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Abstract In proportional representation systems, apportionment methods are used
to convert the number of votes of a party into the number of seats allocated to this
party. An interesting characteristic of any such method are the seat biases, that is,
the expected differences between the actual seat allocation and the ideal share of
seats, separately for each party, when parties are ordered from largest to smallest.
For electoral systems with a threshold, that is, with a minimum percentage of votes
that parties must reach in order to be eligible to participate in the apportionment
process, we show that seat biases decrease from their maximum to zero, as the
threshold increases from zero to its maximum, and that all seat biases decrease
linearly.

1 Introduction

Proportional representation systems calculate the number of representatives in a
political body proportionally to some input data. Important examples are the appor-
tionment of the 435 seats of the US House of Representatives to the 50 states of the
Union, proportionally to the decennial population counts. Another example is the
apportionment of parliamentary seats to parties, proportionally to the vote counts
on the eve of an election day. There are plenty of apportionment methods avail-
able to carry out these calculations, see Balinski and Young (2001) for a historical
account as well as for the foundations of an apportionment theory, or Taagepera
and Shugart (1989) for an exposition from the political science point of view.

An important issue with any such apportionment method is whether it is biased,
that is, whether it exhibits indications of disproportionality of some sort or other.
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Following Schuster et al. (2003) we give the general notion of “bias” a specific,
operational meaning, and define the seat bias of the kth largest party to be

Bk(M, 0) = E[mk − Mwk |w1 ≥ w2 ≥ · · · ≥ w� ≥ 0], (1)

that is, the expected difference between the actual number of seats allocated to the
kth largest party and the ideal share of seats which the party could claim if fractional
seats were available. Here, mk denotes the number of seats apportioned to party k,
M is the district magnitude or house size, that is, the total number of seats to be
apportioned, and wk designates the proportion of votes won by party k. Moreover,
we assume that � parties are eligible to participate in the apportionment process,
and that they are numbered from largest to smallest, w1 ≥ w2 ≥ · · · ≥ w� ≥ 0.
The letter “E” indicates expectation, which is calculated under the assumption that
all feasible weight configurations are equally likely. Schuster et al. (2003) present
seat bias formulas and empirical data, and also include an extensive review of the
literature.

In the present paper, we extend their results to electoral systems where, in order
to be eligible to participate in the apportionment process, the proportion of votes
which a party wins must exceed a certain threshold t . Many systems impose a 5%
threshold, t = 0.05.

There exists an extensive literature on thresholds in electoral systems, see
Taagepera (1998), Palomares and Ramírez (2002), and the references given there.
Those papers do not address the impact of thresholds on seat biases, instead calcu-
lating minimum thresholds which a party must pass in order to possibly be allocated
a given number of seats, and maximum thresholds beyond which a party is certain
to be allocated that many seats.

In contrast, we consider a threshold fixed by the applicable electoral law, whence
the smallest party must have a proportion of votes above the threshold t . In such
systems, the seat bias for the kth largest party depends on the threshold t , and will
be denoted by

Bk(M, t) = E[mk − Mwk |w1 ≥ w2 ≥ · · · ≥ w� ≥ t]. (2)

In other words, we condition on the event that, while parties are still ordered from
largest to smallest, the weight of the last party cannot be arbitrarily close to 0, but
must exceed the threshold t , w� ≥ t .

In Sect. 2 we show that, as the threshold parameter t increases from zero to its
maximum, the seat biases decrease from their maxima to zero. This is not at all
surprising. After all, the minimum threshold permits a maximum disparity between
the largest party and the smallest party. The maximum threshold equals 1/� and
forces all party weights to be identical, w1 = w2 = · · · = w� = 1/�. What is
surprising, though, is that the decrease of the seat biases is practically linear, thus
taking the simplest possible form.

2 Seat biases as a function of the threshold

The threshold t can range from 0 to 1/�, where � is the number of parties that are
eligible to participate in the apportionment process. In the beginning, when the
threshold is equal or close to 0, the disparity between the largest and the smallest
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party is most pronounced. On the other hand, when the threshold is equal or close
to 1/�, all parties have their proportion of votes close to 1/� and hence are more
or less equal. It is therefore to be expected that, if at all an apportionment method
suffers from nonzero seat biases, they will be largest for small thresholds, and wear
away as the threshold grows close to 1/�. Indeed, the dependence on t turns out to
be practically linear in t ,

Bk(M, t) = (1 − �t)Bk(M, 0). (3)

In deriving formula (3) some mild approximations are needed. However, it tran-
spires that these approximations are practically negligible.

Figure 1 exhibits the straight-line decrease, for two-, three-, and four-party
systems. Overlaid are dots for thresholds of 5, 10, and 15% that are generated
by computer simulations (100 000 realizations). The house size M = 598 is
appropriate for the German Bundestag. If the approximations in deriving formula
(3) were not negligible, the dots would show some deviation from the straight
lines, which is not the case. Rather, the dots are perfectly aligned, and re-confirm
formula (3).

The apportionment method used in Fig. 1 is the divisor method with rounding
down (Jefferson, Hondt) which, among the traditional methods, is the one with
the most prominent seat biases, see Fig. 3 in Schuster et al. (2003). In that paper
two empirical data sets were investigated. One data set refers to the Swiss Kanton
Solothurn, where thresholds were never implemented.

The other data set comes from Bavaria 1966 to 1998, where the threshold
was at 5% throughout. With no threshold, theoretical seat biases in a three-party
system are a gain of 5/12 = 0.42 seat fractions for the largest party, and losses
of −1/12 = −0.08 for the middle party, and −4/12 = −0.33 for the smallest
party. With a 5% threshold, these seat biases need to be multiplied by the factor
1−3/20 = 0.85. The changes are so small that the concordance with the empirical
data set from Bavaria, which after all embraces just 49 apportionments, persists.

Appendix: derivation of formula (3)

The arguments leading to formula (3) extend the geometric approach pioneered
by Pólya (1918), and employed by Schuster et al. (2003). The lines of reason-
ing follow the more detailed approach by Drton and Schwingenschlögl (2004),
and Schwingenschlögl and Drton (2004). Those papers also provide a stringent
proof of the seat bias formula for multi-party systems which in Schuster et al.
(2003, p. 672) was put forward as a conjecture. An alternate proof of formula (3)
is given by Heinrich et al. (2005, p. 123), based on weak convergence results.

The approximation step needed to derive the linear relationship (3) consists
in a transition from the vote region to the seat region. Theoretically, we restrict
attention to those situations where the smallest party has a weight exceeding the
threshold t, w� ≥ t . Practically, we substitute this condition by demanding that the
smallest party has a seat proportion exceeding t, m�/M ≥ t . While the threshold
t is a continuous variable, the proportion of seats is discrete. However, for district
magnitudes M that are practically relevant the approximation works perfectly well,
while the computational simplification appears to be substantial.
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Fig. 1 Linear decrease of seat biases for systems with � = 2, 3, 4 parties and M = 598 seats,
for the divisor method with rounding down (Jefferson, Hondt). With threshold t growing from
0 to 1/�, the linear decrease is seen to be in perfect agreement with the simulated seat biases,
indicated by bold dots, for thresholds of 5, 10, and 15%

Therefore we condition on m�/M ≥ t , and approximate the threshold seat bias
of Eq. (2) according to

Bk(M, t) ≈ E[mk − Mwk |w1 ≥ w2 ≥ · · · ≥ w� and m�/M ≥ t]. (4)

From Eqs. (1) and (5) in Schwingenschlögl and Drton (2004) it transpires that,
except for constants not depending on t , Eq. (4) is the quotient of two sums

Bk(M, t) =
∑

m

mk

b(m)

/ ∑

m

1

b(m)
, (5)
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where the summations extend over all seat allocation vectors m = (m1, m2, . . . , m�)

with
∑�

i=1 mi = M satisfying m1 ≥ m2 ≥ · · · ≥ m� ≥ t M , while the boundary fac-
tor b(m) counts the number of permutations leaving the seat allocation m invariant.

Let n be the integer part of (M − 1)/�, and let s be the smallest integer bigger
than or equal to t M . Theorem 3 in Schwingenschlögl and Drton (2004) implies
that, except for constants not depending on s, the sum in the numerator of Eq. (5)
equals

∑

m

mk

b(m)
=

n∑

j=s

(
j�−1 + O

(
j�−2

))
= n� − (s − 1)� + O

(
n�−1

)
. (6)

Similarly, the sum in the denominator of Eq. (5) is seen to equal

∑

m

1

b(m)
=

n∑

j=s

(
j�−2 + O

(
j�−3

))
= n�−1 − (s − 1)�−1 + O

(
n�−2

)
. (7)

Being the quotient of two polynomials in s, of degree � in the numerator and of
degree �− 1 in the denominator, Eq. (5) is linear in s and hence t , except for lower
order remainder terms. By neglecting the remainder terms we obtain

Bk(M, t) = a + bt, (8)

and it remains to determine the constants a and b. Clearly we have a = Bk(M, 0).
The other endpoint Bk(M, 1/�) = 0 yields b = −�Bk(M, 0). Thus, Eq. (8) turns
into Eq. (3).
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