Siegel der Universität Augsburg

Universität Augsburg
Institut für Mathematik

Siegel der Universität Augsburg

 

Oberseminar Differentialgeometrie

 

Professor Dr. Jost-Hinrich Eschenburg
Universität Augsburg

 
spricht am
 
Montag, 19. April 2021
 
um
 
16 Uhr s.t.
 
im
 
Zoom
 
über das Thema:
 

»From Milnor's Morse theory to Thom's isomorphism«

Abstract:

Like spheres many other compact symmetric spaces have "poles", "meridians" (shortest geodesics between poles) and "equators", correctly "centrioles" (midpoint set components for meridians). Sometimes the maps from the $k$-sphere into such space sending poles to poles can be deformed onto maps sending meridians to meridians. These deformed maps are geodesic suspensions over maps from the equator $S^{k-1}$ to the centriole. This is the main construction step in Milnor's "Morse Theory". It implies Bott's periodicity theorem for the orthogonal group since the 8th iterated centriole of $SO_n$ is $SO_{n/16}$. We pushed forward Milnor's approach in two ways:

1. We exhaust $S^k$ by going all the way down to $S^0$. Thus we deform each map $S^k\to SO_n$ into a normal form given by a representation of the Clifford algebra $Cl(R^k)$ on $R^n$, taken from the $k$-fold geodesic suspension. In turn, Maps $S^k\to SO_n$ are clutching maps of vector bundles over $S^{k+1}$.

2. Milnor's methods allow dependence on additional parameters, even locally. Thus we may replace the sphere $S^k$ by certain sphere bundles over finite CW-complexes. After passing to topological K-theory these results imply classical Bott–Thom isomorphism theorems.

(joined work with B. Hanke)

 

Hierzu ergeht herzliche Einladung.
Prof. Dr. Bernhard Hanke



[Impressum]      [Datenschutz]      wwwadm@math.uni-augsburg.de,     Fr 9-Apr-2021 14:06:20 MESZ