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On Hsu’s Model in Regression Analysis

FrieprIicH PUKELSHEIM !

Summary. The paper exemplifies with Hsu’s model a general pattern as how to derive
results of variance component estimation from well known results of mean estimation,
as far as linear model theory is concerned. This ‘dispersion-mean-correspondence’ provides
new and short proofs for various theorems from the literature, concerning unbiased in-
variant quadratic estimators with minimum BAYEs risk or minimum variance. For pure
variance component models, unbiased non-negative quadratic estimability is charac-
terized in terms of the design matrices.

1. Introduction

The purpose of this communication is to exemplify with Hsu’s model a general
pattern as how to derive results of variance component estimation from known
results of mean estimation.

The dispersion-mean-correspondence (Sect. 2) introduces a derived model such
that mean regression in the derived model corresponds to estimating the variance
components in the original model. Hsu’s model specifies the fourth moments
via the kurtosis y, thus opening the way for minimum variance estimation.
Sect. 3 collects some matrix algebra for convenient reference. In Sect. 4, some
known results of J. KLerrFE and R. Pincus [8], P. L. Hsu [6], H. DryGas [2], and
C. R. Rao [14] are proved by persistently applying the dispersion-mean-corre-
spondence. This approach extends insight and understanding of linear model
theory, providing short proofs, slight generalizations, and alternative charac-
terizations. Sect. 5 is concerned with the existence of unbiased non-negative
definite quadratic estimates of variance components and presents an estimability
criterion in terms of the design matrices that specity the model.

Previous Work. S. K. Mitra [10] suggests an approach that is very close to
the dispersion-mean-correspondence as presented here or in [12], he, however,
stops exploitation at an intermediate stage. J. SErLY [16] and other authors,
cf., H. Drycas [3], S. Gyor, W. KLONECKT and R. ZmysLoNy [4], J. KLEFFE [7],
R. ZmysLoxy [18], reduce variance component estimation to mean estimation in
coordinate free terms which seems to provoke ready application somewhat less
than the dispersion-mean-correspondence. Most of the examples in Sect. 4
were originally proved by explicitly minimizing the risk function, though
the connection to mean estimation is hinted at (H.Drycas [2, p. 382]) or
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implicit (C. R. Rao [14, p. 451]). The algebraic notions as introduced below have
successfully been utilized by other authors as well, cf., J. KLErFFE and R. PIiNcus [8],
S. K. MiTtra [10], G. P. H. Styawn [17], R. ZmysLoxy [18].

Notations. For a matrix A4, let A’, A+, RA, R4 denote its transposed matrix,
Moore-PENROSE inverse [15, p. 26], range (column space), and the range’s ortho-
gonal complement, respectively. Let vec A be the vector obtained from A4 by
ordering its entries lexicographically. The KrRONECKER product [15, p- 29] is
denoted by ®. The function wec is an inner product and tensor product preserv-
ing vector space isomorphism :

(vec A)" vec B=trace AB’ , (1)
vec XY =x @y , (2)

as follows by considering the standard basis vectors e, with »-th component 1
and zeroes elsewhere, and the basis matrices E, ,=ee;, with (v, u)-entry 1 and

zeroes elsewhere. For (vec A)’ we shall also write vec’A. I denotes an identity
matrix, its order following from the context.

2. Model Set-up and the Dispersion-Mean-Correspondence
The General Linear Model. For an Rr-valued random vector Y, a linear

model is specified by linear decompositions of both the mean vector EY and the
dispersion matrix (variance covariance matrix) DY :

3
EV= Sba.=Xb, DY= >tV,, M=I—-XX* (3)
=1 x=1
where the (n, p)-matrix X=[ax,: .. .: x,]| and the k symmetric (n, n)-matrices V,
are known, whereas b=(b,, ..., b,)" and t=(t,...,t,) are to be estimated;

M is the orthogonal projector onto R+ X.

For estimating ¢ or linear functions of , we choose, as usual, quadratic esti-
mators Q(Y) which, by definition, are derived from bilinear functions B(.,.) by
setting both arguments equal to Y: Q(Y)=B(Y, ¥). A maximal invariant sta-
tistic with respect to all ‘mean translations’ Yy—-y+Xb, beR?,is MY (cf.,J. SEELY
[16, p. 1646], J. KLEFFE [7]). Thus, Q(Y) is an tnvariant quadratic estimator (IQE)-
ift Q(Y)=0Q(MY).

E.g., when estimating a linear form q't, q € R%, the set of all IQEs is {Y'AY},
where A is an arbitrary symmetric (n, n)-matrix satistying 4 =MAM, or, equi-
valently, AX=0.

Invariance is a natural statistical requirement: All of ¥ which is in the range
RX may be explained by mean regression, leaving the residuals MY for in-
ference on the dispersion parameter £. Technically speaking, invariant estimates
of ¢ are free from the mean parameter, cf., R. R. CoRBEIL and S. R. SEARLE [1],
J. KLerrE [7]. Finally, the expectation of a quadratic estimate ¥’AY does not
depend on the mean parameter iff X’AX=0. In most applications, as in Hsu’s
model, A should be non-negative definite (NND). This, however, and X’4X=0
imply AX =0, i.e., invariance.
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The Dispersion-Mean-Correspondence. For a linear model (3), consider
the derived random R*-vector MY®MY. By (3) and (2), EMYQ®MY =M®M -
vee 20t V,, and MY ®MY gives rise to a linear model for mean estimation. Intro-
ducing the (n?2, k)-matrices

D=[vecVy:--:vec V,], Dy=MM-D, (4)
we arrive at ‘
EMYRXMY =Dt . (5)

Thus, ¢ may be looked at as the dispersion parameter in the original model (3),
or as the mean parameter in the derived model (5); this we call the dispersion-
mean-correspondence.

It remains to be shown that the class of natural estimators of ¢ is not changed
by the dispersion mean-correspondence. Clearly, for any (k, n2)-matrix L,

Q(Y)=L- MYQ MY (6)

as a linear estimator of € in the derived model (5), is an IQE of ¢ in the original
model (3). Conversely, the KRONECKER product is a tensor product [5, p. 12], i. e.,
for every bilinear function B(ax, y) there exists a (unique) linear function L such
that B(x, y)=L - x®y. This implies that any IQE Q(Y) is representable as in
(6), and thus is a linear estimator in the derived model. E.g., for an IQE Y’AY of
a linear form q't we get from (1) and (2) Y'AY =trace A- MY (MY)' =vec'A -
MYRMY ,i.e., L=vec A.

In Sect. 4 we shall be concerned with minimum variance estimation of & To
this end, we introduce the (n2, n2)-matrices

F=DY®Y, Fy,=M@M-F-M@M, N=I—D,D;, (7)

i.e., the matrix of all central mixed fourth moments of ¥, the dispersion matrix
of MY ®MY, and the orthogonal projector onto RtD,,, respectively. The follow-
ing lemma is stated for later reference. It applies the celebrated LEEMANN-
SCHEFFE theorem [15, p. 317] to the derived model; the alternative representa-
tions in part (ii) follow by (1), (4), and (12).

Lemma 2.1. Let a linear model be given by (3) and (7); let L be a (k, n2)-matrixz, A
be a symmetric (n, n)-matriz, and qcRF. Then:

(i) L- MYRMY is an unbiased 1QE of T with minimum variance under F,,
(among all other unbiased 1QE) iff LDy =I and LF,N=0.
(ii) Y'AY is an unbiased IQE of q't with minimum variance under ¥, iff AX=0,
q=D;, - vec A=(trace V|A, ..., trace V,A)', and

F,, - vec AcRD = {vec 21, MV M|l RF}.

Hsu's Model. Hsu’s model specifies the fourth moments F via (quasi-)inde-
pendence and the kurtosis y of £ random effects €, cf., H. Drvcas [2], P. L. Hsu
[6],J. KLEFFE and R.Pixcus [8], C.R.Rao [14]. Following C. R.RAo0 [14, p. 446]
we assume a linear decomposition according to

. ‘
Y—-EY= J Uk, =Ug, (8)

n=1
where the U, are known (n, ¢,)-matrices, c= D¢, U=[U,:- - : U,] is of order
(n, c), and E=[E[:---: §;]" is a random Re-vector whose independent subvectors
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g, have independent components &, , satisfying
E¢,,=0, E&, =0, E&i =y, +83)dl, v=1,...,c,. (9)

In gener al, a random R‘-vector § whose independent components satisty E£, =
=0, E&2=¢2 E&t= (7,+3) 6%, has mixed fourth moments

DEQE= 3 5% (E,,®F, +E,OF,,+8,7,E,0F,) . (10)

py=1

Finally, we introduce

1 ’

¢y 0
H= " , 62=H'c>, y=H'y, (11)

0 1
where the vectors 1, consist of ¢, ones, so that H is of order (k, ¢). Thus, (10) and
(11) yield the mixed foulth moments under assumption (9). We are now ready to
precisely define a Hsu-model :

Definition. 4 Hsv-model is a linear model as specified by (3), (4), (7), (10), (11),
where V,=UU,, x=1, ..., k; U and the U,s are as in (8), t=02= (o}, . . ., 0}),

Y=00-- ) andlf‘M_FM(cﬁ,y):MU@)MU (DE®E) - UM®U'M .

In order to appealingly display F,(c2 y), we now collect some matrix algebra.

3. Some Matrix Algebra

The Separating Property of vec. For any 3 matrices A, B, C of appropriate
order one has

vec ABC=AR®C' - vec B . (12)
Taking B=E
Diagonalizer. For a square matrix 4, Diag A denotes the diagonal matrix

with diagonal entries copied from A. For a vector y, Diag vy is the diagonal matrix
with diagonal equal to vy.

L this follows at once from (2).

Introducing the (c2 c)-matrix Dc:[vec E, :---:vekE,], where E; etc. are
basis (e, c) -matrices, yields, DL_D; Dvec B, -vec" E,,= D (e,®e,) X
X(e,®e) =D E, QF,, and, by ), DD, - vec A=vec Diag A. More general,

for every d,lagjonal (¢, ¢)-matrix A, (Lnd f01 every (c, ¢)-matrix 4, we have
D,AD, - vec A=vec A Diag A, where D,=[vec Ej:---:veckE,]. (13)

Hapamaro’s Produkt. When diagonalizer are used, HADAMARD's product
A x B=((A;- Bj)) is not far. This is due to Diag A=1I+ A and the following
lemma.

Lemma 3.1. Let D,, D, be defined as in (13) of order (c2, ¢), (n2, n), respectively.
Let A, B two (¢, n)-matrices, and ac Re,be R™. Then :
(1) A+«B=D,-A®B-D, .
(ii) a - AxB-b=trace Diaga - A - Diagh - B’ .
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Proof. Verification is immediate when taking 4, B, a,b to be basis matrices
(vectors). m
Using Lemma 3.1, many properties of the HapaMARD product, cf., e.g., G. P.

H. Styax [17], may easily be inferred from corresponding properties of the
KRONECKER product.

4. On Estimates in the Hsu-Model

The Mixed Fourth Moment. In the next two lemmas, we study the mixed fourth
moments as a linear operator.

Lemma 4.1. Let § be a random Re-vector whose independent components &, satisfy
E§, =0, E&) =0, and E&5=(7,+3) 6%. For a fized &2, put A,=DE=Diag &2, T =
=Diag ¥, Ay=A, TAy, and let D, be defined as in (13). Then, for every (m, n)-
matrix A,

(DE®E) - vec A=(20,@ A, + D,A,D’) - e A4

Proof. The assertion is a consequence of formulae (10), (12), and (13). ®

Lemma 4.2. Assume a Hsu-model. For a fixved o, put V= 203V, =UAU'.
Then :

(i) For every (n, n)-matrix A,
Fy (o5, Y) - vee A= 2MV, M@MV ,M+MUQMU - D A,D, (15)
UM@UM) - vee 224
(ii) For every symmetric (n, n)-matriz A satisfying A =MAM,
F (05, Y) - vec A =vec (2MV AV M+ MUA, - DiagU'AU-U'M). (16)

Proof. Part (i) follows from Lemma 4.1, and, by (12), implies part (ii). ®
With these preparations we are now ready to characterize optimal estimates
in the Hsu-model.

Baves estimates. J. KLEFFE and R. Pixcus (8, Th. 3.8] consider unbiased IQEs
with minimum BAYES risk:

(14)

Theorem 4.1. Assume a Hsu-model with a priore distribution P for o2, put
R=E, o2, S=Diag H'RH, (17)
and let q € RE. Then Y'AY is an unbiased 1QE of q't with minimum BAYES risk at
Y iff AX=0, q=(trace V|A, . . ., trace V,A)', and MU - (2H'RH + ST) = (U'AU ) -
U'M is a linear combination of MV.M, . .., MV, M.

Proof. By Lemma 4.2.ii, the risk operator is @ (4)=vec E,, (2ZMUAU'AUA, -
U'M+MUA;T - Diag U'AU - U'M). But, cf., [17], A,=Diag H's® implies
AUAUA, = (H's’c” H) * (U'AU) and A} = (H'c?6? H) + I = Diag H's26? H. Thus
E,A{=S, and we get @ (A)=vec MU - (2H'RH+ST) = (U'AU)- U'M. The
assertion now follows by Lemma 2.1.ii, mutatis mutandis. B

MV estimates. The rest of this section is concerned with minimum variance
unbiased IQE (MV —UB —1QE) of alinear form ¢'t.

22*
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P. L. Hsu was the first in this area, and his problem [6, Th. 2] reads in terms of
the derived model: When is the simple least squares estimate of minimum vari-
ance? HsU assumes independent components of y with equal variances ¢* and

possibly unequal kurtosis yy, . . ., 7,

Theorem 4.2. Assume a Hsu-model with c=n, U=I, Vo=0"I, and s=rank X <
<n. Put My=M = M, and m=(M,, .. M W) - Then (n—s)=1Y'MY 1is a
MV —UB —1QE of o2iff

MIm=om, o=(n—s)"!m'Tm. (18)

Proof. Here, D, =vec M, so that the simple least squares estimate is (D, D,,) ~!
D, MYQMY = (trace M)~* trace M- MY(MY) =(n—s)"* Y'MY, by (1) and
(2) This is of minimum variance [11, p. 148] iff D, is invariant under T (o8, Y).
Lemma 4.2.ii yields Fy(oZ, y) - vec M =g} vec 2M+MT - Diag M - M). Thus, a

necessary and sufficient condition is
M- Diag Tm - M=oM, o=(n—s)"t m'Tm. (19)

By considering the diagonal elements, (19) implies (18). The converse follows,
with Lemma 3.1.ii, from |M - Diag T'm - M—oM|??= trace Diag T'm - M -
Diag T'm - M —2p trace Diag m-T'- Diag m + o> trace M=m/'TM,I'm —2om'T'm +
+om'Tm=m'T(M,I'm—om). &
The next result, due to H. DRYGAs [2, Th. 3.5.a], does also lead to eq. (19).

Theorem 4.3. Let Y'AY be an IQE of o2 for the Hsu-model in Th. 4.2. Then
Y'AY is a MV —UB—=IQE of o2 iff trace A=1 and 2A+MT - Diag A - M is a
scalar multiple of M.

Proof. Using Lemmas 2.1.ii, 4.2.ii, we get 1 =D} vec A=trace A, and Fy (o, Y)

vec A=a}vec 2MAM+MT - Diag A - M). =
For the genera,l Hsu-model, C. R. Rao [14, Th. 1] derives the following estimates.
J. KLerFE [7, Th. 2] gives similar representations.

Theorem 4.4. Let a Hsu-model be given. For a fixzed oj, introduce the (n, n)-
matrices Vy= 2, 03, V,=UAU’, and R*—(MV M)*, and the (c, c)-matrices
M,=UR,U, M,_Ml x« M,. Let qcR: If V. is positive definite, and the Re-
vector & cmd the RE-vector A satisfy

then an unbiased IQE of q't with minimum variance at (g, ) is given by
Y'R,U - Diag 5 (HA~A,9) - UR,Y . (21)
Proof. The assertion follows from Lemma 2.1.ii. Firstly, since R,=R,M,
we have AzéR*U - Diag (H'A—A,9) - U'R,. Now, vec U- Diag H'A- U=
vee IV, =DA, and, by (13), vec A, Diag & =D A,¥. Thus, from (12), L' =vecA =
%R*(@R* -DA—%R*U@)R*U -D,A,9. Using D=URU - D,H" and Lemma 3.1,

this yields DyL'= HD) - URU' - Ry®@Ry - URU - DCH’A——;HD;. M,®
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XM, -DCAQ%}:%HMQH’A—% HM,A.9, which equals ¢ under the assumption
(20).
Secondly, the positive definiteness of V implies R R, =M. Lemma 4.2.i, then,

yields Fy (03, y) - L' =M@M - DA~ MUQMU - D,AS+~ MU®MU - D,A,D, -
UR,QU'R, - m—% MU®MU - DAD, - URUQU R,U - DA% =D —

—i—MU@MU - DA, (29— M, H'A+M,A,9). Under the assumption (20), this
is in D, .=

Uniformity Criteria. Essentially, the last theorem of this section is also due
to C. R. Rao [14, p. 453—454]. The first part characterizes those situations when
the estimates are independent of the kurtosis y; the second part assumes quasi

normality, i.e., y =0, and investigates independence from o}.

Theorem 4.5. Assume the Hsu-model and notation of Th. 4.4. Then:

(i) AU MV —UB —1QEs at (6, 0) are of minimum variance at (6, y) iff RD,, 1s in-
variant under MURQMU - DA} - Diag H'y - D, - UR,QU’'R,, or, equivalently,
iff RMLH' is invariant under MyA% Diag H'y.

(i) AUl MV —-UB—1QEs at (1, 0) are of minimum variance at (c;, 0) iff RD,, s
invariant under MV, ROMV R, or, equivalently, iff for every Ae R* there exist a
weR? such that ARV RV RV, R= Ju RV R. Here, V=3V, is asswmed
positive definite, R=(MVM)™*, and V, is assumed non-negative definite.

Proof. (i) We have to check [11,p.147] when RF,(c3, v)  NCRF,,(0f,
0) - N. This is the case, by Lemma 4.2.i and after premultiplying with R,® R,
iff the range of A=R,U®R,U-DA,D;-UM®U'M-N is contained in
RMR®M -N. But MM - N=N-M®M is a projector, so N- MM - A=A
yields D3, - R, U®R,U - D AD, - UM®U'M - N=0. This is true iff

RMURMU - D,A,D,- UR,®U'R,, - Dy,cRD,,, (22)

which is the first characterization. Using D=U®U - D .H' and premultiplying
(22) with D, - UR,®U’'R, yields the second characterization, [14, eq. 5.8].

For part (ii), check RF (o3, 0) - Nc RF,,(1;, 0) analogously to get the first
characterization. Then premultiply with R® R, use DyA=vec 22, MV, M and
(12) to get the second characterization [14, eq. 6.4]. ®

As indicated in the proof of part (ii), formulae (12) and (13) may be used to
reformulate the above criteria in matrix space. The formulation above parallels
that of mean estimation: The BLUE under V is BLUE under V, iff X is in-
variant under V, V-1 (cf., [11, p. 149]).

For turther results on uniform MV —UB —IQE see H. Drycas [3] and S. GNorT,
W. KroNeckI and R. ZmysLoNy [4]. The dispersion-mean-correspondence may
also be used to get MINQUE, weighted least squares, or Ridge-type estimates of
variance components, cf., ¥. PurELsEEIM [12], [13]. Maximum likelihood esti-
mates are considered, e.g., by R. R. CorBEIL and S. R. SEARLE [1].
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5. Unbiased NND Quadratic Estimability

Though one should not dispense with requiring that a quadratic estimate
Y'AY of a single variance component o2 be non-negative definite (NND), one
does, and there are only few investigations of this subject, cf., H. Drycas [2],
L. R. LaMorre [9]. The next lemma is implicitly given by L. R. La MoTTE [9,
p- 728], the formulation below is to stress that NND estimates shift the problem
from linearity into convexity.

Lemma 5.1. Assume a linear model as given by (3), let ¢ € R*. Then:
(i) There exists an unbiased IQE of q't iff
q €linear hull {D}, - y®y | yc R}

(i) There exists an unbiased NND quadratic estimator of q't iff
q € convex hull {Dy, - y®y | yc R}

Proot. Unbiasedness and non-negative definiteness imply invariance, see above
Sect. 2. Y’AY is unbiased for q'¢ iff q =D}, - vec A. Assertions i, ii then follow
from the spectral representation [15, p. 39] of symmetric matrices, NND matrices,
respectively. B

What has the model to look like such that a single component £, be unbiasedly
NND estimable? For a pure variance components model, e.g., a Hsu-model, we
finally prove as a necessary and sufficient condition: The »-th dispersion design
must properly contribute to the explanation of the error space RM SV, M, (cf.,
[15, p. 297]).

Theorem 5.1. For a linear model (3), let all V,, =1, . . ., k, be NND, and fix x.
Then there exists an unbiased NND quadratic estimator of t,, iff
RIMV MERM > V,M.
Afxn
Proof. Put ®=convex hull {D}, - y@y | yc R*}. Clearly, & ={ 3D}, - y,®y,/
Yi> - - ., Y, € R"}. With all V, NND, it is easily shown that e, c & iff e c{Dj},-
Y@ylyc B*}. The latter means that the nullspace of M 3 ¥,M be not contained

Az
in the nullspace of MV, M. This is the orthogonal dual of the assertion. ®
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Zusammeniassung

In der Theorie der linearen Modelle kann man die Schiitzung von Varianzkomponenten
vollstindig aus der Schitztheorie fiir den Mittelwert herleiten; diese ‘Streuwungs-Mittel-
wert-Korrespondenz’ wird am Beispiel des Hsu-Modells verdeutlicht. Sie ergibt kurze
neue Beweise fiur verschiedene in der Literatur vorkommende Sitze iiber erwartungs-
treue invariante quadratische Schétzer mit kleinstemm Baves-Risiko bzw. mit kleinster
Varianz. Bei reinen Varianzkomponenten-Modellen wird schlieBlich erwartungstreue
positiv-semidefinite quadratische Schitzbarkeit charakterisiert an Hand der Designma-
trizen, die das Modell definieren.

Résumé

Dans ce travail on démontre de nouveau quelques théorémes concernant I’estimation des
composants de la variance dans le modéle linéaire de Hsu: Par ’application d’une ‘corre-
spondance dispersion-moyenne’ la, question posée se trouve réduite aux problémes déja
connus et résolus dans la théorie d’estimation de la moyenne. Dans les théorémes cités on
étudie des estimateurs quadratiques, invariants, sans biais, qui minimisent soit le risque
bayesien soit la variance. En outre, ’existence d’un estimateur quadratique, non-negatif,
sans biais d’un seul composant de la variance est characterisée par des matrices qui, elles,
déterminent le modéle.
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