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1. The Moment Representation of Linear Models

For many purposes of estimation the essentials of a Linear modet
are reflected best by its moment representation
k

Y~ (L mhx».

1A
L tsVis)s (LM)
1=1 j=
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Here it is implicitly understood that

- n real observations &d~...~x form the random z:|<mnn0n Y,

- the k real R" -vectors XyreeorXy, and the £ real symmetric
n X n matrices <_....-<n are given and fixed,

- and Y has mean vector anxp and dispersion matrix Et.V

Greek characters indicate unknown quantities, i.e., 3

- B = Am_.....mxv. is the mean parameter,

-1 = Aad~...~anv. is the dispersion parameter, and

- 08 = (B,7) is the full parameter of the linear model (LM).

For B the natural parameter set then is the unrestricted space xx~

and for v it is the set m of those zn|<mnonm t for which Lt.v,

is non-negative definite. It is assumed that at least one OONUWI

nation mnu<u is positive definite. As usual, X is the n x k matrix

with columns x_‘...~xx.
Certainly a noamal finearn model Y ~ z (XB; L1, < ) satisfies (LM),

and there are more interesting mxuauwmm. mmmw< & Nwmw»:m (1971,

P- 693) point out that the "mixed model” of the analysis of

variance falls under (LM), including "fixed effect models" and

"random effect models". It also covers the model where Y equals

X + Zu + e, with a zero-mean random part Zu + e. Harville (1977,

p- 321) stresses the applicability of this "general linear model"

to the analysis of variance, multivariate statistical analysis, time

series, and factor analysis, and those remarks then also pertain

to (LM). In the multivariate case the grand observation vector Y

has a particular structure in that it is built up from p-variate

subvectors <d~....<z“ for examples see Kleffe (1977, p. 214), Searle

(1978, p. 183).
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In a linear model (LM) interest often concentrates on a func-
tion c'B or the mean parameter B, where the coefficient =x|<00n0n
c is specified in advance. With the distributional assumptions
underlying (LM) this interest is unambigquous only if the function
c'B is identifiable. This means that when the expected value of the
observations Y with respect to some fixed underlying distribution
may be represented as both mm»x~ and mvpxn with two vectors
a = Am_~...~mxv. and b = AU_.....UWV. in zx. then the values c'a
and c'b also coincide. Otherwise Y might be governed by some distri-
bution to which there corresponds no unique value of the function
c'f, and this function would be meaningless in the assumed model.

In the same sense a function q't of the dispersion paramcter T
is identifiable if Is.V. = It .V. implies gq's = q't for all vectors

J J ] —

J
s = Am_~...~mnv. and t And~....npv. in G. The following lemma

gives a characterization of identifiable functions c'B and q't.

LEMMA 1. For a function c'B the following three statements are
equivabent:

(1) c'B 48 identifiable in the Linear modef (LM).

(2) ggmﬁisgugﬁchngm>§>Qﬁm%pa: i=1,...,k

one has cy = a'x,.
(3) c Lies 4in the nange of the k x k Gramian matrix X'X = (( xu.xu ).
For a function q't the following three statements are equivalent:
(4) q't  4s ddentifiable in the Linear modef (LM) .
(5) There exists some neal n x n  matrix A such that fon all j =
1,...,%2 one has nw = trace >.<g.
(6) q fdies in the nange of the £ x & Gramian matrix S = (( trace <~<u:.

PROOF. For c¢'B, identifiability means that the nullspace of X
be contained in the nullspace of c'. Equivalently, c must be a
member of the range of X', or of the range of X'X. For q't

identifiability reduces to the same argument. Namely, assume Mmu<u
is 0 for some vector a in zn. Since the interior of G is non-empty
there exist s, t € G such that a = s - t. Hence Is.V. = Lt.v., and

J ] J ]
q'a = q's - q't = 0. Now follow the argument for c'R. /



2. Classes of Estimatons

In the general theory any measurable function a(Y) from the
sample space rR" into the range of the function c'B is taken to be
an estimate for c'p. However, linear model theory faces the
following alternative before a manageable theory is possible:
Either attention is restricted to a UanMWmH< defined class of
distributions, this is done in the normal linear model; or the
class of all estimates is drastically restricted to some subclass
which admits an investigation solely on the groundsof the moment
assumptions (LM). It is this second courseof action which is now
adopted: Only estimates are considered which are flinear functions
of the observations, i.e., which can be written as a'Y for some

n
R -vector a.

This nrestriction by Linearity has its analogue when a function

q'tof the dispersion parameter 1 is to be estimated: Only estimates

are considered which are quadratic functions of the observations,
i.e., which can be written as Y'AY for some real symmetric n x n
matrix A. For the image 9'(G) of the natural parameter set G under
a non-zero function q't one faces two possibilities: Either it is
the closed half-ray R, = [0, +=[0of all non-negative numbers, then
the function gq't will be said to be non-negative on G; or it is

the full real line R. For a function q't which is non-negative

on G any quadratic estimate Y'Ay must have a non-negative definite
matrix A.

One often wishes to treat mean parameter B and dispersion
parameter 1 separately in two stages. Such a separation is the
effect of a aestrniction by translation-invariance, i.e., arestriction
to those estimates for q't that remain unchanged whenever y is
translated into y + Xb. If M is defined to be the symmetric
idempotent matrix H= - xx+. then the statistic My is maximal
invariant with respect to this translation group {(y + y + Xb|
b€ zxu (Seely 1971, p. 718). Since the zero-mean statistic

Z = MY coincides with the residual vector from a simple least

squares fit for XB, the model it generates will be called the
nesidual model:

Nuz_mz:: fu.zf.,: . M=1 -x(x'x)7x" . (RM)

Hlere the soi remaining parameter is 1, and its new natural
parameter set in this model (RM) is the set mm of those an
vectors t for which mnuz<uz is non-negative Q@Mu:unm. A priori,
this parameter set mm — which is larger than G — does not
have any interpretation in the original model (LM), but it turns
out to be closely related to the existence of translation-

invariant quadratic estimates for gq't which are also unbiased.

This nestrniction by unbiasedness, both for functions c'B of the
mean parameter B and for m::ﬂn»OIm q'tof the dispersion parameter
T, is a commonly accepted constraint, particularly in the analysis
of variance. Note that unbiasedness and non-negative definiteness
of a quadratic estimate Y'AY for g't automatically entail trans-
lation-invariance (Balestra 1973, p. 25). In general, however,
the requirement of translation - invariance means a genuine
restriction. Given two functions c'B and q't, the classes of
estimates to be investigated now are formed by
- all unbiased linear estimatesfor c'B, and
- all unbiased translation-invariant quadratic estimates for q'rt.
A natural first question is when estimates with these properties

exist.

THEOREM 1. Fon a functionc'g the gollowing two statements are
equivalent:

(1) There exists an unbiased Linean estimate fon c'B.

(2) c'B 4is identifiable .in the oniginal model (LM) .

Forn a function q'1which is not non-negativeon G the following two
statements are equivalent:
(3) There exists an unb.iased thansfation-invariant quadratic estimate
for g't.
(4) q'v 4s identifiable in the residual model (RM) .

Forn a gunction q't which is non-negative on G the §o€lowing two
Statements are equivalent: " at
(5) There exists an unbiased transtation-invariant non-negative &amN&&hm\
quadratic estimate fon q'Tt. , 3
(6) q't is non-negative even on .o.m. i.e., g't 2 0 for all te mm
PROOF. The first two equivalences are standard, the last two
are proved in Pukelsheim (1979b) . / .




A
3. The Dispension Mean Cornespondence in the Residual Modet

Once a certain class of estimates is seen to be non-empty
a natural second question is to ask for optimal estimates in this
class. A less problematic situation for the mean parameter B arises
in the Aditken modet

Y ~ (xB; o?v) . (AM)

This is the special case £ = 1 of the general linear model (LM),
but suffices to illustrate the relevant arguments needed below. The
central result is the following well known Gauss-Markov type
theorem, for more details and related versions see the discussion
by Zyskind (1975, pp. 653-661).

THEOREM 2. Assume an Aitken modef Y ~ (XB; o2v).
(a) The weighted Least squanes estimate c' (x'v*x)*x'v'y is unbiased
for c'B and of minimal variance among all unbiased Linear estimates fon c'B,
w.ﬁo..... E xx|<nn\9g c, 4§ and only if rank X = r&i range X < range V.
Q ﬁ (b) The s.imple Least squares estimate c'x*y is unbiased for c'B and
w “minimal variance among all unbiased Linean estimates fon c'B, for all
|=~PQ§ ‘c, if and onty 4f rank X = k and range VX c range X. /

The mmavpmmw example is provided by the classical linear model
Y ~ (XB; auH:v. However, Theorem 2 also covers estimation of
functions q't of the dispersion parameter 1. To this end recall the
following. For some R™-vector a and some RP-vector b their
Kronecker product a @ b is the z:ﬂl<mnnon (a U 17 drm_...- m_v

’

P
a 7_....~ a v )'. The same entries a v ooc:u _: the matrix ab',

and the nnmswhnpo: between both nkvmm 0m arrangement is easily
handled by means of the transformation vec ab' = a @ b. More
general, vec A is taken to be the column vector obtained from
writing the rows of the matrix A one behind the other and
transposing the resulting row vector. The identity trace A'B =
(vec A)'(vec B) then is immediate. This formalism applies to
translation-invariant quadratic estimates Z'AZ in the residual
model (RM). Abbreviating vec A by a, the estimate Z'AZ may be
rewritten as a'(z @ Z) . Moreover, the random variable Z ® Z which
occurs here has expectation It, vec MV.M.

j J

Assuming the dispersion matrix of Z ® Z to be ﬂz onc arrives
at the denived modet

Z ® Z ~ (Et, vec MV_.M; mzv s (DM)

J 3

The dispersion parameter 1 of the original model (LM) now appears
as the mean parameter in the derived model (DM), and estimates for
q'T which are quadratic functions of the residual statistic 2
appear as linear functions of the derived random variable 2 @ Z.
Hence Theorem 2 applies and yields a full battery of estimates for
q't, depending on the choice of the fourth moment matrix mz.

An example may illustrate this approach: In an Aitken model
Y ~ (XB; 0?V) the quadratic mOHB.<.A<+1<+xax.<+xv+x.<+w<\~=|nm=x X)
is the unbiased translation-invariant non-negative definite
quadratic estimate for o? which under normality is of minimal
variance in its class, provided the range of V contains the range
of X. To see this note that under normality the dispersion matrix
wz may be written as 20"MVM ® MVM. In Theorem 2(a) the first
condition rank vec MVM = 1 translates into MVM 4 0 and this is
satisfied when n > rank X. The second condition vec MVM €
range MVM @ MVM holds true because of vec MVM = (MVM @ MVM)
{vec Az<zv+u. Thus the weighted least squares estimate for ¢? in
the derived model has the desired optimality properties, and a
short calculation shows it to be N.AZ<ZV+N\—nnmnm .z<zv+z<zu.
Using the assumption range X < range V this is the quadratic form

given above.

More detailed formulae are given in Pukelsheim (1976). The
fourth moment matrix mz takes on a special form when certain
assumptions are made concerning the coefficients of skewness and
kurtosis, see the discussion of Hsu's modef in Pukelsheim (1977).
In fact, the idea of derived models also extends to estimating
these third and fourth moment coefficients, as demonstrated in
Pukelsheim (1979a). Seely (1970) first elaborated that the problems
of mean and dispersion estimation share the same structure. The
common denominator is found to be regression analysis in finite
dimensional linear spaces with inner product; points may then be
realized as column vectors for mean estimation, or as symmetric

matrices for dispersion estimation.



Kronecker products appear in both multivariate analysis (Eaton
1970) and in the dispersion mean correspondence above, but this
happens for two quite different reasons. By its intrinsic nature
the Kronecker product provides a correspondence between bilinear
— and hence quadratic — forms and linear forms (Lang 1966, pp.
221-227). only by mere coincidence it can also be used to simplify
direct sums as they appear in multivariate analysis, for instance
writing a block diagonal matrix Diag(V:...:V) as Hz ® V.

The dispersion mean correspondence may also serve to classify
methods of dispersion estimation analoguously to those methods
known for mean estimation: C.R. Rao's (1973, p. 303) MINQUE theory
corresponds to simple least squares estimation in the derived
model (DM). Weighted MINQUE, or MINQUE given V in the terminology
of Kleffe (1977, p. 223) is weighted least squares estimation with
the fourth moment matrix taken to be V ® V, hence under normality
this coincides with minimum variance estimation (MIVQUE) when the
true dispersion matrix is V.

4. A Comresponding Look at Henderson's Methods
0f Estimating Variance Components

Motivated by applied problems statistical practitioners have !
preceded or initiated most of the development which has been
achieved on a more formal level. For example, Kelm (1978) and
Welsch (1978) noted that a procedure for estimating variance
components described in a 1907 textbook on geodesic measurements
(Helmert 1907, pp. 358-363) coincides, in fact, with the MINQUE |
method introduced and formalized by C.R. Rao (1970) more than half
a century later. Similarly methods I, II, III of Henderson (1953)
have proved useful for variance component estimation long before
their formal properties were explored in detail. R.D. Anderson

(1978) meticulously recalls the history of variance component
estimation.

Employing the dispersion mean correspondence one may
translate the rationale underlying Henderson's methods into the
terminology of mean estimation, thus gaining insight into their
intrinsic properties.

As an abbreviation introduce the n? x £ matrix c: with column
vectors vec z<uz. Then in the derived model Z ® Z ~ Aczan wzv
Searle's (1968, p. 749) summary of Henderson's methods reads as
follows: ALL of llendenson's three methods involve (i) calculating some %
Linean forms L'(2z ® Z), with an n? x & matnix L, say, (i) obtaining their-
expectations L'Dy1, and (id) s0bving Linean equations in the unknown variance -
components, dernived from equating these Linear fonms to their expected values,
L.e., s0Lving

Lo, =Lz ez . [+
Seely (1970, p. 1744) points out that there is a question of
whether this equation is consistent and whether its solution(s)
yleld unbiased estimates for 1. In any case an approximate solution
is » = Ar.czv+r.AN ® Z), and this is an unbiased estimate for t if
and only if Ar.czv+r.c=a = 1, or equivalently, (1) the 2 x & matrix
r.cz is non-singular. In this case, equation [*) is consistent and
has the unique solution % = Ah.czvndr.ﬂm ® 2).

As mentioned by H.O. Hartley in the discussion of Searle's
(1968, p. 780) paper, there is a considerable freedom which choice
of the matrix L is found to be appropriate. Guided by the general
theory it certainly seems advantageous to convert [*)] into a

normal equation. Hence for some non-negative definite matrix V let

L = (Mvd ® mvM) 'p

M
be a particular choice. Then r.cz becomes the matrix mAz<Zv+ with
(1,3j)-th entry trace A3<zv+<pﬁz<3u+<u. and L'(Z ® 2Z) consists of
the £ quadratic forms <.Az<3v+<uﬂz<zv+<. The o:mwnho: of whether )
the estimate » thus obtained does have any optimality vnovmﬁﬂhmw.m%
answered by Theorem 2. Still demanding (1), i.e., rank mAz<va u\nn.

the first condition in part (a) is satisfied. The second condition
reads range cz < range MVM ® MVM, and follows if (2a) range M c
Hm:mm V, as in Kleffe (1977, p. 223), or if (2b) all matrices V.

J

are non-negative definite and V equals Mnu<u with all coefficients
J

nu being positive, or if (2c) range MV.M < range MVM for all j =
1,...,%2. Under conditions (1), and (2a) or (2b) or (2c), T is under

A

normality of minimum variance when the true dispersion matrix is v
(Kleffe 1977, p. 223).

<&
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5. Quadnratic Subspaces of Symmetric Matrices _ <.z<_3< E - ...,..\ -
£ = (trace z<pz<u )~ . -

€ R} of Y'MV MY

The estimation space range X = { Ib X4 | byse.uiby %

the original model (LM) has its analogue in the derived model (DM),
namely { vec mn.z<u= | tyr.-.st; € R }. For what follows it is

J
preferable to write this latter set as vec mz~ where

will be called the standard estimate for tT. This ? is the simple

least squares estimate in the residual model (RM) , note the
-1

resemblance with the simple least squares estimate (X'X) 'X'Y for
mz =L B ﬁuz<uz _ nd~...~nn SR} B in the original model (LM). B
comprises all linear combinations of the matrices z<_z....~=<nz. When normality prevails a quadratic subspace condition is even

Under normality the fourth moment matrix Fy may be written as
Ngnauz<u3. ® amau=<u3.. Whereas Theorem 2 initially applied to two
separate matrices X and V in the Aitken model Y ~ (XB; o?v), it
now quite differently sets the matrix Mauz<uz inte xelation with complete sufficient statistic. Here the maximum likelihood estimate
itself. The notions and ideas for a comprehensive discussion of for T also coincides with ? if there are at least n - rank X

this situation are due to Seely (1971): mz is said to be a

quadratic subspace of symmetric matrices if B € B, implies B? € By ;
In the analysis of variance models one w:<mnwm0~< finds nrmn one
combination nnu<u yields the identity matrix I - thus justifying

the assumption M € m Theorem 2(b) now has an mmm< corollary on

uniformly minimum <mn~m:om unbiased (UMVU) estimation of the

dispersion parameter .

more powerful than the above indicates. Seely (1971) proved that
the class of normal distributions z (0; m~u3< .M) then is an
exponential family, and that the mmnwamnm o is a function of a

replicates, see Pukelsheim & Styan (1979).

In summary, in a normal linear model with a quadratic subspace
mz the standard estimate » for 1 is both the uniformly minimum
variance unbiased (UMVU) translation-invariant estimate, thus
coinciding with the estimate obtained from MINQUE, MIVQUE, or ANOVA
methods, and the maximum likelihood translation-invariant (REML)

s W estimate. It also respects the inherent constraint on t and maps
COROLLARY 2.1. For a derived modef (DM) assume that the & x £ matrix =

into the natural parameter set nz as outlined in the next section.
Sy = (€ trace z<»=<u ) 45 non-singulan and that M is a memben of m Then
there exists an unbiased translation-invariant quadnatic ~akx§nAa gor q't
which under nonmality is 0f uniformly minimal variance, fon alf R -vectons q, 4§
and only if m forms a quadratic subspace of symmetric matrices. In this case

_ -1
the nequined Nuhssho i8 Y Am>uz<uzv<~ with A = Sy 9 - containing mz. see Searle & H.V. Henderson (1979). The joint

treatment of both mean and dispersion parameters becomes possible
in a 4pecial modef (SM), i.e., in a linear model (LM) in which the
set B = { nnu j | tyr...,t, € R} forms a guadratic subspace of

The condition M € mz in Corollary 2.1 may be removed as in
Drygas (1977). When mz is not a quadratic subspace itself it still
may be advantageous to study the smallest quadratic subspace

PROOF. The estimate mentioned last has the minimum variance
property in case the true dispersion matrix of Y is I R by Theorem
2 part (a). By vaﬂ (b) this estimate is of ::»m0nau< minimum
variance if and only if for all non-negative definite matrices A
in m and for all B in w one has ABA € w This is equivalent to

m Ump:a @ a:manmnun mcvmvmnm (Se€ly doq_. Lemma 1465 200K, f numbers of observations satisfies these conditions, examples are

symmetric matrices, and range VX < range X for all non-negative
definite matrices V in B; for details see the work of Seely (1971).

As a rule of thumb any analysis of variance model with balanced

given in Pukelsheim (1979b). Also many models from multivariate
A compact representation of the estimate of Corollary 2.1 is

A analysis are special models as just defined.
'T where the vector statistic

q
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6. Non-negativity Constraints

No method that exclusively relies on linear and multilinear
algebra can adequately reflect the convex constraint that comes

with the natural parameter nz.
dispersion matrix does turn out to again be non-negative definite

Nevertheless the estimated

provided mz forms a quadratic subspace of symmetric matrices and Tt
is estimated by its standard estimate %. For with this estimate one
has vec M».zc M =p.pp. " vec MYY'M, where the n? x £ matrix D has

35 MM M

columns vec 3<uz. This shows the estimated dispersion matrix

n»uz<u= to be nothing but the projection of the sample dispersion
matrix MYY'M onto the subspace mz~ and projections onto quadratic
subspaces preserve non-negative definiteness (Pukelsheim 1979b,

proof of Theorem 2).

Proper variance component estimation slightly changes the
assumptions of a linear model (LM). Again using a moment
representation a variance component model is given by

<¢:§.. ZWJ, »all V; non-negative definite , (vCM)

k

with parameter sets R" for B8, and the non-negative orthant zn for

T = AQM....‘QMV.. Unbiased non-negative definite quadratic '
estimation of a single variance component aw was first investigated
by LaMotte (1973), a discussion for general functions q't is given
in Pukelsheim (1979b). The results are most constructive again if
wz forms a quadratic subspace of symmetric matrices. Then the same
alternative on hon-negative estimability emerges regardless of whether
q't is estimated in a linear model (LM) or in a variance component
model (VCM): either the standard estimate a.» is unbiased and non-
negative, or the concepts of unbiasedness and non-negative
definiteness are incompatible.

As an example, take a 2-way nested classification random model

<»u~ = u + a, + mpu + m»un. Let .: be the z::<mon0n consisting of
n

one's only, and define J =11". This gives the representation

nn
Y ~ (1 ;o2 1 2 2
( abn" % a ® QU ® Q: i qm Hm o HU . u: * om Hm e HU e sz

with a, b, n > 1. Then for a function q,0% + cmem + qy0)  there

exists an unbiased non-negative definite quadratic estimate if and
only if 0 s a_\AU:V $49,/n s 4y (Pukelsheim 1979b).

81

7. Open Problems

1. Is it possible to bring Henderson's methods into normal
equation form [*] as outlined in Section 4? 1In other words: do
there exist matrices <: such that the 2% quadratic forms that serve
as a starting point for Henderson's method h collectively give the
matrix L = FA<:V displayed in mmﬁﬁ»os 4, for h = 1, 11, III? This

would ensure local minimum variance properties of these estimates.

2. The restricted maximum likelihood estimate for 1 always
solves the likelihood equation (T.W. Anderson 1970, p. 5). Are
there examples where the likelihood equation has more than one
solution? This cannot happen when mz forms a quadratic subspace of

symmetric matrices (Pukelsheim & Styan 1979).

3. How should one decide the contest between unbiasedness and

non-negative definiteness?

4. Which procedures result when with the dispersion mean
correspondence biased (Ridge- and Stein-type) estimation of n:n

mean is translated to dispersion estimation?

5. Are there more sensible loss functions for variance
component estimation than squared error loss? To illustrate its
deficlencies suppose that with the same squared error loss a true
set of variance components (o?,..., omv. is (i) overestimated to be '
Ac“ + m.....am + €)', or (ii1) underestimated to be Aoﬁ - Eyee.,

02 - €)'. The statistician will then conclude that the data contain

AMV more, or (ii) less variability than is actually true, and
advice the experimenter to be (i) too cautious, or (ii) too
trustful. Squared error weighs both reactions with the same loss
2e?, although, in general, these decisions will have drastically
different consequences: to be too cautious is inefficient, to be

too trustful is dangerous.
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