EQUALITY OF TWO BLUES AND RIDGE-TYPE ESTIMATES

Friedrich Pukelsheim

Institut für Mathematische Stochastik der Universität
D-7300 Freiburg im Breisgau, Fed. Rep. of Germany

Key Words \& Phrases: Linear model; minimum bias; g-inverse; Moore-Penrose inverse.

ABSTRACT
Equality is shown of the g-inverse and Moore-Penrose inverse representation of the BLUE in the general linear model. The proof is based on a matrix identity which allows also to establish a functional relationship between the BLUE and Ridge-type estimates.

1. INTRODUCTION

The present communication focuses on some computational properties of the matrices that appear in BLUE and Ridge-type estimation in linear model theory. In Section 3 we shortly define what now we loosely call Ridge-type estimates, for its statistical import, however, the reader is referred to Hoerl \& Kennard (1970), Rao (1973, p.306), or Rolph (1976), the latter including many additional refer-
ences. Procedures for mean estimation are also useful for the estimation of variance components, see Pukelsheim (1976). Consider the general linear model

$$
\begin{equation*}
\mathfrak{E} Y=X b, \quad \mathfrak{D} Y=\sigma^{2} V^{2}, \tag{1}
\end{equation*}
$$

where Y is an \mathbb{R}^{n}-valued random vector, X is a known real$\mathrm{n} \times \mathrm{p}$ matrix, and V^{2} is a known dispersion matrix written as the square of its unique nonnegative definite symmetric square root V. Interest concentrates on linear estimators $\hat{b} Y$ for the vector parameter b, and on appropriate justifications which $\mathrm{p} x \mathrm{n}$ matrix \hat{b} that is determining the estimator is to be chosen.

Section 2 deals with the g-inverse and the Moore-Penrose inverse representation of the BLUE. The class of all those matrices \hat{b} leading to BLUEs q' $\mathrm{b} Y$ for all estimable linear forms $q^{\prime} b, q \in \mathbb{R}^{p}$, has been given two different representations by Albert (1973, p.184):

$$
\begin{equation*}
X^{+}\left(I-V(M V)^{+}\right)+Z\left(M-M V(M V)^{+}\right), \quad M=I-X X^{+}, \tag{2}
\end{equation*}
$$

and by Mitra \& Moore (1973, p.141):

$$
\begin{equation*}
\left(X^{\prime}\left(V^{2}+X X^{\prime}\right)^{-} X\right)^{-} X^{\prime}\left(V^{2}+X X^{\prime}\right)^{-} . \tag{3}
\end{equation*}
$$

The multiplicity is generated in (2) by the arbitrariness of the $\mathrm{p} \times \mathrm{n}$ matrix Z , and in (3) by the choice of the g-inverses. Mitra \& Moore (1973, p.142) proved that

$$
\begin{equation*}
\mathrm{B}:=\mathrm{X}^{+}\left(\mathrm{I}-\mathrm{V}(\mathrm{MV})^{+}\right) \tag{4}
\end{equation*}
$$

is in the class (3); Proposition 1 below states more exactly that B is equal to the Moore-Penrose version in (3). Thus the naturally distinguished matrices in (2) and (3) coincide.

Section 3 turns to Ridge-type estimates since the term $X^{\prime}\left(V^{2}+X X '\right)$ not only arises in BLUE theory as in (3) but is even more important for Ridge-type estimation, see Hoerl \& Kennard (1970, p.57), Rao (1973, p.306), Rolph (1976, p.794). Proposition 2 shows how to compute the BLUE from Ridge-type estimates and vice versa; as a corollary we obtain various representations for Ridge-type estimates whose derivations follow easily from BLUE theory.

All proofs are collected in Section 4.

2. EQUALITY OF TWO BLUES

Proposition 1 proposes an answer to Albert's (1973, p.183) "question concerning the relationship between the matrices in (2) and (3)": Put Z = 0 in (2) and choose MoorePenrose inverses in (3), and the resulting matrices are equal. Proposition 1: $B=\left(X^{\prime}\left(V^{2}+X X^{\prime}\right)^{+} X\right)^{+} X^{\prime}\left(V^{2}+X X^{\prime}\right)^{+}$.

The proof is given in Section 4; its crucial step is the following matrix identity which follows from Cline's (1965, p.100) inverse for the sum of nonnegative definite matrices.

Lemma: $\mathrm{X}^{\prime}\left(\mathrm{V}^{2}+\mathrm{XX}\right)^{+}=\left(\mathrm{I}+\mathrm{BV} \mathrm{B}^{\prime}\right)^{-1} \mathrm{~B}$.
Since the two terms in (2) are orthogonal with respect to the trace inner product of matrices, B is the shortest matrix in (2) and Proposition 1 has the

Corollary 1: $\left(X^{\prime}\left(V^{2}+X X^{\prime}\right)^{+} X\right)^{+} X^{\prime}\left(V^{2}+X X^{\prime}\right)^{+}$is of minimum norm in the class (3) with respect to the Euclidean matrix norm.

In model (1) the variance component σ^{2} is unknown; since, however, in $X^{+}\left(\mathrm{I}-\sigma \mathrm{V}(\sigma \mathrm{MV})^{+}\right)$the σ cancels out, Proposition 1 gives rise to the further

Corollary 2: $\mathrm{B}=\left(\mathrm{X}^{\prime}\left(\sigma^{2} V^{2}+X X^{\prime}\right)^{+} X\right)^{+}\left({ }^{2} V^{2}+X X^{\prime}\right)^{+}$for all $\sigma^{2}>0$.

It is obvious from (2) that the BLUE admits a unique linear representation if and only if $Z\left(M-M V(M V)^{*}\right)=0$ for all Z. But $M-\operatorname{MV}(M V)^{+}$orthogonally projects onto the intersection of the nullspaces of X^{\prime} and V^{2}, which is the orthogonal complement of range $X+$ range V^{2}, where range means column space. Thus we finally get the

Corollary 3: $\mathrm{B}=\left(\mathrm{X}^{\prime}\left(\mathrm{V}^{2}+\mathrm{XX}^{\prime}\right)^{-} \mathrm{X}^{\prime}\right)^{-} \mathrm{X}^{\prime}\left(\mathrm{V}^{2}+\mathrm{XX}^{\prime}\right)^{-}$for all choices of g-inverses if and only if $V+X X^{\prime}$ is nonsingular. In this case $\left(V^{2}+X X^{\prime}\right)^{-}=\left(V^{2}+X X^{\prime}\right)^{-1}$.

Corollary 3 rather states that in (3) the versions of the g-inverses are not, in general, negligible in order to have equality with B.

While the estimator q ' $\hat{b} Y$ for q 'b, with \widehat{b} from (2), need not be unbiased for all $q \in \mathbb{R}^{p}$, it is always the minimum variance - minimum bias - linear estimator (MV-MB-LE) for q'b, see Rao (1973, p.307). Particularly when unbiasedness is not possible, one is interested in alternative estimation procedures.

3. RIDGE-TYPE ESTIMATES

In model (1) the mean square error of a linear estimator $\hat{q}^{\prime} Y$ for $q^{\prime} b$ is $\sigma^{2}\|V \hat{q}\|^{2}+\|(X ' \hat{q}-q) ' b\|^{2}$, with maximum value $\sigma^{2}\|V \hat{q}\|^{2}+\beta^{2}\left\|X^{\prime} \hat{q}-q\right\|^{2}$ when the vector parameter b
varies subject to $\|\mathrm{b}\| \leq \beta$. Minimizing the maximal mean square error on the ball $\|b\| \leq \beta$ thus leads to the problem of minimizing

$$
\begin{equation*}
\mathrm{k}\|\mathrm{~V} \hat{\mathrm{a}}\|^{2}+\left\|\mathrm{X}^{\prime} \hat{\mathrm{q}}-\mathrm{q}\right\|^{2}, \quad \mathrm{k}>\theta . \tag{5}
\end{equation*}
$$

The resulting estimators are $q^{\prime} b_{k}{ }^{*} Y$, where the defining equality for the $p \times n$ matrix $b_{k}{ }^{*}$ is, see Rao (1973, p.306),

$$
\begin{equation*}
b_{k}^{*} \cdot\left(k V^{2}+X X^{\prime}\right)=X^{\prime} . \tag{6}
\end{equation*}
$$

In the present communication we call, per definition, $b_{k} * Y$ Ridge-type estimate for b whenever $b_{k}{ }^{*}$ solves (6).

The general solution to (6) is $b_{k}{ }^{*}=X^{\prime}\left(k V^{2}+X X^{\prime}\right)^{-}$, and it follows from (3) that then $\left(b_{k} * X\right)^{-} b_{k} * Y$ is the MV-MB-LE for b, irrespective of the value of k. In particular, if $b_{k}{ }^{*}=X^{\prime}\left(k V^{2}+X X^{\prime}\right)^{+}$, then $\left(b_{k} * X\right)^{+} b_{k} *=B$, by Proposition 1. Thus the MV-MB-LE may be computed when a Ridge-type estimate is given; Proposition 2 solves the converse problem.

Proposition 2: If $\hat{b} Y$ is a MV-MB-LE for b, i.e., \hat{b} is representable as in (2), and if $k>0$, then $\left(I+k \hat{b} V^{2} \hat{b}^{\prime}\right)^{-1} \hat{b} Y$ is a Ridge-type estimator.

The proof follows from the Lemma and is given in Section 4. The functional relationship of \hat{b} and $b_{k}{ }^{*}$ may be used to derive alternative representations for $b_{k}{ }^{*}$. The Aitken estimator $\left(X^{\prime} V^{2+} X\right)^{+} X^{\prime} V^{2+} Y$ is a MV-MB-LE if and only if range $X \subset$ range V^{2}, see Zyskind (1975, p.658). The reader will then easily verify the

Corollary 4: ($\mathrm{KI}+\left(\mathrm{X}^{\prime} \mathrm{V}^{2+} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{V}^{2+} \mathrm{Y}$ is a Ridge-type estimate if and only if range X c range V^{2}.

The simple least squares estimator $X^{+} Y$ is a MV-MB-LE if and only if range $V^{2} X \subset$ range X, see Zyskind (1975, p.684), hence

Corollary 5: (I + $\left.k X^{+} V^{2} X^{+}\right)^{\prime} X^{+} Y$ is a Ridge-type estimate if and only if range $V^{2} X \subset$ range X.

If $V^{2}=I$ then Corollaries 4 and 5 apply and yield the representations (2.1) and (2.3) in Hoerl \& Kennard (1970, p.57). We are now left with proving the Lemma and Propositions 1 and 2.

4. PROOFS

First, we prove the Lemma. Inverting the sum $V^{2}+X X '^{\prime}$ with Cline's formula (1965, p.100) and some computation yield

$$
\begin{equation*}
X^{\prime}\left(V^{2}+X X^{\prime}\right)^{+}=\left(I-B V K V X^{+}\right) \cdot B, \quad K=(I+V B ' B V)^{-1} . \tag{7}
\end{equation*}
$$

Now, $B V K=\left(I+B V^{2} B^{\prime}\right)^{-1} B V$, and $B V^{2}(V M)^{+}=X^{+} V\left(I-(M V)^{+} M V\right)$. $V M(V M)^{+}=0$. Hence

$$
\begin{align*}
I-B V K \cdot V X^{+} & =I-\left(I+B V^{2} B^{\prime}\right)^{-1} B V \cdot V \cdot\left(I-(V M)^{+} V+(V M)^{+} V\right) \cdot X^{+} \\
& =I-\left(I+B V^{2} B^{\prime}\right)^{-1}\left(B V^{2} B^{\prime}+0+I-I\right) \\
& =\left(I+B V^{2} B^{\prime}\right)^{-1} . \tag{8}
\end{align*}
$$

The Lemma is then established by inserting (8) into (7).
Next, we prove Proposition 1. Clearly, $B X=X^{+} X$, and $B=X^{+} X B$. Using the Lemma, we obtain

$$
\begin{aligned}
\left(X ^ { \prime } \left(V^{2}+X X^{\prime}\right.\right. &)^{+} X\right)^{+} X^{\prime}\left(V^{2}+X X^{\prime}\right)^{+} \\
& =\left(\left(I+B V^{2} B^{\prime}\right)^{-1} B X\right)^{+}\left(I+B V^{2} B^{\prime}\right)^{-1} B \\
& =\left(\left(I+B V^{2} B^{\prime}\right)^{-1} X^{+} X\right)^{+}\left(\left(I+B V^{2} B^{\prime}\right)^{-1} X^{+} X\right) \cdot B .
\end{aligned}
$$

Since the ranges of $X^{+} X\left(I+B V^{2} B^{\prime}\right)^{-1}$ and $X^{+} X$ coincide, so do their projectors. Thus the last equalities may be continued $=X^{+} X B=B$, establishing Proposition 1.

Finally, we prove Proposition 2. The Lemma implies

$$
\begin{aligned}
\left(I+k \hat{b} V^{2} \hat{b}^{\prime}\right)^{-1} \hat{b} & =\left(I+k B V^{2} B^{\prime}\right)^{-1} B+Z\left(M-M V(M V)^{+}\right) \\
& =X^{\prime}\left(k V^{2}+X X^{\prime}\right)^{+}+Z\left(M-M V(M V)^{+}\right),
\end{aligned}
$$

and postmultiplication with $\mathrm{kV}^{2}+\mathrm{XX'}^{\prime}$ yields X^{\prime}, and Proposition 2 is established.

ACKNOWLEDGEMENT

The author would like to thank Professor H. Witting for his encouragement and continued support while preparing this note.

BIBLIOGRAPHY

Albert, A. (1973). The Gauss-Markov theorem for regression models with possibly singular covariances. SIAM J. Appl. Math. 24, 182-87.

Cline, R.E. (1965). Representations for the generalized inverse of sums of matrices. SIAM J. Numer. Anal. 2, 99-114.

Hoerl, A.E. and Kennard, R.W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55-67.

Mitra, S.K. and Moore, B.J. (1973). Gauss-Markov estimation with an incorrect dispersion matrix. Sankhyā A 35, 139-52.

Pukelsheim, F. (1976). Estimating variance components in linear models. J. Multivariate Anal. $\underline{6}$, 626-29.

Rao, C.R. (1973). Linear Statistical Inference and Its Applications (2nd ed.). New York: John Wiley and Sons, Inc.

Rolph, J.E. (1976). Choosing shrinkage estimators for regression problems. Commun. Statist. A 5, 789-802.

Zyskind, G. (1975). Error structures, projections and conditional inverses in linear model theory. In A Survey of Statistical Design and Linear Models (J.N. Srivastava, Ed.). Amsterdam: North-Holland Publ. Co., pp. 647-63.

Received November 1976; retyped March 1977.
Recommended by P. L. Odell, University of Texas at Dallas, Richardson, TX.

Refereed by T. L. Boullion, Texas Tech University, Lubbock, TX.

