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ON THE EXISTENCE OF UNBIASED NONNEGATIVE ESTIMATES
OF VARIANCE COVARIANCE COMPONENTS'

By FrIiEDRICH PUKELSHEIM

Universitdat Freiburg im Breisgau

The existence of unbiased nonnegative definite quadratic estimates for
linear combinations of variance covariance components is characterized by
means of the natural parameter set in a residual model. In the presence of a
quadratic subspace condition the following disjunction for nonnegative estim-
ability is derived: either standard methods suffice, or the concepts of unbiased-
ness and nonnegative definiteness are incompatible. For the case of a single
variance component it is shown that unbiasedness and nonnegative definite-
ness always entail a reduction to a trivial model in which the variance
component under investigation is the sole remaining parameter. Several
examples illustrate these results.

1. Introduction and summary. In variance component estimation, common
methods may lead to negative estimates for variances which, obviously, are nonnegative
parameters. Since many procedures in the analysis of variance construct their estimator as
a quadratic form that is unbiased for the parameter under investigation, the question arises
when this can be done by simultaneously satisfying the inherent nonnegativity constraint.
In the sequel linear combinations of variance-covariance components for which there exists
an unbiased nonnegative definite quadratic estimator will be called nonnegatively estim-
able for short.

Various alternatives are at hand as to how a statistician may react to negative variance
estimates; see the discussion in Searle (1971), page 406. Also a number of estimators have
been proposed which, by sacrificing unbiasedness, evade the negativity defect; see, e.g.,
Horn and Horn (1975), P.S.R.S. Rao and Chaubey (1978) and Hartung (1981). For the
present case in which unbiasedness is maintained, LaMotte (1973) showed that of all
individual variance-covariance components, at most the error variances? is nonnegatively
estimable. The situation gets more complicated, however, as soon as linear combinations
¥ g7, of l variance covariance components 71, - - -, 7, are considered, where the coefficients
qi, - -+, q; are allowed to be arbitrary numbers.

In Section 2 nonnegative estimability of a form Y g,7, is characterized by means of the
natural parameter set in a residual model. This leads to the surprising alternative that in
the presence of a quadratic subspace condition, as introduced by Seely (1971), either the
standard unbiased estimate Y q,7, does provide an unbiased nonnegative definite quadratic
estimate, or no such estimate exists. The familiar multivariate linear model is chosen as an
example since it includes variance components as well as covariance components. All
proofs for Section 2 are presented in Section 3.

In Section 4 it is shown that considerations of variance-covariance component estima-
tion also cover the case of pure variance component estimation, and details are given for
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two examples from the analysis of variance. In addition it is proved that estimation of a
single variance component o’ always entails a reduction to a model in whicha? is the only
remaining parameter. The model with heteroscedastic variances is used to illustrate these
results and the relation to the work of Balestra (1973), Kleffe and Zollner (1978), and
P.S.R.S. Rao and Chaubey (1978).

2. Variance-covariance component estimation. In order to characterize non-
negative estimability in those terms which define the underlying model it seems advanta-
geous to represent a linear model by its moments, according to

LM: Y ~ (XB; Ykt 7,V).

This means that given the real n X &k matrix X and the [ real symmetric n X n matrices V;
the random IR"-vector Y has mean vector XB and dispersion matrix ¥, 7,V;, with unknown
values 8 € IR” of the mean parameter, and 7 = (ry, - - -, 7))’ € G of the dispersion parameter.
The natural parameter set G for r which ensures nonnegative definiteness of the dispersion
matrix is

G={t=(t, ---,t) €R'|Y ¢V, € NND(n)},

where NND(n) denotes the set of all real symmetric nonnegative definite n X n matrices;
a prime indicates transposition. The dispersion parameter r may comprise variance
components as well as covariance components. When Y ~ 4,(XB; Y. 7,V)), i.e,, Y additionally
follows a n-variate normal distribution, then 7 is restricted to the set G of those values
t € IR' such that ¥ ¢V, is positive definite. The region [Gebiet] G is assumed to be
nonempty, and in this case the closure of G coincides with G.

Unbiased nonnegative definite quadratic estimation always entails an initial reduction
to the residual model

RM: MY ~ (0; ¥ ,MV,M), M=I,-XXX)X,
in which the natural parameter set for 7 is

Gu={t=(t, -, t) ER'|Y £MV,M € NND(n)).

For when Y’AY is an unbiased nonnegative estimate for ¢’r, then AX = 0 (Atiqullah, 1962,
page 84), and A = MAM, whence the estimate Y’AY = (MY)’A(MY) depends on the
observation Y only through the residual statistic MY. The parameter set Gu of the
residual model is now used to give a first characterization of nonnegative estimability.

THEOREM 1. Suppose q € RR'. Then the form q'r is nonnegatively estimable if and
only if all numbers q't, t € Gy, are nonnegative.

Since G is a subset of Gy it follows from this theorem that if ¢’r is nonnegatively
estimable then ¢’¢t = 0 for all ¢ € G. This relation reflects the fact that only forms g’ that
are nonnegative on G call for nonnegative estimation.

Next a class of linear models is described that allows more explicit answers to the
questions of nonnegative estimability. Associated with the / decomposing matrices of the
residual model is their Gramian matrix Sy = ((trace MV, MV,)) € NND(J), and their span,
i.e., the subspace By = {3 A\MV,M | A, -+, \; € R} of symmetric n X n matrices. The
subspace % has dimension [ if and only if the matrix Sy has rank /. Following Seely
(1971), By is called a quadratic subspace of symmetric matrices if B2 € &y for all B €
%u. When g lies in the range of Sy a distinguished estimate (MINQUE given I,,) for q'7 is

q/’\ =Y ¥ ANMV,MY, with A = (A, - .-, A))’ being an arbitrary solution of SyA = g (C. R.
Rao, 1973, page 303; Kleffe, 1977, page 223).
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Now assume that % forms a Il-dimensional quadratic subspace. Then ¢t is the
unbiased translation-invariant quadratic estimate for ¢’r which has uniformly minimal

variance (UMVU) under normality (Seely, 1971, page 718).The estimate q/'\ 7 also coincides
with the maximum likelihood (REML) estimate in a normal residual model when at least
(n — rank X) replicates are available (Pukelsheim and Styan, 1979). Since all these

concepts coincide ¢'r may be called the standard unbiased estimate for q’r. In particular,
the standard unbiased estimates 7, for 7, can be _used to form the I-dimensional statistic
7= (1, - -+, 7). Then for every form q’r one has ¢’r = q'7, and 7, having similar optimality
properties as q'7, is termed the standard unbiased estimate for 1. The following theorem
shows that (i) for a particular form ¢’r nonnegative estimability reduces to the alternative
that either old methods suffice or nothing else can be done, while (ii) no problem arises
with the vector statistic 7.

THEOREM 2. Assume %y to be a l-dimensional quadratic subspace of symmetric
matrices, and suppose q € IR’. (i) Then either the standard unbiased estimate for q't is
nonnegative, or q't is not nonnegatively estimable. (ii) The matrix estimate Y. 7,MV,M
for the dispersion matrix in the residual model, obtained from the standard unbiased
estimate 7 for 1, always is nonnegative definite.

Part (ii) means that * maps the sample space IR" into the parameter set Ga of the
residual model. An example will show that 7 does not, in general, map into the parameter
set G of the original model (LM). Horn and Horn (1975), page 876, draw attention to the
model (Y;, Yy, Y3)' ~ ((u, p, p)’; diag(a?, o3, 63)), with standard unbiased estimatesd; =
[1:=, (Y, = Y.). Since their product is —(Y; — Y2)*(Y1 — Y3)*(Y2 — Y3)? the vector statistic
6% is not in G, almost surely with respect to every continuous distribution. But % does
form a 3-dimensional quadratic subspace of symmetric 3 X 3 matrices, whence 6 > must
map into Gy, by Theorem 2(ii). In fact, one obtains Y6; YYMV,MY = MYY'M.

In many analysis of variance models the matrices MV,M also commute, besides
spanning a quadratic subspace (R. D. Anderson, et al., 1979). In this case % has a basis
of pairwise orthogonal projectors R, ---, R, (Seely, 1971, page 714), let T be the I X [
matrix with entries ¢, defined by MV.M =Y, t,R,. Here the standard unbiased estimate
q’7 for g’ also coincides with the analysis of variance estimate Y \,Y'R,Y/rank R,, which
combines the / sums of squares Y’R,Y in order to obtain unbiasedness for ¢’r, ie.,
(A1, -+, A)’ = T™'q. For g’ to be nonnegatively estimable it is then obviously sufficient
that all A, be nonnegative. That this is also necessary is shown by the following corollary,
thus strengthening Theorems 1 and 2(i).

COROLLARY 3. Assume %y to be a commutative l-dimensional quadratic subspace of
symmetric matrices, and suppose q € IR'. Then the form q'r is nonnegatively estimable
if and only if all components of T 'q are nonnegative.

For these models the alternative on nonnegaltive estimability attains its simplest form:
either the analysis of variance method does provide an unbiased nonnegative estimate, or
the concepts of unbiasedness and nonnegative definiteness are incompatible.

An example that also involves covariances is furnished by the multivariate linear model
(T. W. Anderson, 1958, page 178; C. R. Rao, 1973, page 544; Searle, 1978, page 183). Taking
N independent p-variate observations Y, ~ (B’x,; £) to be the subvectors of the grand
IR™-vector Y, one obtains the model ¥ ~ ((X ® I)B; In ®¥). Here the N X k matrix X
has rows x,, as usual, and the vector parameter f is the lexicographic reordering of the
k X p matrix parameter B. The residual model is (M ® I,)Y ~ (0; M ®¥), with M =
In — X(X'X)"X'. Since %Buer,, consisting of all products M ® T with symmetric p X p
matrices T, is a quadratic subspace, the matrix estimate ¥, obtained from the standard
unbiased estimates of its components, is nonnegative definite.
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3. Proofs for Section 2. Recall that for a convex cone K in IR’ its dual cone K™“ is
defined to consist of all those IR’-vectors g such that ¢’t = 0 for all ¢ € K. Let 2 be the set
of all IR’ vectors g such that the form ¢’r is nonnegatively estimable. Clearly 2 is a convex
cone, as is Gar. Theorem 1 thus states that 2 = Gas ““*.

PRrOOF oF THEOREM 1. Since the interior G of G is assumed to be nonempty, any two
forms which coincide on G must have the same coefficients. Applying this to ¢’r and
E(Y’AY), one finds that 2 = {(trace AMVIM, -.., trace AMV,M) € RYA €
NND(n)}. Now ¢ € 9% if and only if trace A ¥ t; MV,M = 0 for all A € NND(n),
or, equivalently, ¥ t,MV;M € NND(n). Hence 2“* = Gy, and Gy “**' = (g%atydual The
latter is the closure of 2, so that the assertion follows provided 2 is closed.

To this end choose a full rank decomposition M = QQ’ where the n X » matrix @
satisfies Q'Q = I,, with » = n — rank X. By setting H, = @'V,Q one has 2 = {(trace H.Z,
..., trace H)Z)' € R!|Z € NND(»)}. Since there exists some ¢ € G which makes ¥, ¢;H,
positive definite, the lemma of Bellman and Fan (1963), page 2, yields closedness of 2.0

Whenever g lies in the image Sy[Gax] a choice ¢ = SnA with A € Gu ascertains
that Y’ ¥ A, MV,MY is an unbiased nonnegative estimate for ¢’r. Hence the convex cone
Su[ G is always contained in 2, their precise relation being as follows.

LEMMA 1. The image of G under Su is a closed convex subcone of 9. If Su has a
rank 1, then Sy[Gu ] and 2 coincide if and only if the standard unbiased estimate T for
T maps into the natural parameter set Gu .

Proor. To prove closedness of Sy[Ga] let (¢').cn be a sequence in Ga such that Sut'
converges to g € R’ say. Define Z, = Y, (t'),MV,M, then Z, lies in both %y and NND(n).
Choose ¢ € G so that H, = ¥, ¢,V, is positive definite. Since trace HoZ, = c¢’Sut’ converges
to ¢’q, by assumption, it follows that a subsequence (Z,).ew converges to Z € Bu N
NND(n), say; see Bellman and Fan (1963), page 2. Hence Z = Y t; MV,M for some ¢ €
Gu, and because of Syt* = (trace V1Z, .- -, trace V,Z,) the two limits ¢ and (trace V,Z,
..., trace V;Z)’ = Syt must coincide. Thus ¢ € Su[ Gu], as asserted.

Next assume SM[@_= 2.Thenqg’7 =0forall ¢ € 2, and7 € 29 =Gy, by Theorem
1. Conversely, if 7 € Gy = 2, then ¢’7 = 0 for all ¢ € 2. But ¢'7 is the quadratic
form Y'Y A\MV;MY, SuA = g, whence 2 C Su[Gwu]. Since the other inclusion holds in
general, the proof is complete. [

The quadratic subspace property enters into Theorem 2 through the following lemma.
Recall that the positive part B of a symmetric matrix B is obtained from the spectral
decomposition of B by deleting all negative eigenvalues and their associated projectors.
The negative part B_ then is B, — B, and satisfies trace B+B_ = 0.

LEMMA 2. Assume 2 to be a quadratic subspace of symmetric matrices, and let P be
the projector onto & orthogonal with respect to the Euclidean matrix inner product
(A, B) = trace A’B. Then if A is nonnegative definite so is P(A).

ProOOF. Fix A € NND(n), and assume B = P(A) &€ NND(n), ie., B- # 0. The fact
that both A and B_ are nonnegative definite implies (4, B_) =0, and |A — B I>=]A -
B.|? + 2(A — B,, B_) + |B-|? > |A — B.|". But B, also being a member of # (Seely
1971, page 711), cannot be closer to A than the projection B. Hence B- =0, so that B= B
is nonnegative definite. O

PRrOOF OF THEOREM 2. It suffices to show that Su[Gx ] and 2 coincide, since then
g’'7 = 0 unless ¢ € 2, and 7 € Ga_by Lemma 1. With 2 represented as in the proof of
Theorem 1, the inclusion 2 C Su[Gu ] means that for all matrices A € NND(n) there
exists some ¢ € Gas such that foralli=1, ...,/ one has (MV,M, A) = (MV.M, ¥ t, MV,
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M).If B =3 t;MV,M is the projection of A onto %y, then certainly (MV:M,A) = (MV. M,
B). From Lemma 2 one concludes B € NND(n) and ¢ € Gy, so that this ¢ has the required
properties. O

Corollary 3 is an immediate consequence of Theorem 1: ¢’7 is nonnegatively estimable
if and only if 0 = g’s = (T 'q)'T’s for all IR'-vectors s for which 7”s has nonnegative
components. Here 2 is polyhedral, being the image T[IR%] of the nonnegative orthant
under 7.

The multivariate linear model, discussed at the end of the previous section, may serve
to illustrate the projection argument of Lemma 2. The projector onto %Buer, is P(A) =
Y1 (M ® (eie)), A)M ® (e.e;)/trace M, where e; is the ith column of I,; the estimated
dispersion matrix in the residual model is M ® £ = P(M ® I,)YY'(M ® I,)). Since Y is
the lexicographic ordering of the random N X p matrix U whose rows are Y, one gets
Y'(M ® (ee)))Y = (U'MU, e.e}). Hence (n — rank X)£ = UMU = Y, U'Meet.MU =
YN, (Y, — B'x)(Y, — B'x,), with B = (X’X)"X'U.

4. Variance component estimation. Analysis of variance models have the form of
a variance component model

VCM: Y ~ (XB; 3 02V,), all V,eNND(n),

with parameter sets IR” for 8 as before, and the nonnegative orthant IR’ for the vector
6% = (o}, - -+, 0f)’ of variance components. For a reparametrization with r as in LM, the
natural parameter set G always contains IR, whence ¢’o” is nonnegatively estimable in
the model VCM if and only if ¢’ is nonnegatively estimable in the same model repara-
metrized with 7. In other words, there is no need to distinguish whether q’o? or q'r, is
nonnegatively estimable, and the results of Section 2 apply.

The following two examples are extensively discussed by Corbeil & Searle (1976), page
784. Let 1, = (1, -- -, 1)’ denote the equiangular line in IR", and set J,, = 1,1. The 2-way
crossed classification, mixed model, no interaction corresponds to

Y~ <[1ab,,ZIa ® lbn] I:Z:I, O%Ja ® Ib ® Jn + OEIabn),

with a, b, n > 1. Here q;0% + q.02 is nonnegatively estimable if and only if g. = qz/(an)
= 0. The 2-way crossed classification, mixed model, with interaction is

Y~ ([laanIa ® 1] [z]; 3 @I J, + 0%, DI, Q oJ, + Oﬂabn),

with a, b, n > 1. Then the form ggo% + q.z02 + g.o2 is nonnegatively estimable if and only
if go Z qus/n = qp/(an) = 0. Typical details for the last example are as follows; cf.
R. D. Anderson et al. (1979). Let J, = n™"J, be the projector onto the equiangular line in
IR", and define M, = I, —J,. Using R, = J, @ M, ®J,,, Ro = M, ® M, ®J, , and Rs = I,
® I, ® M,, one obtains M =1, ® My, = MVsM = R, + Ry + R3, MV, M = nR; + nR;, and
MV, M = anR,;. From this the triangular matrix T is constructed, and 7 'q € IR leads to
the desired conclusion. For further examples see LaMotte (1973), page 729, and Pukelsheim
(1979), page 80.

A reduction which is useful when the coefficient vector ¢ of a form q’c” has many zeroes
is implied by the following.

LEMMA 3. Assume a variance component model VCM in which a nonnegative form
q’c%, g € R, is to be estimated. Define V, to be the sum of those matrices V, such that q,
is zero, and let @ be the projector M — MVoM (MV,M)*. Then every unbiased nonnegative
definite quadratic estimate Y'AY for q’o® satisfies Y'AY = (QY)'A(QY).
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Proor. Write MVoM = CC’. Unbiasedness implies X’AX = 0, and trace C'AC = 0,
and nonnegative definiteness yields AX = 0, and AC = 0. Since @ = I, — X(X'X)"X’ —
C(C’'C)~C’, one obtains A = QAQ. O

It is easily verified that if ¢; = 0 then @QMV,MQ = 0, and that @X = 0. Hence one may
restrict attention to the @-reduced model QY ~ (0;3 14,50y 0; @V,Q), rather than work in
the ‘larger’ residual model MY ~ (0; ¥, of MV,;M). In fact, the idea of a transition from the
original model VCM to a suitably reduced model extends to arbitrary nonnegatively
estimable forms ¢’o?, emphasizing that one has to pay with a certain number of degrees of
freedom when one imposes the non-negativity constraint for unbiased estimation of g’s?.

In case of a single variance component o? the reduction suggested by Lemma 3 leads to
a necessary and sufficient condition for nonnegative estimability. Here Vo is ¥, V;, and
the @-reduced model QY ~ (0; 6?QV;Q) only involves the parameter ¢?. Thus ¢? is
nonnegatively estimable if and only if QV:Q # 0. This case is also discussed by LaMotte
(1973), Kleffe (1977), page 219, Pukelsheim (1977), page 330.

As a final example, consider the model with a common mean and heteroscedastic
variances, i.e., Y ~ (L,; Y o2 V;), where V, = Blockdiag[l,,:0:---:0], - - -, V, = Blockdiag
[0:...:I,], and n = ¥ n;. The estimate5? (MINQUE given I,,) exists if n = 3 and n; = 1,
but may attain negative values; see J. N. K. Rao and Subrahmaniam (1971), page 973. In
fact, o is nonnegatively estimable if and only if n, > 1, and the natural estimator in the @-
reduced model turns out to be the sample variance of the ith group of observations. This
is also observed by P.S.R.S. Rao and Chaubey (1978), page 773, and Kleffe and Zollner
(1978), page 29. These authors admit an arbitrary design matrix X, but make use—as does
Balestra (1973), page 26—of the condition ) V, = I, which holds in the present model.
Their arguments parallel our Lemma 3: first reduce to PY ~ (PXp;¢? PV;P), with P =
I, — V,, and then reduce to NPY ~ (0; 6’ NPV,;PN), with N = P — PX(PX)*.
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