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Estimation of variance components in linear model theory is presented as 
an application of estimation of the mean by introducing a dispersion-mean 
correspondence. Without any further computations, this yields most general 
representations of minimum variance–minimum bias–invariant quadratic 
estimates, estimates from MINQUE theory, and Ridge-type estimates of the 
variance components. 

 
 

1.  INTRODUCTION 
 

This note aims to emphasize that in linear model theory linear estimation of  
the mean and quadratic estimation of the variance components pose the same 
problem when taking a suitable point of view (Section 2). This  dispersion-mean 
correspondence  yields most general representations of estimates of the variance 
components (Section 3) for both minimum variance unbiased estimation 
(Theorem l) and MINQUE theory (Theorem 2), at the same time exhibiting  
when the estimate of one procedure is optimal in the sense of the other. Finally, 
the approach suggested here is used to derive Ridge-type estimates of the variance 
components. All results follow from the theory of mean estimation, no further 
computations being necessary. 

The present paper extends the works of Mitra [2] and Seely [6]: no rank 
assumptions are made, unbiasedness is replaced by the more general concept of 
minimum bias, and the close relatedness to multilinear algebra is stressed. 
 
 

2.  THE DISPERSION–MEAN CORRESPONDENCE 
 

Let a linear model be characterized by linear decompositions of the expectation 

vector E Y and the dispersion matrix D Y: 
 

E Y = Xb =   ∑ bπxπ

𝑝
π=1 ,    D Y =  ∑ tκVκ

𝑘
κ=1 , ,                        (1) 
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where Y is a ℝn-valued random vector, X = (x1 :⋯ : xp), xπ (Vπ) are known 

ℝn-vectors (symmetric (n, n)-matrices), and b = (b1 ,..., bp)' and t = (t1 ,..., tk)' 
are to be estimated. 

Quadratic estimates Q(Y) of t are, by definition, derived from bilinear  

functions B(⋅,⋅)from ℝn × ℝn into ℝk by setting both arguments equal to Y.  

Since the Kronecker product x ⊗ y [5, p. 29] is a tensorproduct [1, p. 12], any 

quadratic estimate factorizes according to Q(Y) = B(Y,Y) = L⋅Y ⊗ Y with  

a (k, n2)-matrix L. Another tensorproduct is xy', being related to x ⊗ y by 
the inner product and tensor product preserving isomorphism vec: 

 

(vec A)' vec B = trace AB',   vec xy' = x ⊗ y, 

 

where vec A is the column vector obtained from the matrix A by ordering its 
entries lexicographically. Further, estimation of t is restricted to estimates which 

are invariant under all mean translations y → y + Xb, b ∈ ℝp. A maximal  

invariant statistic with respect to these translations is MY, where M = Proj(RX)⊥ 
is the orthogonal projector onto the orthogonal complement of the range  
(column space) of X. Hence, an estimate Q(Y) is invariant iff Q(Y) = Q(MY).  
In summary, an arbitrary  invariant quadratic estimate  (IQE) of t is given by a  

(k, n2)-matrix L according to Q(Y) = L ⋅ MY ⊗ MY. 
Clearly, 
 

          E MY ⊗ MY = M ⊗ M ⋅ E(Y – Xb) ⊗ (Y – Xb) 

                                 = M ⊗ M ⋅ vec DY = M ⊗ M ⋅ ∑ tκ vec Vκ 

 

By introducing the (n2, k)-matrices D = (vec V1 :⋯: vec Vk)  and DM =  

M ⊗ M ⋅ D,  MY ⊗ MY gives rise to the  derived linear model  
 

E MY ⊗ MY = M ⊗ M ⋅ Dt = DM t.                            (2) 

 
Estimating dispersion components in a linear model (1) is a question of point of 
view: t may be looked at as regression parameter for the dispersion matrix in the 
original model (1) or of the mean vector in the derived model (2). 

 
 

3.  ESTIMATES 
 
Theorem 1 derives various properties of a  minimum variance–minimum bias– 

IQE (MV–MB–IQE) 𝐭 ̂ of t from the theory of mean estimation (cf., [5, p. 307]). 

Note that given 𝐭 ̂ and q ∈ ℝk, the MV-MB-IQE of q't is q' 𝐭 ̂, and that 𝐭 ̂, q' 𝐭 ̂ are 

unbiased whenever possible, i.e., rank DM, = k, q ∈ RDM', respectively. 
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THEOREM l.  Let  F = D (Y – EY) ⊗ (Y – EY)  be the known matrix of 

fourth moments in the linear model (1), put M = Proj(RX)⊥, N = Proj(RDM) ⊥, 

FM = M ⊗ M ⋅ F ⋅ M ⊗ M.  Then:  (i)  The ordinary least  squares estimate 

DM
+⋅Y ⊗ Y is a MV–MB–IQE of t iff  RFMD ⊂ RDM.  (ii)  The normal equations 

D'FM
+D 𝐭 ̂ = D'FM

+⋅Y ⊗ Y  yield a MV–MB–IQE of t iff  RDM ⊂ RFM.  
(iii)  Every MV–MB–IQE of t when the fourth moments are G, is a MV–MB–IQE  

of t when the fourth moments are F, iff  RFMN ⊂ RGMN. 
 
Proof.  The results follow when the theory of mean estimation is applied  

to the derived model, cf., [7, p. 654, 658; 3, p. 148]. 
 
EXAMPLE.  When  Y  is  normally  distributed  with  zero  mean  one  has  

F . vec A = (D Y ⊗ Y) ⋅ vec A = (DY) ⊗ (DY) ⋅ vec(A + A') for any (n, n)-
matrix A. Let B1 be the set of dispersion matrices admissible in model (1), and  
let B be the subspace of symmetric matrices spanned by the Vκ. Then RD =  

vec B, and RFD = vec(DY)B(DY). When In ∈ B1, then the least squares  

estimate is of minimum variance with respect to every V ∈ B1 iff VBV ⊂ B for  

all V ∈ B1, by Theorem 1(i). This leads to quadratic subspaces as introduced and 
discussed by Seely [6, p. 714]. Applications to Hsu's model are given in [4]. 

Theorem 2 concerns Rao's MINQUE theory [5, p. 302–305] where unbiased-
ness is relaxed to minimum bias. Assume T to be nonnegative definite. When 
estimating a linear form q't one has to minimize   

 

trace ATAT = ‖ T1/2MAMT1/2 ‖2 = ‖(vec A)' ⋅ M ⊗ M ⋅ (T ⊗ T)1/2  ‖2 
 

among all MB–IQEs Y'AY = (vec A)' ⋅ MY ⊗ MY. When estimating t this 

generalizes to minimizing ‖ L ⋅ M ⊗ M ⋅ (T ⊗ T)1/2 ‖2   among all MB–IQEs  

Q(Y) = L ⋅ MY ⊗ MY. A resulting estimate will be called minimum norm– 
minimum bias–IQE (MN–MB–IQE) of t. 
 

THEOREM 2.  Assume the notation of Theorem 1 and let T be nonnegative  
definite. Then: (i) Parts (i) and (ii) of Theorem 1 remain true for MN–MB–IQEs  

instead of MV–MB–IQEs if F is replaced by T ⊗ T.  (ii) There is a unique  

MN–MB–IQE for t iff My ⊗ My ∈ RDM + RFM for all y ∈ ℝn. (iii) Every   

MN–MB–IQE is a MV–MB–IQE when the fourth moments are F, iff RFMN ⊂ 

RMTM ⊗ MTM ⋅ N. 
 

Proof.  Minimizing variances of L ⋅ MY ⊗ MY would mean minimizing  

trace D L ⋅ MY ⊗ MY = ‖ L ⋅ M ⊗ M ⋅ F1/2 ‖2. The theorem thus follows by 
formal identification of MN–MB–IQEs with MV–MB–IQEs when the fourth 

moments are F=T⊗T, cf., [5, p. 305]. Part (ii) follows since the MV–MB-IQE 
has a unique representation iff all possible observations are in RDM + RFM,  
[7, p. 658]. 
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EXAMPLE.  Let T be positiv definite, R = T–1 – T–1X(X'T–1X)–X'T–1, and  

S = D' ⋅ R ⊗ R ⋅ D, whence R = (MTM)+, RR = RMTM = RM, RDM' =  
RS. By Theorem 2(ii), Theorem l(ii), the unique MN–MB–IQE of t is  

S–D' ⋅ RY ⊗ RY. For q ∈ ℝk, q't is estimable iff q ∈ RDM', i.e., q ∈ RS, and in 
this case its MINQUE is 

 

q'S–D' ⋅ RY ⊗ RY = λ'D' ⋅ RY ⊗ RY = Y'R ∑λκVκ RY,   Sλ = q, 

 
as given by Rao [5, p. 304]. 

Finally, the derived model (2) may successfully be employed to derive  
Ridge-type estimates for the variance components t. For example, an IQE  

L ⋅ MY ⊗ MY of a linear form q't, q ∈ ℝk, minimizes the weighted sum  

s = ‖ L ⋅ M ⊗ M ⋅ F1/2 ‖2 + τ2 ‖ L ⋅ DM – q' ‖2, τ2 > 0, of variances and bias  
iff L = q'DM'(τ–2FM + DMDM')– [5, p. 305–306]. Note that the mean square  

error of L ⋅ MY ⊗ MY at t is ‖ L ⋅ M ⊗ M ⋅ F1/2 ‖2 + ‖(LDM – q')t ‖2, with 

maximum value s when t varies subject to ‖t‖ ≤ τ; hence an estimate as  

mentioned above minimizes the maximal mean square error when ‖t‖ ≤ τ. 
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