Siegel der Universität Augsburg

Universität Augsburg
Institut für Mathematik

Siegel der Universität Augsburg

 

Analysis-Seminar Augsburg-München

 

Dr. Markus Penz
LMU

 
spricht am
 
Donnerstag, 15. Januar 2026
 
um
 
15:45 Uhr
 
im
 
TUM, Boltzmann-3, Garching, Raum 03.08.011, Etage 3
 
über das Thema:
 

»Homogeneous Sobolev spaces in Maxwell's equation and density-functional theory«

Abstract:
Density-functional theory (DFT) is a reformulation of the quantum-mechanical ground-state problem in terms of the charge density as a reduced variable and constitutes the most widely used computational tool in quantum chemistry. Mathematically, it is expressed as a convex optimization problem on L^p spaces. Yet, the corresponding functional suffers from non-differentiability issues related to severe representability problems within the theory. Instead of L^p spaces, a Hilbert-space setting based on homogeneous Sobolev spaces is suggested that directly integrates Maxwell's equations into the geometry of the spaces. This not only allows for a very elegant formulation of DFT, but also leads to automatic Moreau-Yosida regularization of the theory, completely avoiding representability problems.

 

Hierzu ergeht herzliche Einladung.
Prof. Dr. Gero Friesecke


[Impressum]      [Datenschutz]      wwwadm@math.uni-augsburg.de,     Mo 12-Jan-2026 12:07:36 MEZ