,,. -, X, and %......w‘n are equicorrelated with correlations p and
1, respectively, then ¥, is a matrix with equal diagonal elements Yy =a(p,n),
i=1,....p, and equal off-diagonal elements Vi =b(p.m), i=j=1,...,p. The
constants a(p,n) and b(p, n) are rather co:ﬁmg:& functions of p and 7.

We actually obtain a stronger result by assuming only nonnegative
definiteness of X, and X,,. This permits a comparison of random vectors X
and Y of different lengths by appropriately including random variables
degenerate at zero.

2. A DUALITY THEOREM

In another context Anderson and Olkin [1] consider the extremal problem

min tr(Z2,8+2,57), 2,50, T,>0. (1b)
>0

It is interesting to note that the problems (1a) and (1b) are dual to each other.
As a consequence we have a particularly simple way to investigate the
optimal solutions. Since the set of matrices satisfying ), — ¥31¥' > 0
forms a convex set (see 2, p. 468]), the problem can also be considered from
the more general programming theory as outlined in [3]. However, we need
not use this route, since a direct argument establishes the duality.
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Our first theorem shows the interplay of the problems (1a) and (1b).
However, we first require the following lemma.

LeMMa 1. Let 2,,>0, 2,, > 0. Then

Z= Zoo ¥ >0
R 2P b
if and only if ¥ € Q, where
Q=(V:3p3,¥' =¥ 5, -VZ,¥'>0), (3)

and X, is any generalized inverse of o

Proof. For the direct part, assume = > 0 and suppose the vector y is in
the nullspace of Z,,. Then letting A = 0 tend to zero in

0<(Ax, A7 y)S(Ax, A7ty ) = N%'S  x + 22"y

proves that Yy =0. Thus, nullspace(Z,,)C nullspace(¥), or equivalently,
range(¥') C range( =, ), which in turn is equivalent to ZaZaV' =¥
The second property is implied by
I -¥v2,\(2, Y I 0 Sh-YI¥ 0
0< ) T TNl A '

The converse part follows from

I ¥YE,\[Zy—¥YZRp¥ 0 I 0

e =73, ]
0 b 0 2o 2V I

0<

As a consequence of Lemma 1, under the weaker assumption 2, > 0,
24 > 0, the problem (1a) generalizes to

max tr2¥, (1a%)
vYe

Tueorem 2 (Matrix inequality). For ¥ € @ and for an arbitrary p X p
matrix R with generalized inverse R,

R'’Z R+ R Ze(R™ )Y > R¥(R™ )+ R V¥R, (4)
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with equality _.\EAi only if

R'(Z,, - ¥YZL¥)R=0, (5a)

R'Y¥=R"2,,. (5b)

N.Ec\.FQﬂmasoam.immzmqwr.nmmm:é_.umomm.j_a :_aD:&_.QA.C
follows from the nonnegative definiteness of :

¥ R

2
Nw\. -G 11
A v v’ MNN el

To show the case of equality, let
T=R¥(2Y2) - 6%e*
Then equality in (4) holds if and only if equality holds in
RZ R+ GZ,G'>RE R+ G2,,G' - TT’
=RYC'+G¥'R+R(Z,, - YZL¥)R
> RYG'+ GY'R.

In the case of equality, (5a) holds and T = 0, which is equivalent to (5b). =

In order to connect Theorem 2 with the problem (Ib), let S = RR’ satisfy
the condition range(2,;) C range(S), that is,

S~ g = 3,,

s.;,wa S™ is any generalized inverse of S. Accordingly, assuming merely
2,20, 2, > 0, we modify the problem (1b) to

_.sm_.m (2, 8+ 2557), (1b)
where
©=(5:820,882,,=3,,). (6)

CoroLrary 3 (Mutual boundedness).  For all matrices ¥ € Q and S € &
the inequality

(2,8 + 2,57 ) > tr2v (7)
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holds, with equality if and only if
$Z,,8=2,,=85V¥. (8)

Proof. Fix S and S= RR’. Then G = R’S™ is a generalized inverse of
R, and by (6),

20G'G=2,S RR'S™ =2,,5788" =2%,,57.
Hence, from (4)

tr(Z,,S + 2587 ) =tr(Z,,RR' + 2,G'G)
> tr(¥G'R'+ RG¥’') = 2tr RG¥’ = 2tr S~ W'

But, because ¥ €  and (6) holds,
V' =3,,25F =857 2,2,¥ =557 ¥, (9)

The condition (5b) implies that S¥ = ,,, which when inserted in (5a) yields
$2,,S=2Z,,. Thus equality in (7) forces (8), whereas the converse is im-
mediate from (9). [ |

From (8) it follows that equality in (7) holds only if rank(2,,)=
rank(SZ,,S) < rank(Z,,). The rank assumption can be made without loss of
generality; however, we require the slightly stronger assumption that
range(Z,,) C range(Z,,) in the following duality theorem.

Tueorem 4 (Duality). If range(Z,,)C range(Z,,) then the problems
(1a’) and (1b') share the same optimal value

max tr2¥ = min tr(2,,S + 2,87 ) = 2tr (2422, 22)* (10)
Yeq Sed

with solutions

¥, = M:MK»TMK»M:MKM%\J RXAED Y (11a)
A (CT A I (1)

If range(Z,, ) = range(Z,, ), then ¥, is the unique solution of the problem
(1a’), and S, is the unique solution of problem (1b’) that satisfies range(S, )=
range(Z,,).
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Proof.  Because of the assumption range(2,,) C range(2,, ), the matrices
Wo and S, are invariant under the choice of the generalized inverse

AM_NmnM:M_me_\» - The matrices ¥, and S, defined by (11) are clearly
easible for the problems (1a") and (1b’) and satisfy (8), thus proving (10).
To establish uniqueness, an argument similar to that in the proof of
Lemma 1 shows that any ¥ €  satisfies range(¥) C range(X,,). Hence, if
range(Z,,) = range(=,,) and S € S, then range(¥) C range(S), and SS™ ¥ =
. In particular, from (8), any two optimal solutions ¥, and ¥, of problem (1)

satisfy S,¥, = T,, = So¥,, which yields

Vo = SoS0 o = Sg So¥, = So Zg5 = S5 S = SoSa Yo = ¥
Finally, any two optimal solutions S, and S, of CS satisfy So¥, = %,, = w:é?
Suppose, in addition, that range(S,) = S:maAmov =range(Z,,). From the
above we have that range(¥)c range(Z,,), whercas (8) implies that
rank(Z,,) < rank(¥). Thus, range(Z2,,) = range( ¥, ), and

So =S¥ ¥y =32 ¥y =S¥, ¥y =35, ®

Note. If z L range(Z,,)= range(Z,,), then S, + 2z’ also satisfies (8),
and hence is also optimal, which shows that the coudition range(S,) =
range(Z,,) cannot be relaxed.

REmArk.  When range(3,,) = range(Z,, ), the problem (1a’) can also be

formulated with the Schur complement Zgs = V'Z[1 V. Accordingly, an alter-
native representation of its unique optimal solution is

¥ =23l (2lrs,37) ) sy

If v:A.\C..:.»sT: denote the characteristic roots of A, then the optimal
value (9) becomes
p

2u(2y?2,247)"" = 21 (25, 2402) ]
1

p p
= mMX\AMKnM:MKNV = wMU>__\mAM:M§v.
1 1

which provides a more symmetric expression in 2,y and 2.
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Note added in proof. During the proof stage the authors note the
appearance of a paper dealing with the same problem, though motivated from
a slightly different point of view. The reference is D. C. Dowson and B. V.
Landau, the Fréchet distance between multivariate normal distributions, J.
Multivariate Anal. 12:450-455 (1982).

We are grateful to E. Berger for calling this problem to our attention, and
to Kai-Tat Fang for his comments and suggestions.
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