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Summary. Estimation is considered in a model where both the mean vector and the dispersion
matrix have linear decompositions. It is shown that after an invariance reduction with respect
to mean translation, MINQUE provides a nonnegative definite estimate of the dispersion matrix,
when the decomposing matrices span a quadratic subspace of symmetric matrices. With normality,
MINQUE is seen to equal the restricted maximum likelihood estimate and to be of uniformly mini-
mum variance.

1. Introduction. Consider independent and identically distributed random R”-

q p

-vectors Y,, o=1, ..., N, with common mean vector _}_ b, x, and common disper-
k n=1

sion matrix _\_; t. V., where interest concentrates on estimating the vector t:=

k=1

=(1,, ..., t;)’ of dispersion coefficients. Various procedures have been put forward
and discussed in the literature: (i) minimum norm unbiased quadratic invariant
estimation (MINQUE, C.R. Rao [8, p. 302]), and, under normality, (ii) uniform
minimum variance unbiased invariant estimation (UMVU, Seely [9]), and (iii)
restricted (by invariance) maximum likelihood estimation (REML, Corbeil, Searle
[2]). In this paper invariance is to be understood with respect to the group of all
mean translations {y—y-+2b; x;|(b;, ..., b,) € Rrl, a maximal invariant statistic
being MY where M projects orthogonally onto the orthogonal complement of
the space spanned by X, ..., X,; hence reduction by invariance yields the residual
vectors MY, with mean 0 and dispersion matrix 2t MV, M.

Our main result may be roughly summarized as follows: If estimates according
to each of the three procedures above exist, then they coincide, and the common
estimate t yields a nonnegative definite estimate 27. MV, M of the dispersion matrix
in the invariance reduced model. This holds true for any finite sample size N>v:=
=rank M, in contrast to asymptotic results on consistency as N — oo, cf. Anderson[l1].

In Section 2. the invariance reduced model is discussed in a normal setting,
and Section 3 is concerned with the linear model situation.
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The vital assumption is the condition of Seely [9] that MV, M, ..,MV, M
span a k-dimensional quadratic subspace % of symmetric 72 > # matrices. The subspace
# is quadratic if and only if A? € Z whenever A e %, ie., 4 is closed under the
multiplication A © B:=%(AB+BA). Jensen [4] points out that the latter property
makes # into a k-dimensional special Jordan algebra, and we shall adopt this more
informative terminology. For a discussion with no initial invariance reduction
see Gnot, Klonecki, Zmyslony [3].

2. The Normal Model. We will use the isomorphism vec that maps a matrix
into a vector by ordering its entries lexicographically, see Pukelsheim [7].

THEOREM 1. Consider independent and identically normally distributed random
RY-wvectors Z, with common mean 0 and common dispersion matrix Xt, W,, where
N=v. Assume that the k decomposing matrices W, span a k-dimensional special
Jordan algebra 7. Define G =R¥ to be the region of those values t of the dispersion
parameter such that Xt, W, is positive definite, and assume G#@. Then:

(@)  The maximum likelihood estimator for te G is almost surely equal to the
uniform minimum variance unbiased estimator t:=(D'D)~ 1D’ vec S, where D:=
=[vec W,:...:vec W,], and S:=XZ, Z./N.

(b)y  The estimated dispersion matrix W::Ef,\. W, is nonnegative definite; in
Sact, if the sample dispersion matrix S is positive definite, so is W.

Proof. (a) Since G is open and connected it is a region, and its boundary
&G consists of those te R* such that X7, W, is nonnegative definite and singular.
The sample dispersion matrix S is almost surely positive definite. If t tends to G,
or [t|| tends to oo, the likelihood function L tends to zero [1,p. 5]. Since L is positive
in G there exists a maximum in G, and no maximum lies on the boundary ¢G. Hence
the maximum likelihood estimate is a solution of the likelihood equations

(1) D'F !Dt=D'F~!vecS,
where the matrix of fourth moments
(2) F=F(t):=(Z7,W,) @ (Zi, W,).

If ¥ in (1) is put equal to F (t;) for some given t, € G, then (1) is a set of weighted
normal equations, cf. [7, p. 628], and hence yields a minimum variance unbiased
estimator for the vector parameter t. Since the matrices W, span a special Jordan
algebra, there exists an almost surely unique wniform minimum variance unbiased
invariant estimator which does not depend on the choice of t, € G. Thus

3 t=(D'D)"'D’ vecS,

since G#Q implies the existence of a nonsingular matrix Be 4, and so B~ 'e#
and I,=BoB~'e#; the matrix F in(l) may, therefore, be set equal to I.=1,®1L,.

(b) As a linear operator on the space of symmetric matrices, t is surjective
and hence open, and so if for some positive definite matrix S, the value ¢ (So)¢G,
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the same is true for an open neighbourhood of Sy, i.e., for a set of positive Lebesgue
measure. This contradicts part (a) that t maps into G almost surely. For a singular
sample dispersion matrix S, consider the limit S+¢I, as ¢ tends to zero. Q.E.D.

Part (a) may also be obtained from a reparametrization by 6=8(t), where the
bijection 6 from G onto G solves X0, (t) W,=(Xt,W,)~!, as introduced by Seely
[9, p. 715]. In this case one obtains an exponential family in the vector parameter 0
and standard theory applies, cf. Anderson [1]. A theorem proved by Mikeliinen,
Schmidt, Styan [6] may be used to obtain uniqueness of the solution to the likeli-
hood equations (1).

3. The Multivariate Lincar Model. We now return to the linear, but not ne-
cessarily normal, model discussed in Section 1.

THEOREM 2. Consider independent and identically distributed random R"-vectors
Y, a=1, .., N, with common mean vector Xb,x, and common dispersion matrix
21, Vi, where N>v=rank M. Assume that the k matrices MV, M span a k-dimen-
sional special Jordan algebra % that contains M. Let Dy: =[vec MV, M: ...
....vec MV, M]. Then the MINQUE

(4) t=(Dy; D)~ ' Dy;-vec S

Sor t yields a nonnegative definite estimate X7, MV M of the invariance reduced
dispersion matrix, this estimate being of rank v if S:=XMY,(MY,)'/N is of rank v.

Proof. It is easily checked that t is the MINQUE in the enlarged model
N Y\ M]' ~(0, 21, Iy®@ MV, M). The rest will be proved by reference to
Theorem 1. Choose an nxv full rank v factor Q of M, i.e., M=QQ’ and Q' Q=1,;
then Q'Y is another maximal invariant statistic [5, p. 707]. For the sole 1eason of
proof, add a normality assumption. Then Theorem 1 is applicable to Z,: =Q'Y,,
and yields the same t as in (4); and the results on 27, Q' V, Q imply the assertions
on X{. MV, M. QE. D}

If a normality assumption is added to Theorem 2, then using Theorem 1, we obtain
the following:

COROLLARY. If the common distribution of Y,, ..., Yy is normal, then t is the
UMVU and REML estimate of t, as well as the MINQUE.

Examples may be fouad in Corbeil and Searle [2]. In each one of their four
cases a special Jordan algebra is present: equality of MINQUE (i.e., ANOVA
estimators) and REML is implied by the Corollary and need not be checked explicitly,
nor need the likelihood equations be solved iteratively.

This paper was presented at the Instytut Matematyczny PAN, Wroctaw, by the
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@. MNykensueiim, 1. IT. X. Croian, HeoTpunareiasuas onpeae/ieHHOCTh OLEHHBAHHS JMCNePCHOHHOMH
MaTpHIbI B MHOIOMEpPHOH JIMHEHHOH MOIe)H

Conepxanne. B paboTe paccMaTpHBaeTCsi OLEHKA B MOJIENH, T/e CPEITHUIl BEKTOP M AUCHEPCHOH-
Has MaTpuua o6/anaroT JIMHeHHBIMH pa3noxkeHWsiMA. I10Ka3aHO, ¥TO mOCIE MHBapHAHTHOCTH
PEAYKUMH IO OTHOLICHHIO K CpenHeMy nepexocy, MINQUE naér HeoTpuMUATENBHYIO ONpe/eiieH-
HYIO OLCHKY IHUCIEPCHOHHOM MATPHIbI, KOIJa Pa3sIoKUMble MATPHLBI OXBATHIBAIOT KBAAPATHDIE
NOAMPOCTPAHCTBA CAMMETPHYHBIX MaTpull. ITo mopmanbaocTH, MINQUE cumraercs PaBHBIM
OTPaHMYCHHOMY HAMOOJIbIIEMY TNPABIONONOGHIO OLEHKH M €CTh PaBHOMEPHBIM MHHHUMYMOM
JIMCTIEPCHA.



