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ABSTRACT 

Equality is shown of the g-inverse and Moore-Penrose  

inverse representation of the BLUE in the general linear  

model. The proof is based on a matrix identity which allows  

also to establish a functional relationship between the BLUE  

and Ridge-type estimates. 

 

1. INTRODUCTION 

The present communication focuses on some computa- 

tional properties of the matrices that appear in BLUE and  

Ridge-type estimation in linear model theory. In Section 3  

we shortly define what now we loosely call Ridge-type esti- 

mates, for its statistical import, however, the reader is 

referred to Hoerl & Kennard (1970), Rao (1973, p.306), or  

Rolph (1976), the latter including many additional refer-  
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ences. Procedures for mean estimation are also useful for  

the estimation of variance components, see Pukelsheim (1976). 

Consider the general linear model 

𝔈Y = Xb,   𝔇 Y = σ2V2,                  (1) 

where  Y  is an ℝn-valued random vector,  X  is a known real- 

n x p matrix, and  V2  is a known dispersion matrix written  

as the square of its unique nonnegative definite symmetric 

square root V. Interest concentrates on linear estimators  

b̂Y  for the vector parameter  b, and on appropriate justifi- 

cations which p x n matrix  b̂  that is determining the estima- 

tor is to be chosen. 

Section 2 deals with the g-inverse and the Moore-Penrose 

inverse representation of the BLUE. The class of all those  

matrices  b̂  leading to BLUEs  q'b̂Y  for all estimable linear 

forms  q'b,  q∈ℝp, has been given two different representa- 

tions by Albert (1973, p.184): 

X+(I — V(MV)+) + Z(M — MV(MV)+),   M=I—XX+,       (2) 

and by Mitra & Moore (1973, p.141): 

(X'(V2 + XX')—X)—X'(V2 + XX')—.             (3) 

The multiplicity is generated in (2) by the arbitrariness of 

the p x n matrix Z, and in (3) by the choice of the g-inver- 

ses. Mitra & Moore (1973, p.142) proved that 

B := X+(I — V(MV)+)                   (4) 

is in the class (3); Proposition 1 below states more exactly  

that B is equal to the Moore-Penrose version in (3). Thus  

the naturally distinguished matrices in (2) and (3) coincide.  
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Section 3 turns to Ridge-type estimates since the term  

X'(V2 + XX')  not only arises in BLUE theory as in (3) but  

is even more important for Ridge-type estimation, see Hoerl & 

Kennard (1970, p.57), Rao (1973, p.306), Rolph (1976, p.794). 

Proposition 2 shows how to compute the BLUE from Ridge-type 

estimates and vice versa; as a corollary we obtain various 

representations for Ridge-type estimates whose derivations  

follow easily from BLUE theory. 

All proofs are collected in Section 4. 

2. EQUALITY OF TWO BLUES 

Proposition 1 proposes an answer to Albert's (1973,  

p.183) "question concerning the relationship between the  

matrices in (2) and (3)": Put Z = 0 in (2) and choose Moore-

Penrose inverses in (3), and the resulting matrices are equal. 

Proposition 1:  B = (X'(V2 + XX')+X)+X'(V2 + XX')+. 

The proof is given in Section 4; its crucial step is  

the following matrix identity which follows from Cline's  

(1965, p.100) inverse for the sum of nonnegative definite 

matrices. 

Lemma:  X'(V2 + XX')+ = (I + BV2B')—1B. 

Since the two terms in (2) are orthogonal with respect 

to the trace inner product of matrices,  B  is the shortest  

matrix in (2) and Proposition 1 has the 

Corollary 1:  (X'(V2 + XX')+X)+X'(V2 + XX')+ is of minimum  

norm in the class (3) with respect to the Euclidean matrix  

norm.  
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In model (1) the variance component σ2 is unknown;  

since, however, in  X+(I — σV(σMV)+)  the  σ  cancels out, 

Proposition 1 gives rise to the further 

Corollary 2:  B = (X'(σ2V2 + XX')+X)+( 2V2 + XX')+ for all  

σ2>0. 

It is obvious from (2) that the BLUE admits a unique 

linear representation if and only if  Z(M — MV(MV)*) = 0  for 

all  Z. But M — MV(MV)+ orthogonally projects onto the inter- 

section of the nullspaces of  X'  and  V2, which is the ortho-  

gonal complement of  range X + range V2, where range means  

column space. Thus we finally get the 

Corollary 3:  B = (X'(V2 + XX')—X')—X'(V2 + XX')— for all  

choices of g-inverses if and only if  V + XX'  is nonsingular.  

In this case (V2 + XX')— = (V2 + XX')—1. 

Corollary 3 rather states that in (3) the versions of  

the g-inverses are not, in general, negligible in order to  

have equality with B. 

While the estimator  q'b̂Y  for  q'b, with   b̂  from (2),  

need not be unbiased for all  q∈ℝp, it is always the  

minimum variance - minimum bias - linear estimator (MV-MB-LE)  

for  q'b, see Rao (1973, p.307). Particularly when unbiased- 

ness is not possible, one is interested in alternative  

estimation procedures. 

3. RIDGE-TYPE ESTIMATES 

In model (1) the mean square error of a linear estima- 

tor  q̂'Y  for  q'b  is  σ2‖Vq̂‖2 + ‖(X'q̂ – q)'b‖2, with maximum 

value  σ2‖Vq̂‖2 + β2‖X'q̂ – q‖2  when the vector parameter  b  
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varies subject to  ‖b‖ ≤ β. Minimizing the maximal mean  

square error on the ball  ‖b‖ ≤ β  thus leads to the problem 

of minimizing 

k‖Vq̂‖2 + ‖X'q̂ – q‖2,  k>0.               (5) 

The resulting estimators are  q'bk*Y,  where the defining 

equality for the p x n matrix  bk*  is, see Rao (1973, p.306), 

bk* ⋅ (kV2 + XX') = X'.                 (6) 

In the present communication we call, per definition,  bk*Y 

Ridge-type estimate for  b  whenever  bk*  solves (6). 

The general solution to (6) is  bk* = X'(kV
2 + XX')—, and 

it follows from (3) that then  (bk*X)
—bk*Y  is the MV-MB-LE  

for  b, irrespective of the value of  k. In particular, if  

bk* = X'(kV
2 + XX')+, then (bk*X)

+bk* = B, by Proposition 1.  

Thus the MV-MB-LE may be computed when a Ridge-type estimate  

is given; Proposition 2 solves the converse problem. 

Proposition 2:  If b̂Y  is a MV-MB-LE for  b, i.e.,  b̂  is 

representable as in (2), and if  k>0, then  (I + kb̂V2b̂')—1b̂Y 

is a Ridge-type estimator. 

The proof follows from the Lemma and is given in Sec-  

tion 4. The functional relationship of b̂ and bk* may be  

used to derive alternative representations for bk*. The  

Aitken estimator  (X'V2+X)+X'V2+Y  is a MV-MB-LE if and only 

if  range X ⊂ range V2, see Zyskind (1975, p.658). The reader 

will then easily verify the 

Corollary 4:  (kI + (X'V2+X)—1X'V2+Y  is a Ridge-type estimate 

if and only if range X c range V2. 
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The simple least squares estimator  X+Y  is a MV-MB-LE if 

and only if  range V2X ⊂ range X, see Zyskind (1975, p.684), 

hence 

Corollary 5:  (I + kX+V2X+')X+Y  is a Ridge-type estimate if  

and only if  range V2X ⊂ range X. 

If  V2 = I  then Corollaries 4 and 5 apply and yield the 

representations (2.1) and (2.3) in Hoerl & Kennard (1970,  

p.57). We are now left with proving the Lemma and Proposi- 

tions 1 and 2. 

4. PROOFS 

First, we prove the Lemma. Inverting the sum  V2 + XX' 

with Cline's formula (1965, p.100) and some computation yield 

X'(V2 + XX')+ = (I - BVKVX+')⋅B ,   K = (I + VB'BV)—1.  (7) 

Now, BVK = (I + BV2B')—1BV,  and  BV2(VM)+ = X+V(I — (MV)+MV)⋅ 

VM(VM)+ = 0.  Hence 

    I — BVK⋅VX+' = I — (I + BV2B')—1BV⋅V⋅(I — (VM)+V + (VM)+V)⋅X+' 

    = I — (I + BV2B')—1(BV2B' + 0 + I — I) 

    = (I + BV2B')—1.                            (8) 

The Lemma is then established by inserting (8) into (7). 

Next, we prove Proposition 1. Clearly, BX = X+X, and 

B=X+XB. Using the Lemma, we obtain 

  (X'(V2 + XX')+X)+X'(V2 + XX')+ 

    = ((I + BV2B')—1BX)+(I + BV2B')—1B 

    = ((I + BV2B')—1X+X)+((I + BV2B')—1X+X)⋅B. 
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Since the ranges of X+X(I + BV2B')—1  and X+X coincide, so  

do their projectors. Thus the last equalities may be contin- 

ued  = X+XB = B, establishing Proposition 1. 

Finally, we prove Proposition 2. The Lemma implies 

  (I + k b̂V2b̂')—1b̂ = (I + k BV2B')—1B + Z(M — MV(MV)+) 

     = X'(k V2 + XX')+ + Z(M — MV(MV)+), 

and postmultiplication with  kV2 + XX'  yields  X', and 

Proposition 2 is established. 
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