|  | Universität Augsburg |  | 
Dr. Enno Keßler
Max-Planck Institut für Mathematik, Bonn
 
spricht am
 
Dienstag, 22. November 2022
 
um
 
17:30 Uhr
 
im
 
Raum 2004 (L1)
 
über das Thema:
 
| Abstract: | 
| The Dirichlet Action Functional for maps from a surface to a Riemannian target manifold is conformally invariant. Hence it can be used as a tool to study the Teichmüller space of complex structures on the surface. Furthermore, if the target manifold is almost Kähler J-holomorphic curves are an interesting class of minimizers of the Dirichlet action with many important applications in symplectic geometry. The two-dimensional non-linear supersymmetric sigma model is an extension of the Dirichlet action by spinorial fields. Its supersymmetry properties require that the spinorial fields are anti-commutative. In this talk, I want to show how geometry can be extended to supergeometry which contains dimensions with anti-commuting coordinates and motivate supergeometric generalizations of Riemann surfaces, harmonic maps and J-holomorphic curves. This yields a supergeometric understanding of the two-dimensional non-linear supersymmetric sigma model, its symmetries and critical points. | 
| Hierzu ergeht herzliche Einladung. | 
| Prof. Dr. Maxim Smirnov | 
Kaffee, Tee und Gebäck eine halbe Stunde vor Vortragsbeginn im Raum 2006 (L1).