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Abstract Given an exponential family of sampling distnibutions of order k, one may construct 1n a natural way an exponential
family of conjugate (that 1s, pnior) distributions depending on a k-dimensional parameter ¢ and an additional weight w > 0.
We compute the bias term by which the expectation of the samphng mean-value parameter under the conjugate distribution
deviates from the conjugate parameter c. This bias term vamshes for regular exponential families, providing an appealing
mterpretation of the conjugate parameter ¢ as a ‘prior location’ of the samphing mean-value parameter. By way of example we
explore the extension of this approach to moments of higher order, 1n order to interprete the conjugate weight w as a ‘prior

sample size’.
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1. Introduction

Conjugate exponential families were introduced
by Raiffa and Schlaifer (1961, Section 3.2). A
review, together with many references, is given by
Dickey (1982). Conjugate families are also in-
cluded in the monographs by Barndorff-Nielsen
(1978, pp. 131f) and Brown (1986, pp. 112ff).

For an exponential sampling family with an
open canonical parameter domain ® Diaconis and
Ylvisaker (1979, Theorem 2) established the re-
markable result that the conjugate parameter c is
the expected value of the sampling mean-value
parameter 7(8) under the conjugate distribution

oM,
EQ((n)[T(o)] =c,
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see also Theorem 4.19 in Brown (1986, p. 113). In
the present note we extend this result to arbitrary
exponential families, and explore the validity of a
similar statement for the conjugate weight w.

In Section 2 we review conjugate exponential
families given a sampling family that is exponen-
tial and of order k, in the terminology of Barn-
dorff-Nielsen (1973). The property of being closed
under sampling suggests to introduce sample size
n and conjugate weight w as a k + 1 parameter,
leading to the families # and 2 of sampling
distributions and conjugate distributions, respec-
tively.

Conjugate densities are log-concave, as dis-
cused in Section 3. Barndorff-Nielsen (1973, p.
194; 1978, p. 93) provides a useful integrable
majorant for log-concave densities. Based on this
majorant a short-cut proof and an extension of
Theorem 2 of Diaconis and Ylvisakar (1979) is
given. This permits an exhaustive discussion of
exponential families of order 1.
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In Section 4 we go one step further and outline
a corresponding result for the conjugate weight w,

Vo [7(8)] = < Egu [ 1(8)],

w

that is, under the conjugate distribution Q{* for
the sampling parameter # the variance—covariance
matrix of the mean-value parameter 7(§) is equal
to expected Fisher information I(#) rescaled by
the conjugate weight w. We show that even in
classical regular families this result holds true only
when the weight w is sufficiently large, and that
there are other regular families for which it fails
completely.

2. Conjugate exponential families

Let 2O = (P €O} be a family of distribu-
tions on R* for a sample of size 1. Suppose that
PW forms a full and linear exponential family of
order k, in the terminology of Barndorff-Nielsen
(1978, Chapter 8). Then there exists a dominating
measure p such that the distribution PV e 2"
admits a p-density

pP(r) x e’ = forreC,

while p§P(1)=0 for ¢ C. Here 8t =%, _,0¢, is
the Euchidean inner product of the column vectors
8 and 1, and x(8) = log fe® " du(7) is the cumulant
transformation. These distributions all share a
common closed convex support

C = cl conv supp P

which is the range of variation of ¢, see
Barndorff-Nielsen (1978, p. 90).

The family of ‘prior distributions’ conjugate to
PO 5 defined to be a family of distributions on
the parameter domain @. The parameter domain
O is a Borel subset of R* since it is the countable
union of closed sets U, {x<n}, due to the
closedness of the cumulant transformation k, see
Barndorff-Nielsen (1979, p. 103). The parameter 6
(and the canonical statistic ¢) are unique only up
to regular affine transformations, leaving k-di-
mensional Lebesgue measure A as the only rea-
sonable candidate for a dominating measure.

Convex duality determines the conjugate
parameter, based on a result due to Barndorff-
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Nielsen (1978, p. 93; 1973, p. 194). The key point
is that the function f(#)=x(8)—8'c is a convex
function of 6, whence the functions e */¥) =
(€®'7*®)¥ are log-concave in @ for fixed weight
w> 0.

Lemma 2.1. For every weight w > 0 and for every
vector ¢ € R* one has

f(e"'f‘*<”>)wd>\(0)<oo o ce<int C.
e

Proof. The convex function f(8)=rx(8)—8'c 1s
closed and has an effective domain with nonempty
interior. Thus the integral [ge "/ dA(8)is fimte
if and only if

0<cint dom(wf )™ = int(w((dom k*) — c))
=w((int C) —¢),

where an astenisk indicates conjugate functions.
The latter property means that ¢ lies in the inter-
ior of C. Details of this reasoning are given in
Barndorff-Nielsen (1978, pp. 132, 93, 140). Thus
the proof is complete.

This justifies the definition of the family 2’
of conjugate distributions Q') for weight w> 0 on
O by requiring that c lies in the interior of C and
that Q") has Lebesgue density

g"(0) x (e )" forfe @,

while ¢{*’(8)=0 for ¢ ©. Thus 2 is an
exponential family with canonical parameter c
and canonical statistic wd. The union over varying
positive weights w > 0,

2= U 2" ={0": ceint C, w>0},

w>0

will be called the famuly of conjugate distributions.
The weight w plays a role similar to sample size as
to be discussed next.

Suppose Ti,..., T, 1s a sample of size n from a
distribution PV € 2", Then the sample average
T™W=Y,_,T./n is distributed according to the
distribution P{" that has density

py(r) « (e””_"w))" forteC,
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while p{™(t)=0 for t& C, relative to some
dominating measure p”. The family 2 =
{P{™: 8 € @) of sampling distributions for sample
size n is an exponential family with canonical
parameter § and canonical statistic nz. For a
seamless correspondence between 2" and #(™
we let the ‘sample size’ n vary continuously over
all positive numbers (0, o) whenever possible,
rather than restricting it to take integer values
only. Thus the family of sampling distributions is

P?=JP"={P": 6€0, n>0}.

n>0

The most useful consequence of this correspon-
dence is that the family £ of conjugate distribu-
tions is closed under sampling from £: A prior
distribution Q{*’ €2 for the sampling parameter
# € 0O is transformed by an observed response ¢
— distributed according to P{™ € £ - into a poste-
rior distribution of # given r that again is a
member of £, namely

_ +
ggg“‘em"'(a |t) = Qf:/(':v)+n))c+(n/(w+n)):

Thus the conjugate weight w and the sample
size n are added, and the relative magnitudes
w/(w+ n) and n/(w + n) determine that mixture
of the prior parameter ¢ and the observed re-
sponse ¢ which yields the posterior parameter
(w/(w+ n))c+ (n(w+ n))t.

This construction emphasizes the similarities
between the families £ and 2. However, the
dissimilarities are more intriguing, and surface as
soon as regulanty of these families 1s considered.

3. Location interpretation of the conjugate
parameter

The family of conjugate distributions 2 is an
exponential family of order k + 1, as pointed out
by Barndorff-Nielsen (1978, p. 132). However,
little if anything seems to be gained by this fact.
Notice that the family of sampling distributions £
need not be exponential, even though it has been
constructed as the union of exponential families.
More important, conjugate densities are always
log-concave, as mentioned before Lemma 2.1 and
used in its proof. Another aspect of this property
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is that they admit ‘nice’ integrable majorants based
on the Euclidean norm |8].

Lemma 3.1. For every weight w> 0 and for every
vector ¢ € int C there exist scalars a ER and 8> 0
such that

g (8) <ev* "Bl for feR.

Proof. See Barndorff-Nielsen (1973, p. 194; 1978,
p- 93).

The family 2" of conjugate distributions for
weight w has the intertor of the set C for its
canonical parameter domain and hence is regular.
No regularity assumption has been made for the
family £ of sampling distributions for sample
size n, but the boundary behaviour of the con-
jugate densities characterizes regularity, as fol-
lows. Regularity of the sampling family means
that the canonical parameter domain @ is open.

Lemma 3.2. For every weight w> 0 and for every
vector ¢ € int C the conjugate density ¢ 1s finite
on the boundary of ©; moreover 1t vanishes on the

boundary 1f and only if © 1s open.

Proof. Convergence to the boundary splits into the
cases when 6 tends in norm to infinity or when it
tends to a boundary point n of 6, see Mikeldinen,
Schmidt and Styan (1981, p. 759). In the first case
Lemma 3.1 forces ¢*’(8) to converge to zero. In
second case we have that hm sup, ,,q{"(8) 1s
bounded by e***#17! and hence finite.

More precisely the limit superior is propor-
tional to (e”“ ™) and hence vanishes 1f and
only if x(7n) equals + oo. This prevents n from
being a member of @. Therefore ® does not
include its boundary, that is, it must be open.
Thus the proof is complete.

This lemma 1s the basis for a short-cut proof of
the following result due to Diaconis and Ylvisakar
(1979, Theorem 2) who circumvent Lemmas 3.1
and 3.2 by using direct arguments. Their result
identifies the conjugate parameter ¢ as the loca-
tion of the sampling mean-value parameter 7(8)
= Epyn[?] when it is averaged with respect to the
conjugate distribution Q¢".
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In fact, an analysis of their proof reveals that
the result continues to hold when the conjugate
densities are constant on the boundary. Their
method carries over even to the most general case,
resulting in a bias term based on the integral over
the derivative Dg{"’(6) with respect to 6.

Theorem 3.3. For every conjugate weight w > 0 and
for every conjugate parameter ¢ € int C one has

Eg[7(6)] ==, [ Dal”(8) dA(6):

moreover if the conjugate densities are constant on
the boundary then

Egwm[r(8)] =c.

Proof. For the purposes of Lebesgue integration
over ® we need only look at the interior of this
set. Recall that for interior parameter vectors 6
the first and second derivative of the cumulant
transformation reproduces the mean-value param-
eter and the Fisher information matrix, 7(8)=
Dk(8) and 1(6) = D*x(8).
The gradient of the conjugate density is

Dg{(8) =w(c—7(6))q:"(8).

Thus the two statements:
— ‘The gradient is integrable under Lebesgue
measure.’

— ‘The mean-value parameter has finite expec-
tation under the conjugate distribution.’
imply each other and entail the first formula in
the theorem. We establish Lebesgue integrability
of the gradient. Without loss of generality con-
sider its first component, D,g{*’(8#), which is the
partial derivative with respect to the component

0,.
Fix the components @,,...,8,. The partial
function

h(8,) =Dyg”(8) = w(c — 7 (6)) gl ()

has 6§, varying over an interval from a, to by, say.
Furthermore h(6,) is the derivative of H(#,)=
q{"’(8). But the vector § with first component
6,=a, or 6,=>, lies on the boundary of 6.
Therefore Lemma 3.2 shows that the values H(a;)
and H(b,) are finite.

The second partial derivative D7k(#) is the
diagonal element I,(8) of the information matrix
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and hence positive. Thus the first partial deriva-
tive D;x(8)=7,(0) is increasing in 6, and the
function h(#,) changes sign at most once, and if
so the sign change is from positive to negative. In
case there is no sign change one has

b
[714(6:) 146 = | H(b:) = H(ay))|

1

<H(a,)+ H(by).

In case there is one change of sign in the point ¢,
one has

b €1 b
[714(6:)1d6, = [ "n(6,) db, — ["h(8,) 46,
a) S

@

= 2H( Cl ) .
In either case the function # is integrable.
Now allow the components 6,,...,8, to vary.

Lemma 3.1 provides. the bounds

H(al) +H(b1) <ewaz—wB a?+0%+ +0}
+ewa—wﬂ b3+03+ +03

)
- 0+02+  +63
<2eteBf0roir ok

2H(cl)<zewa—wﬁ clz+0%+ +0;‘:
S2ewc\z—wB 0+6%+ +0£‘

The common majorant is integrable with respect
to 6,,...,8,, showing that D;g{"’(8) is integrable
with respect to 8. This establishes integrability
and the first formula.

Moreover the Fubini Theorem applies and
yields

[ D1g{"(8) dA(6)
(]

=f.../(j;b‘h(01)d01) dg, - - df,.

Since we have already verified integrability of A
the inner integral equals H(b;)— H(a;) and
vanishes when the conjugate densities are constant
on the boundary. This establishes the second for-
mula. Thus the proof is complete.

We are now in a position to provide a complete
discussion of what can happen in the one-dimen-
sional case. Here @ is an interval with endpoints a
and b, say. The bias term becomes

1t _ L,y -
| e (0) a8 = 2 (a7 (a) — 4 (b)),
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In view of Lemma 3.2 three cases are possible:

If @ is open then the bias term vanishes.

If @ is half-open then the bias term is nonzero.

If © is compact then the bias term vanishes if
and only if constancy on the boundary obtains.

The monograph of Barndorff-Nielsen (1978)
provides a wealth of exponential families falling
under the first two cases. The third case 1s also
nonvacuous, since every compact convex set ©
appears as the canonical parameter domain of
some exponential family (Brown, 1986, p. 26)

The third case has ¢{*(a) = ¢{*’(b) and there-
fore can hold only when the conjugate parameter
has value

_ k(a) —«(b)
c= > .
Thus the bias term vanishes for precisely one
value of ¢ and is nonzero otherwise.

Example 3.4. The exponential family generated by
the Laplace density e ~!’! /2 has canonical parame-
ter domain © = (—1, +1), see Barndorff-Nielsen
(1978, p. 168). Removing some mass from the tails
of the densities, according to e !'! /(1 +¢?),
creates an exponential family with compact
parameter domain & =[—1, +1]. Due to symme-
try one has k(—1) = k(+1), so that here we have
Eoen[1(8)] = c if and only if ¢ =0.

The approach of integrating over the derivative
of the conjugate density is put forward in Morgan
(1970) as well. It clearly suggests to also look at
the integrals over second (and higher) order de-
rivatives, and to this we turn next.

4. Sample size interpretation of the conjugate
weight

The Diaconis and Ylvisakar result is remarkable
in that it covers all regular exponential families,
which is an important and easily recognized class.
This transparency gets lost when higher orders are
considered. The Hesse matrix of the comjugate
density ¢{*'(9) is

D¢ (0) =w*(7(8) —c)(7(8) —c)'q{(8)
-wI(8)q:"(0).
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Integrability is no longer self-evident, and the
analogue of Theorem 3.3 is burdened by the nec-
essary provisos (leaving hardly anything to prove).

Theorem 4.1. For every weight w > 0 and for every
vector ¢ € int C any two of the following three state-
ments imply the third:

— ‘The Hesse matrix is integrable under Le-
besgue measure.’

— ‘The mean-value parameter has finite vari-
ance—covariance matrix under the conjugate
distribution.

— ‘The Fisher information matrix has finite ex-
pectation under the conjugate distribution.

If these integrability conditions are fulfilled then

Vo[ 1(8)] =+ Equn[1(8)]
+ = [ D%(0) dA(0):

moreover if the gradient Dq‘™(8) is constant on
the boundary of © then

Vo [1(8)] = - Equm[1(8)].

Proof. Compare the proof of Theorem 3.3.

Integrability of the Hesse matrix holds if and
only if the gradient stays finite on the boundary.
This may fail even for regular exponential fami-
lies.

Counterexample 4.2. The univariate logarithmic
family (Barndorff-Nielsen, 1978, p. 118) has sam-
pling density

PO(1) = T s = e

forr=1,2, ....

The parameter domains are (0,1) for #, and
(— o0, 0) for 8 = log 7. The cumulant transforma-
tion is k(8) = log log(1/7), with

1=1-e’=1-7€(0,1).
The mean-value parameter

m(8)=(1-n)/(—nlog )
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increases from 1 to oo as # runs from — oo to O.
The conjugate family has parameter domain

int C=int conv({1,2, ...} =(1, ),

the density with weight w > 0 and parameter ¢ > 1
being

gi(8) =d(w, c)(e’ )"
=d(w, c)ﬁ")—w for 6 < 0.
(—1log 7)

The limit of the gradient for 8 = —o0 is
(—0)q"(—0)=1-0=0. At § =0 we obtain
the undetermined expression oo -0, but a closer
analysis leads to

7(8)q(0)

(1_n)wc+l
=d(w, c)————————
( )n(~log )"
_ d(w, ¢)
(w+1)w+l

X((l—n)(WC+1)/(W+1)

_nl/(w+1) log('r)l/(”’“))

As 0 and hence n tend to O these terms are
positive except for the numerator which converges
to —0 log 0 =0. In summary we obtain

|’ D%(6) d8=Dg(8)|’ ,

—wr(8)g ()| _

= — 0.

Therefore in the logarithmic family the second
derivative of the conjugate density fails to be
Lebesgue integrable, implying that expected Fisher
information under the conjugate distribution must
be infinite.

In general we conjecture that there exists a
minimum weight w, € [0, oo] intrinsic to a given
family so that for weights w > w; Theorem 4.1
applies successfully. This is reminiscent of the role
played by the sample size: generally some mini-
mum sample size must be exceeded before state-
ments on higher order moments become feasible.
We have no proof of our conjecture, but demon-
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strate it with the following set of examples.

Instances where the minimum weight is zero
are met when the sampling family 2" is the
normal location family, the binomial family, or
the Poisson family.

Instances where the minimum weight is positive
are the following. The gamma scale family with
fixed shape parameter A, has minimum weight
w; =1/A,; in particular the normal scale family
has minimum weight w; = 2. In the negative bi-
nomial family with fixed shape parameter x, the
minimum weight is w, =1/x,. The exponential
family generated by the Laplace distribution has
minimum weight w; = 1. Of course, when w = o0
then Theorem 4.1 is of no use at all, as is il-
lustrated by the counterexample.

The correspondence between conjugate weight
and sample size also suggests to consider the
limiting behaviour as w tends to infinity. If the
conjugate densities are constant on the boundary
then under Q" the distribution of

Vw(7(8) —c)

is centered at zero; moreover its variance—covari-
ance matrix is expected Fisher information,

Eoe [1(8)] = d(w, c)fez(o)(e‘*’c-“”))” dx(8)

when Theorem 4.1 applies successfully. By the
Laplace asymptotic method the behaviour of the
integral as w tends to infinity is determined by the
mode of the density, that is by

sup (8'c — k(8)) = k*(c).
(X=X

The value §(c) that attains this supremum is the
maximum likelihood estimate for § when the ob-
served response is ¢. In the limit we then obtain a
k-variate normal distribution with mean zero and
variance—covariance matrix I( 6 (c)).

The discussion evidently hinges on the regular-
ity properties of conjugate densities and their de-
rivatives, in the sense of whether they are constant
on the boundary and whether they are Lebesgue
integrable. The exact domain of validity for this
type of reasoning remains to be determined.
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